首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atoplastic surgery using intestinal tissue has been used for the reconstructive therapy of the urinary tract since the mid-20th century; however, cell mechanisms of the urothelium engraftment are still unclear. Intestinal stem cells possess plasticity and, after autoplastic surgery, are presumably able to transdifferentiate into mature cells of the urinary tract. Using the preliminarily developed model for evaluating of the transdifferentiaion of somatic cells into urothelium in vivo, we found that, in syngeneic C57BL mice, epithelial Gfp-producing intestinal cells transdifferentiate into the cryoinjured bladder urothelium. Gfp was detected in the bladder tissue of recipient mice using reverse polymerase chain reaction, fluorescence and immunofluorescence. Colocalization of Her-4 protein revealed by common urothelium expression pattern and Gfp was demonstrated in few urothelial cells by double immunohistochemical staining of the bladder tissue with specific antibodies. The results obtained suggest that epithelial intestinal cells are able to transdifferentiate into bladder urothelium; however, the level of transdifferentiation is low and, presumably, cannot ensure the full functional urothelium engraftment in the case of autoplastic bladder surgery using intestinal tissue.  相似文献   

2.
The present study tests the hypothesis that heterotypic stromal-epithelial interactions cause phenotypic changes in urothelium. The rational for the experimental design is to simulate heterotypic stromal-epithelial interactions that are created at the anastomotic site of intestinal-bladder augmentations and internal urinary diversions where the urothelium is in direct contact with the gastro-intestinal tract tissues. Tissue recombination experiments were performed by combining 14-day embryonic rat and mouse rectal mesenchyme with urothelium from embryonic, newborn, and adult mice or rats. All tissue recombinants were grown beneath the renal capsule of athymic mouse hosts for 6-16 weeks. Analyses were performed to detect expression of uroplakins, cytokeratin 7, 14, 19 and mucin secreting epithelial cells via Periodic Acid-Schiff (PAS). The phenotype of both mouse and rat urothelium was changed to a glandular morphology under the influence of rectal mesenchyme. Immunohistochemical staining revealed a loss of the urothelial specific uroplakins and cytokeratins 7, 14, and 19 (characteristic of urothelium). Histologic analysis revealed the presence of mucin secreting glandular structures which stained positive for PAS. The urothelial transdifferentiation into glandular epithelium was not a function of epithelial age and occurred in the embryonic, newborn and adult urothelium. Likewise, rectal mesenchyme from embryonic, neonatal, and adult animals was able to induce glandular differentiation in bladder epithelium. Urothelium exhibits the plasticity to change into an intestinal like epithelium as a result of mesenchymal/stromal stimulation from the gastro-intestinal tract. This experimental result is germane to heterotypic stromal-epithelial interactions that are created in patients with urinary tract reconstructions (intestinal augmentations, de-mucosalized urothelial lined bladder patches, and internal urinary diversion such as ureterosigmoidostomies). We propose that heterotypic stromal-epithelial interactions may play a role in determining histodifferentiation of urothelial cells at the anastomotic site between bowel and bladder tissue in patients with gastro-intestinal urothelial reconstructions.  相似文献   

3.
Development of reconstructive therapy of the urinary tract using pluripotent and somatic stem cells, for example mesenchymal stem cell (MSCs), recently goes through the stage of experimental studies. These studies include investigation of the main functions of MSCs and urothelium lining from inside the organs of the urinary tract. An important role in the regulation of proliferation and differentiation of urothelium belongs to EGF and Wnt-beta-catenin signaling pathways which activity may be accessed by the level of Her-4 and Tcf3,4, accordingly. We found here that MSCs labeled by transgenic green fluorescence protein (GFP) did not produce in vitro Her-4 and Tcf3,4 but activated their production after transfer into cryoinjured bladder of the syngenic mouse. After MSCs transplantation, GFP was detected in the bladder by RT-PCR and was colocalized with Her-4 or Tcf3,4 in a few urothelium cells detected by immunohistichemical staining with specific antibodies. These results suggest that MSCs labeled by GFP may be used as a good model to study transdifferentiation of somatic cells into urothelium.  相似文献   

4.
The development of reconstructive therapy of the urinary tract using pluripotent and somatic stem cells, e.g., mesenchymal stem cells (MSC), is currently in the stage of experimental studies. These studies include the investigation of the main functions of MSC and the urothelium lining the organs of the urinary tract. An important role in the regulation of proliferation and differentiation of urothelium belongs to EGF and Wnt/β-catenin signaling pathways, the activity of which may be evaluated by the level of Her-4 and Tcf-3, 4, respectively. We found that MSC labeled by transgenic green fluorescence protein (GFP) did not pro-duce Her-4 and Tcf3, 4 in vitro, but activated their production after cell grafting into the cryoinjured bladders of the syngenic mice. In mice transplanted with these MSC GFP was detected by RT-PCR in the bladder. GFP colocalization with Her-4 or Tcf3, 4 in a few urothelial cells was detected by immunohistochemical staining with specific antibodies. These results suggest that MSC labeled with GFP an be used as a proper model to study the transdifferentiation of somatic cells into urothelium.  相似文献   

5.
Through studies to clarify the cellular origin of lens regeneration in the newt, the pigmented epithelial cells of the iris and the retina of many vertebrate species have been shown to possess a dormant potency to transdifferentiate into the lens. The method ofin-vitroculture of pigmented epithelial cells has been optimized to enable detailed studies of the transdifferentiation process by molecular techniques. Growth factors and extracellular matrix components are found to be important in the control of the transdifferentiation process. New systems forin-vitroculture are introduced, while prospects for renewedin-vivostudies using newts are given.  相似文献   

6.
Although the epithelial lining of much of the mammalian urinary tract is known simply as the urothelium, this epithelium can be divided into at least three lineages of renal pelvis/ureter, bladder/trigone, and proximal urethra based on their embryonic origin, uroplakin content, keratin expression pattern, in vitro growth potential, and propensity to keratinize during vitamin A deficiency. Moreover, these cells remain phenotypically distinct even after they have been serially passaged under identical culture conditions, thus ruling out local mesenchymal influence as the sole cause of their in vivo differences. During vitamin A deficiency, mouse urothelium form multiple keratinized foci in proximal urethra probably originating from scattered K14-positive basal cells, and the keratinized epithelium expands horizontally to replace the surrounding normal urothelium. These data suggest that the urothelium consists of multiple cell lineages, that trigone urothelium is closely related to the urothelium covering the rest of the bladder, and that lineage heterogeneity coupled with cell migration/replacement form the cellular basis for urothelial squamous metaplasia.  相似文献   

7.
Distribution of phosphodiesterase I in normal human tissues   总被引:1,自引:0,他引:1  
Phosphodiesterase I (PDE I) is an exonuclease capable of hydrolyzing a variety of phosphate ester and pyrophosphate bonds. Cell fractionation and histochemical studies in animal tissues have localized PDE I in the plasma membrane of various epithelia. This suggests a role for the enzyme in active transport. Distribution of PDE I in human tissues has not previously been studied. We have produced a polyclonal antiserum to bovine intestinal PDE I and have demonstrated crossreactivity with the human intestinal enzyme. This polyclonal antiserum was used in PAP immunocytochemistry to localize immunoreactive PDE I in a variety of human tissues. Localization was prominent in the gastrointestinal tract, including the cytoplasm of gastric mucosa parietal cells, cytoplasm of surface epithelium and isolated crypt cells in small intestine, and the colonic epithelial cytoplasm and brush border. Parotid gland acinar cells and scattered ductal cells showed positive cytoplasmic staining. Acinar and scattered pancreatic islet cells contained immunoreactive PDE I, as did Kupffer cells of the liver sinusoids. Immunoreactive PDE I was found in all vascular endothelia. The epithelium of the urinary tract showed extensive immunoreactivity. This included the distal convoluted and collecting tubules of the kidney, and ureteral and bladder urothelium. In previous histochemical studies of animal tissues, no evidence of PDE I activity was noted in male or female reproductive tract. In this study, immunoreactive PDE I was localized to human Sertoli cells and to basal epithelium of the epididymis and prostate acini. Fallopian tube epithelium of female reproductive tract also demonstrated immunoreactive PDI I, as did several cell types in term placenta. Our immunocytochemical results with human tissues differ significantly from previous histochemical studies in animal tissues, principally in the genitourinary system. This may be due in part to the different detection systems employed as well as the higher sensitivity of the immunoperoxidase technique. This underscores the importance of adjunct techniques in tissue surveys. The widespread epithelial distribution of immunoreactive PDE I detected by this polyclonal antibody implies an integral role in cell function, probably in active transport.  相似文献   

8.
Urinary bladder malfunction and disorders are caused by congenital diseases, trauma, inflammation, radiation, and nerve injuries. Loss of normal bladder function results in urinary tract infection, incontinence, renal failure, and end-stage renal dysfunction. In severe cases, bladder augmentation is required using segments of the gastrointestinal tract. However, use of gastrointestinal mucosa can result in complications such as electrolyte imbalance, stone formation, urinary tract infection, mucous production, and malignancy. Recent tissue engineering techniques use acellular grafts, cultured cells combined with biodegradable scaffolds, and cell sheets. These techniques are not all currently applicable for human bladder reconstruction. However, new avenues for bladder reconstruction maybe facilitated by a better understanding of urogenital development, the cellular and molecular biology of urothelium, and cell-cell interactions, which modulate tissue repair, homeostasis, and disease progression.  相似文献   

9.
Pigmented epithelial cells isolated from 8-9-day-old chick embryos can transdifferentiate into lens-like cells at the terminal period of the third generation of culture. However, efficiency of this transdifferentiation is usually rather low. Phenylthiourea, a potent inhibitor of melanin synthesis, effectively enhances transdifferentiation of pigmented epithelial cells into lens-like cells in vitro. Lentoid bodies began to appear in the multilayered region of primary cultures of pigmented epithelial cells maintained in medium containing phenylthiourea at concentrations between 0.5 and 1.0 mM. Furthermore, the enhancing effect of phenylthiourea can be amplified with testicular hyaluronidase. Under these conditions, pigmented epithelial cells grow vigorously and lose their differentiative properties, efficiently switching their phenotype into lens-like cells some 20 days after initiation of culture in the presence of both substances. Semiquantitative analysis revealed that testicular hyaluronidase amplified the effect of phenylthiourea more than 100-fold. It has been suggested that phenotypic expression of pigmented epithelial cells during transdifferentiation can be regulated by manipulating the microenvironment in which these cells reside.  相似文献   

10.
Autologous urothelial cells (UCs) provide a cell source for urinary tissue engineering because they can be used safely due to their lack of immunogenicity. However, these cells cannot be harvested under the following circumstances: malignancy, infection and organ loss, etc. Human adipose-derived stem cells (HADSCs) possess the traits of high differentiation potential and ease of isolation, representing a promising resource for tissue engineering and regenerative medicine. Nevertheless, HADSCs have been poorly investigated in urology and the optimal approaches to induce HADSCs into urothelium are still under investigation. In this study, we hypothesized that the change of microenvironment by a conditioned medium was essential for the transdifferentiation of HADSCs into UCs. We then used a conditioned medium derived from urothelium to alternate the microenvironment of HADSCs. After 14 days of culture in a conditioned medium, about 25–50% HADSCs changed their morphology into polygonal epithelium-like shapes. In addition, these cells expressed up-regulating of urothelial lineage-specific markers (uroplakin 2and cytokeratin-18) and down-regulating of mesenchymal marker (vimentin) in RNA and protein level, respectively, which confirmed that HADSCs were induced into urothelial lineage cells. We also measured the growth factors in the conditioned medium in order to analyze the molecular mechanisms regulating transdifferentiation. We observed that the expression levels of PDGF-BB and VEGF were significantly higher than those of the control group after 14 days induction, suggesting they were abundantly secreted into the medium during the culturing period. In conclusion, HADSCs showed in vitro the upregulation of markers for differentiation towards urothelial cells by culturing in an urothelial-conditioned medium, which provides an alternative cell source for potential use in urinary tract tissue engineering.  相似文献   

11.
Human bladder urothelium is able to secrete tissue-type plasminogen activator (tPA). The aim of our study was to analyse localisation of tPA antigen in comparison to differentiation state of cells in samples of histologically normal urothelium and non-invasive tumours of the human urinary bladder. Twenty-five samples of normal urothelium and 31 non-invasive papillary tumours from 36 patients were examined. The presence of tPA antigen was evaluated immunohistochemically. Differentiation of superficial cells was assessed by the presence of urothelial cell differentiation markers, uroplakins (UPs; immunohistochemistry) and cell's apical surface architecture (scanning electron microscopy). All tissue samples stained anti-tPA positive. In normal urothelium, the intensity of anti-tPA staining was the strongest in superficial cells, which were well-differentiated. In tumours, all cell layers stained anti-tPA positive. The intensity of anti-tPA positive reaction in the upper cell layer correlated with the percentage of anti-UP positive superficial cells. Superficial cells showed various differentiation states. The localisation of tPA antigen in human in vivo tissue is not confined to the well-differentiated superficial cells. Our results suggest a positive correlation between tPA secretion and cell differentiation.  相似文献   

12.
Hyperoxia exposure is a significant risk factor for the impaired alveolarization characteristic of bronchopulmonary dysplasia. Type II alveolar epithelial cells (AECIIs) may serve as "alveolar stem cells" to transdifferentiate into type I alveolar epithelial cells (AECIs). Here, we show that hyperoxia is capable of inducing transdifferentiation of AECIIs in premature rats in vitro. Hyperoxia-induced transdifferentiation was characterized by typical morphological changes, inhibition of cellular proliferation, decline in expression rate of Ki67, accumulation of cells in the G(1) phase of the cell cycle, increased expression of AECI-specific protein aquaporin 5, and decreased expression of AECII-associated protein surfactant protein C. These results suggest that hyperoxia may induce transdifferentiation of AECIIs into AECIs and the transdifferentiation may be responsible for repairing early lung injury.  相似文献   

13.
Uropathogenic Escherichia coli (UPEC) strains cause urinary tract infections and employ type 1 and P pili in colonization of the bladder and kidney, respectively. Most intestinal and extra-intestinal E. coli strains produce a pilus called E. coli common pilus (ECP) involved in cell adherence and biofilm formation. However, the contribution of ECP to the interaction of UPEC with uroepithelial cells remains to be elucidated. Here, we report that prototypic UPEC strains CFT073 and F11 mutated in the major pilin structural gene ecpA are significantly deficient in adherence to cultured HeLa (cervix) and HTB-4 (bladder) epithelial cells in vitro as compared to their parental strains. Complementation of the ecpA mutant restored adherence to wild-type levels. UPEC strains produce ECP upon growth in Luria-Bertani broth or DMEM tissue culture medium preferentially at 26°C, during incubation with cultured epithelial cells in vitro at 37°C, and upon colonization of mouse bladder urothelium ex vivo. ECP was demonstrated on and inside exfoliated bladder epithelial cells present in the urine of urinary tract infection patients. The ability of the CFT073 ecpA mutant to invade the mouse tissue was significantly reduced. The presence of ECP correlated with the architecture of the biofilms produced by UPEC strains on inert surfaces. These data suggest that ECP can potentially be produced in the bladder environment and contribute to the adhesive and invasive capabilities of UPEC during its interaction with the host bladder. We propose that along with other known adhesins, ECP plays a synergistic role in the multi-step infection of the urinary tract.  相似文献   

14.
Plenary Symposia     
Studies of the urothelium, the specialized epithelial lining of the urinary bladder, are critical for understanding diseases affecting the lower urinary tract, including interstitial cystitis, urinary tract infections and cancer. However, our understanding of urothelial pathophysiology has been hampered by a lack of appropriate model systems. Here, we describe the isolation and characterization of a non-transformed urothelial cell line (TRT-HU1), originally explanted from normal tissue and immortalized with hTERT, the catalytic subunit of telomerase. We demonstrate responsiveness of the cells to anti-proliferative factor (APF), a glycopeptide implicated in the pathogenesis of interstitial cystitis. TRT-HU1 carries a deletion on the short arm of chromosome 9, an early genetic lesion in development of bladder cancer. TRT-HU1 urothelial cells displayed growth and migration characteristics similar to the low-grade papilloma cell line RT4. In contrast, we observed marked differences in both phenotype and gene expression profiles between TRT-HU1 and the highly malignant T24 cell line. Together, these findings provide the first demonstration of a non-transformed, continuous urothelial cell line that responds to APF. This cell line will be valuable for studies of both benign and malignant urothelial cell biology.  相似文献   

15.
Urothelial umbrella cells are characterized by apical, rigid membrane plaques, which contain four major uroplakin proteins (UP Ia, Ib, II and III) forming UPIa/UPII and UPIb/UPIII pairs. These integral membrane proteins are thought to play an important role in maintaining the physical integrity and the permeability barrier function of the urothelium. We asked whether the four uroplakins always coexpress in the entire human lower urinary tract. We stained immunohistochemically (ABC-peroxidase method) paraffin sections of normal human ureter (n = 18) and urinary bladder (n = 10) using rabbit antibodies against UPIa, UPIb, UPII and UPIII; a recently raised mouse monoclonal antibody (MAb), AU1, and two new MAbs, AU2 and AU3, all against UPIII; and mouse MAbs against umbrella cell-associated cytokeratins CK18 and CK20. Immunoblotting showed that AU1, AU2 and AU3 antibodies all recognized the N-terminal extracellular domain of bovine UPIII. By immunohistochemistry, we found that in 15/18 cases of human ureter, but in only 2/10 cases of bladder, groups of normal-looking, CK18-positive umbrella cells lacked both UPIII and UPIb immunostaining. The UPIb/UPIII-negative cells showed either normal or reduced amounts of UPIa and UPII staining. These data were confirmed by double immunofluorescence microscopy. The distribution of the UPIb/UPIII-negative umbrella cells was not correlated with localized urothelial proliferation (Ki-67 staining) or with the distribution pattern of CK20. Similar heterogeneities were observed in bovine but not in mouse ureter. We provide the first evidence that urothelial umbrella cells are heterogeneous as some normal-looking umbrella cells can possess only one, instead of two, uroplakin pairs. This heterogeneity seems more prominent in the urothelium of human ureter than that of bladder. This finding may indicate that ureter urothelium is intrinsically different from bladder urothelium. Alternatively, a single lineage of urothelium may exhibit different phenotypes resulting from extrinsic modulations due to distinct mesenchymal influence and different degrees of pressure and stretch in bladder versus ureter. Additional studies are needed to distinguish these two possibilities and to elucidate the physiological and pathological significance of the observed urothelial and uroplakin heterogeneity.  相似文献   

16.
Summary The tissue distribution of a polypeptide purified from pig ileal mucosa tentatively called porcine ileal polypeptide (PIP) and known to have potent acid secretagogue activity has been studied with immunohistochemical methods together with extraction of different tissues followed by radioimmunoassay for PIP content. Histochemically the peptide is found in superficial epithelial cells in the mucosa of the distal 20% of the small intestine and to some extent in the mucosa of the urinary tract. There is no staining of goblet cells or crypt cells. The staining in the urinary tract mucosa is due to antigenic peptides with Mr identical to PIP. While the presence of PIP in the ileum is compatible with a function as an enterooxyntin, it is not possible at present to explain the physiologic role of PIP entirely as a hormone regulating acid secretion in light of the immunohistochemical distribution.Supported in part by a grant from the NIH AM-27077 and the Sinai Hospital General Research Fund  相似文献   

17.
Ning J  Li C  Li H  Chang J 《Cytotechnology》2011,63(5):531-539
To determine the ability of cultured bone marrow-derived mesenchymal stem cells (BMSCs) to differentiate into functional urothelium. BMSCs were isolated from the long bones of aborted fetal limbs by Percoll density gradient centrifugation and characterized by flow cytometry. Human fetal urinary bladders were cut into small pieces and cultured for 3–5 days until the growth of urothelial cells was established. BMSCs were then cocultured with neonatal urothelial cells and subsequently evaluated for antigen expression and ultramicrostructure, by immunocytochemistry and electron microscopy, respectively. A subset of BMSCs expressed the differentiation marker CD71. The BMSC markers CD34, CD45, and HLA-DR were barely detectable, confirming that these cells were not derived from hematopoietic stem cells or differentiated cells. In contrast, the stem cell markers CD29, CD44, CD105, and CD90 were highly expressed. BMSCs possessed the ability to differentiate into a variety of cellular subtypes, including osteocytes, adipocytes, and chondrocytes. The shapes of BMSCs changed, and the size of the cells increased, following in vitro coculture with urothelial cells. After 2 weeks of coculture, immunostaining of the newly differentiated BMSCs positively displayed the urothelial-specific keratin marker. Electron microscopy revealed that the cocultured BMSCs had microstructural features characteristic of epithelial cells. Pluripotent BMSCs can transdifferentiate into urothelial cells in response to an environment conditioned by neonatal urothelial cells, providing a means for the time-, labor- and cost-effective reconstruction of urinary bladder mucosa.  相似文献   

18.
Interstitial cystitis/bladder pain syndrome (IC/BPS) is characterized by several symptoms of higher sensitivity of the lower urinary tract, such as bladder pain/discomfort, urgency, urinary frequency, pelvic pain and nocturia. Although the pathophysiology of IC/BPS is not fully understood, the hypothesis suggests that mast cell activation, glycosaminoglycan (GAG) layer defects, urothelium permeability disruption, inflammation, autoimmune disorder and infection are potential mechanisms. Mesenchymal stem cells (MSCs) have been proven to protect against tissue injury in IC/BPS by migrating into bladders, differentiating into key bladder cells, inhibiting mast cell accumulation and cellular apoptosis, inhibiting inflammation and oxidative stress, alleviating collagen fibre accumulation and enhancing tissue regeneration in bladder tissues. In addition, MSCs can protect against tissue injury in IC/BPS by secreting various soluble factors, including exosomes and other soluble factors, with antiapoptotic, anti‐inflammatory, angiogenic and immunomodulatory properties in a cell‐to‐cell independent manner. In this review, we comprehensively summarized the current potential pathophysiological mechanisms and standard treatments of IC/BPS, and we discussed the potential mechanisms and therapeutic effects of MSCs and MSC‐derived exosomes in alleviating tissue injury in IC/BPS models.  相似文献   

19.
20.
Summary For the first time we report on the growth, culture, and matrix production characteristics of a cell type isolated from the lamina propria of the urinary bladder wall. A fibroblastlike cell was identified as distinct from bladder detrusor smooth muscle cells and urothelium based on morphology, growth characteristics, and immunohistochemical staining. Characterization of extracellular matrix synthesis by this cell type using35S-methionine metabolic labeling demonstrated that these cells are capable of secreting components of the surrounding connective tissue, including several fibrillar collagens, a basement membrane collagen, and fibronectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号