首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activated Kupffer cells and macrophages accumulate in necrotic areas in the liver. Osteopontin, an extracellular matrix with RGD sequence, has been shown to act as a chemokine that can induce monocyte migration. The possibility that osteopontin can play a role in infiltration of both cells into hepatic necrotic areas was investigated in rats. Northern blot analysis revealed that osteopontin mRNA expression was minimal in Kupffer cells and hepatocytes immediately after isolation from normal rats, but slight in hepatic stellate cells assumed nearly quiescent in function after 3 days of culture on plastic dishes. When rat received carbon tetrachloride, liver necrosis developed between 1 and 3 days following the intoxication. In these rats, osteopontin mRNA expression assessed by quantitative competitive RT-PCR was increased in the liver later than 1 day with its peak at 2 days following the intoxication. Kupffer cells and hepatic macrophages and hepatic stellate cells isolated from such liver showed marked expression of osteopontin mRNA on Northern blotting. Immunohistochemical examination disclosed that osteopontin was stained in macrophages including Kupffer cells and stellate cells in the necrotic areas. On electron microscopy, osteopontin stains were present in the Golgi apparatus in these cells. Recombinant human osteopontin promoted migration of Kupffer cells isolated from normal rats and cultured in a Transwell cell culture chamber in a dose-related manner. We conclude that activated Kupffer cells and hepatic macrophages and stellate cells express osteopontin. These cells might contribute to the infiltration of Kupffer cells and macrophages into hepatic necrotic areas by expressing osteopontin.  相似文献   

2.
3.
4.
Filamin (FLN) plays an important role in differentiation, migration, and signal transduction in vascular smooth muscle cells (VSMCs). We hypothesized that suppression of FLN expression would inhibit differentiation and migration of VSMCs, and interrupt the phenotype switch of these cells. We designed and tested different shRNA sequences to silence FLN expression. The degree of silencing was assessed at mRNA (qPCR) and protein (Western blot) levels. Two sequences, FL1 and FL2, lead to the most efficient FLN silencing. Subsequent experiments were conducted using the FL1 shRNA. Cells with silenced FLN were exposed to ox-LDL, and cell phenotypic changes (cell proliferation, cell cycle, apoptosis, and morphologic changes of cytoskeleton) were evaluated. When FLN was silenced, the phenotype switch of VSMCs exposed to ox-LDL was attenuated. Further, the injury to the cytoskeleton was less prominent in the FLN-silenced cells. To conclude, RNA silencing of FLN decreases the phenotype switch of VSMCs into a pathologic state. FLN silencing could be useful in treating atherosclerosis at genetic level.  相似文献   

5.
6.
7.
The fate and phenotype of lesion macrophages is regulated by cellular oxidative stress. Thioredoxin-1 (Trx-1) plays a major role in the regulation of cellular redox balance, with resultant effects on gene expression and cellular responses including cell growth and death. Trx-1 activity is inhibited by interaction with vitamin D-upregulated protein-1 (VDUP-1). Peroxisome proliferator-activated receptor gamma (PPARgamma) is expressed by human monocyte-derived macrophages (HMDM) and PPARgamma agonism has been reported to decrease expression of inflammatory genes and to promote apoptosis of these cells. To determine whether VDUP-1 may be involved in regulating the effects of PPARgamma agonists in macrophages, we investigated the effect of a synthetic PPARgamma agonist (GW929) on the expression of VDUP-1 in HMDM. GW929 concentration-dependently increased HMDM expression of VDUP-1 (mRNA and protein). Transfection of different fragments of the VDUP-1 promoter as well as gel shift analysis revealed the presence of functional PPARgamma response elements (PPRE) in the promoter. Under conditions in which PPAR agonism altered levels of VDUP-1, caspase-3 activity, and macrophage apoptosis were also elevated. The results suggest that PPARgamma activation stimulates apoptosis in human macrophages by altering the cellular redox balance via regulation of VDUP-1.  相似文献   

8.
NF-kappaB is a critical mediator of macrophage inflammatory responses, but its role in regulating macrophage survival has yet to be elucidated. Here, we demonstrate that constitutive NF-kappaB activation is essential for macrophage survival. Blocking the constitutive activation of NF-kappaB with pyrrolidine dithiocarbamate or expression of IkappaBalpha induced apoptosis in macrophagelike RAW 264.7 cells and primary human macrophages. This apoptosis was independent of additional death-inducing stimuli, including Fas ligation. Suppression of NF-kappaB activation induced a time-dependent loss of mitochondrial transmembrane potential (DeltaPsi(m)) and DNA fragmentation. Examination of initiator caspases revealed the cleavage of caspase 9 but not caspase 8 or the effector caspase 3. Addition of a general caspase inhibitor, z-VAD. fmk, or a specific caspase 9 inhibitor reduced DNA fragmentation but had no effect on DeltaPsi(m) collapse, indicating this event was caspase independent. To determine the pathway leading to mitochondrial dysfunction, analysis of Bcl-2 family members established that only A1 mRNA levels were reduced prior to DeltaPsi(m) loss and that ectopic expression of A1 protected against cell death following inactivation of NF-kappaB. These data suggest that inhibition of NF-kappaB in macrophages initiates caspase 3-independent apoptosis through reduced A1 expression and mitochondrial dysfunction. Thus, constitutive NF-kappaB activation preserves macrophage viability by maintaining A1 expression and mitochondrial homeostasis.  相似文献   

9.

Background

Solid tumours comprise various cells, including cancer cells, resident stromal cells, migratory haemopoietic cells and other. These cells regulate tumour growth and metastasis. Macrophages constitute probably the most important element of all interactions within the tumour microenvironment. However, the molecular mechanism, that guides tumour environment, still remains unknown. Exploring the underlying molecular mechanisms that orchestrate these phenomena has been the aim of our study. A co-culture of canine mammary cancer cells and macrophages was established and maintained for 72 hrs. Having sorted the cells, gene expression in cancer cells and macrophages, using DNA microarrays, was examined. The results were confirmed using real-time qPCR and confocal microscopy. Moreover, their ability for migration and invasion has been assessed.

Results

Microarray analysis showed that the up-regulated genes in the cancer cell lines are involved in 15 highly over-manifested pathways. The pathways that drew our diligent attention included: the inflammation pathway mediated by chemokine and cytokine, the Toll receptor signalling pathway and the B cell activation. The up-regulated genes in the macrophages were involved in only 18 significantly over-manifested pathways: the angiogenesis, the p53 pathway feedback loops2 and the Wnt signalling pathway. The microarray analysis revealed that co-culturing of cancer cells with macrophages initiated the myeloid-specific antigen expression in cancer cells, as well as cytokine/chemokine genes expression. This finding was confirmed at mRNA and protein level. Moreover, we showed that macrophages increase cancer migration and invasion.

Conclusions

The presence of macrophages in the cancer environment induces acquisition of the macrophage phenotype (specific antigens and chemokines/cytokines expression) in cancer cells. We presumed that cancer cells also acquire other myeloid features, such as: capabilities of cell rolling, spreading, migration and matrix invasion (what has also been confirmed by our results). It may, perhaps, be the result of myeloid-cancer cell hybrid formation, or cancer cells mimicking macrophages phenotype, owing to various proteins secreted by macrophages.  相似文献   

10.
Osteopontin is induced by nitric oxide in RAW 264.7 cells   总被引:1,自引:0,他引:1  
Nitric oxide (NO) produced by macrophages is thought to contribute to various pathological conditions. Osteopontin (OPN) is a phosphorylated glycoprotein produced principally by macrophages. OPN inhibits inducible nitric oxide synthase (iNOS), which generates large amounts of NO production. However, the relationship between NO and endogenous OPN in activated macrophages has not yet been elucidated. We therefore examined expression of endogenous iNOS and OPN in a murine macrophage cell line, RAW 264.7 cells, by treating the cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). Treatment of cells with LPS and IFN-gamma resulted in an increase of iNOS mRNA to maximum at 12 h after stimulation. In contrast, OPN mRNA was induced more slowly than iNOS mRNA. Induction of both iNOS and OPN mRNA in RAW 264.7 cells was markedly suppressed by addition of the specific iNOS inhibitor S-2-aminoethyl isothiourea dihydrobromide. The NOS inhibitor NG-methyl-L-arginine also suppressed induction of OPN mRNA but hardly affected iNOS mRNA expression. The NO-releasing agent spermine-NONOate but not peroxynitrite enhanced induction of OPN mRNA. These results suggest that NO directly up-regulates the endogenous OPN in macrophages stimulated with LPS and IFN-gamma. This up-regulation of endogenous OPN may represent a negative feedback system acting to reduce iNOS expression.  相似文献   

11.
Interleukin (IL)-7 is known to enhance the macrophages cytotoxic activity and that macrophages play a pivotal role in the development and progression of myocardial ischaemia/reperfusion (I/R) injury. However, the effects of IL-7 on macrophages infiltration and polarization in myocardial I/R injury are currently unclear. This study aimed to evaluate the effects of the IL-7 expression on myocardial I/R injury and their relationship with macrophages. The data showed that IL-7 expression in mouse heart tissue increases following I/R injury and that IL-7 knockout or anti-IL-7 antibody treatment significantly improve I/R injury, including reduction in myocardial infarction area, a serum troponin T level decreases and an improvement in cardiac function. On the other hand, recombinant IL-7 (rIL-7) supplementation induces opposite effects and the anti-IL-7 antibody significantly reduces the cardiomyocyte apoptosis and macrophage infiltration. rIL-7 cannot directly cause apoptosis, but it can induce cardiomyocyte apoptosis through macrophages, in addition to increase the macrophages migration in vitro. Anti-IL-7 antibody affects the cytokine production in T helper (Th) 1 and Th2 cells and also promotes the macrophages differentiation to M2 macrophages. However, anti-IL-7 antibody does not reduce the M1 macrophage number, and it only increases the ratio of M2/M1 macrophages in mice heart tissues after I/R injury. Taking together, these data reveal that IL-7 plays an intensifying role in myocardial I/R injury by promoting cardiomyocyte apoptosis through the regulation of macrophage infiltration and polarization.  相似文献   

12.
13.
14.
Expression of inducible nitric-oxide (NO) synthase (iNOS) and "high-output" production of NO by macrophages mediates many cytotoxic actions of these immune cells. However, macrophages have also been shown to express a constitutive NOS isoform, the function of which remains obscure. Herein, bone marrow-derived macrophages (BMDM?s) from wild-type and endothelial NOS (eNOS) knock-out (KO) mice have been used to assess the role of this constitutive NOS isoform in the regulation of macrophage activation. BMDM?s from eNOS KO animals exhibited reduced nuclear factor-kappaB activity, iNOS expression, and NO production after exposure to lipopolysaccharide (LPS) as compared with cells derived from wild-type mice. Soluble guanylate cyclase (sGC) was identified in BMDM?s at a mRNA and protein level, and activation of cells with LPS resulted in accumulation of cyclic GMP. Moreover, the novel non-NO-based sGC activator, BAY 41-2272, enhanced BMDM? activation in response to LPS, and the sGC inhibitor 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one attenuated activation. These observations provide the first demonstration of a pathophysiological role for macrophage eNOS in regulating cellular activation and suggest that NO derived from this constitutive NOS isoform, in part via activation of sGC, is likely to play a pivotal role in the initiation of an inflammatory response.  相似文献   

15.
Apoptosis is a critical event for eliminatingactivated macrophages. Here we show that Fas-mediated apoptosismay participate in the mechanism of negative feedback regulation ofactivated macrophages. Cytokine-activated macrophages releasedhigh levels of nitric oxide (NO) that induced apoptosis in macrophagesthemselves. This NO-induced macrophage apoptosis was inhibited by aFas-Fc chimeric molecule that binds to Fas ligand (FasL) and prevents its interaction with endogenous cell surface Fas. High levels of NOstimulated the release of the soluble form of FasL that wasinhibited by a matrix metalloproteinase inhibitor KB-8301. High levelsof NO also upregulated the expression of Fas mRNA in macrophages.In addition, macrophages isolated from Fas-lacking mice were resistantto NO-induced apoptosis. Finally, inhibition of apoptosis by a caspaseinhibitor augmented peroxide production from activated macrophages.These findings suggest that high levels of NO released fromactivated macrophages may promote the Fas-mediated macrophage apoptosisthat may be a negative feedback mechanism for elimination and thedownregulation of activated macrophages in the vessel wall.

  相似文献   

16.
Macrophages play important roles in immunity and other physiological processes. They are also target cells of various toxic agents, including oxidants and electrophiles. However, little is known regarding the molecular regulation and chemical inducibility of a spectrum of endogenous antioxidants and phase 2 enzymes in normal macrophages. Understanding the molecular pathway(s) controlling the coordinated expression of various macrophage antioxidants and phase 2 defenses is of importance for developing strategies to protect against macrophage injury induced by oxidants and electrophiles. Accordingly, this study was undertaken to determine the role of the nuclear factor E2-related factor 2 (Nrf2) in regulating both constitutive and chemoprotectant-inducible expression of various antioxidants and phase 2 enzymes in mouse macrophages. The constitutive expression of a series of antioxidants and phase 2 enzymes was significantly lower in macrophages derived from Nrf2-null (Nrf2(-/-)) mice than those from wild-type (Nrf2(+/+)) littermates. Incubation of wild-type macrophages with 3H-1,2-dithiole-3-thione (D3T) led to significant induction of various antioxidants and phase 2 enzymes, including catalase, glutathione, glutathione peroxidase (GPx), glutathione reductase, glutathione S-transferase, and NAD(P)H:quinone oxidoreductase 1. The inducibility of the above cellular defenses except for GPx by D3T was completely abolished in Nrf2(-/-) macrophages. As compared with wild-type cells, Nrf2(- /-) macrophages were much more susceptible to cell injury induced by reactive oxygen/nitrogen species, as well as two known macrophage toxins, acrolein and cadmium. Up-regulation of the antioxidants and phase 2 enzymes by D3T in wild-type macrophages resulted in increased resistance to the above oxidant-and electrophile-induced cell injury, whereas D3T treatment of Nrf2(- /-) macrophages provided only marginal or no cytoprotec-tion. This study demonstrates that Nrf2 is an indispensable factor in controlling both constitutive and inducible expression of a wide spectrum of antioxidants and phase 2 enzymes in macrophages as well as the susceptibility of these cells to oxidative and electrophilic stress.  相似文献   

17.
Previous studies have shown that activation of the RON receptor tyrosine kinase inhibits inducible NO production in murine peritoneal macrophages. The purpose of this study is to determine whether inflammatory mediators such as LPS, IFN-gamma, and TNF-alpha regulate RON expression. Western blot analysis showed that RON expression is reduced in peritoneal macrophages collected from mice injected with a low dose of LPS. The inhibition was seen as early as 8 h after LPS challenge. Experiments in vitro also demonstrated that the levels of the RON mRNA and protein are diminished in cultured peritoneal macrophages following LPS stimulation. TNF-alpha plus IFN-gamma abrogated macrophage RON expression, although individual cytokines had no significant effect. Because LPS and TNF-alpha plus IFN-gamma induce NO production, we reasoned that NO might be involved in the RON inhibition. Two NO donors, S-nitroglutathione (GSNO) and (+/-)-S-nitroso-N-acetylpenicillamine (SNAP), directly inhibited macrophage RON expression when added to the cell cultures. Blocking NO production by NO inhibitors like TGF-beta prevented the LPS-mediated inhibitory effect. In Raw264.7 cells transiently transfected with a report vector, GSNO or SNAP inhibited the luciferase activities driven by the RON gene promoter. Moreover, GSNO or SNAP inhibited the macrophage-stimulating protein-induced RON phosphorylation and macrophage migration. We concluded from these data that RON expression in macrophages is regulated during inflammation. LPS and TNF-alpha plus IFN-gamma are capable of down-regulating RON expression through induction of NO production. The inhibitory effect of NO is mediated by suppression of the RON gene promoter activities.  相似文献   

18.
Macrophage polarization contributes to a number of human pathologies. This is exemplified for tumor-associated macrophages (TAMs), which display a polarized M2 phenotype, closely associated with promotion of angiogenesis and suppression of innate immune responses. We present evidence that induction of apoptosis in tumor cells and subsequent recognition of apoptotic debris by macrophages participates in the macrophage phenotype shift. During coculture of human primary macrophages with human breast cancer carcinoma cells (MCF-7) the latter ones were killed, while macrophages acquired an alternatively activated phenotype. This was characterized by decreased tumor necrosis factor (TNF)-alpha and interleukin (IL) 12-p70 production, but increased formation of IL-8 and -10. Alternative macrophage activation required tumor cell death because a coculture with apoptosis-resistant colon carcinoma cells (RKO) or Bcl-2-overexpressing MCF-7 cells failed to induce phenotype alterations. Interestingly, phenotype alterations were achieved with conditioned media from apoptotic tumor cells, arguing for a soluble factor. Knockdown of sphingosine kinase (Sphk) 2, but not Sphk1, to attenuate S1P formation in MCF-7 cells, restored classical macrophage responses during coculture. Furthermore, macrophage polarization achieved by tumor cell apoptosis or substitution of authentic S1P suppressed nuclear factor (NF)-kappaB signaling. These findings suggest that tumor cell apoptosis-derived S1P contributes to macrophage polarization.  相似文献   

19.
20.
This study was designed to examine the expression and function of IL-2R on murine macrophages. We used a model system of murine macrophage cell lines (ANA-1 and GG2EE) that was established by infecting normal murine bone marrow-derived cells with the J2 (v-raf/v-myc) recombinant murine retrovirus. ANA-1 macrophages did not constitutively express detectable levels of mRNA for the p55, IL-2R alpha. However, a brief exposure to IFN-gamma was sufficient to induce IL-2R alpha mRNA in ANA-1 macrophages. Flow cytometric analysis indicated that ANA-1 macrophages expressed low constitutive levels of IL-2R alpha on their cell surface that were augmented after treatment of the cells with IFN-gamma. Affinity binding and cross-linking of [125I]IL-2 to ANA-1 macrophages demonstrated that IL-2R alpha and the p70-75, IL-2R beta were both present on ANA-1 macrophages constitutively. IFN-gamma increased the expression of IL-2R alpha on ANA-1 macrophages but did not increase the expression of IL-2R beta on these macrophages. Although IL-2 alone did not induce the tumoricidal activity of ANA-1 macrophages, IL-2 acted synergistically with IFN-gamma to induce macrophage tumoricidal activity. These data demonstrate the expression of IL-2R on murine macrophage cell lines and establish the role of IL-2 as a costimulator of macrophage-mediated tumoricidal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号