首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diabetic nephropathy (DN) is a major life-threatening complication of diabetes. Renal lesions affect glomeruli and tubules, but the pathogenesis is not completely understood. Phospholipids and glycolipids are molecules that carry out multiple cell functions in health and disease, and their role in DN pathogenesis is unknown. We employed high spatial resolution MALDI imaging MS to determine lipid changes in kidneys of eNOS−/− db/db mice, a robust model of DN. Phospholipid and glycolipid structures, localization patterns, and relative tissue levels were determined in individual renal glomeruli and tubules without disturbing tissue morphology. A significant increase in the levels of specific glomerular and tubular lipid species from four different classes, i.e., gangliosides, sulfoglycosphingolipids, lysophospholipids, and phosphatidylethanolamines, was detected in diabetic kidneys compared with nondiabetic controls. Inhibition of nonenzymatic oxidative and glycoxidative pathways attenuated the increase in lipid levels and ameliorated renal pathology, even though blood glucose levels remained unchanged. Our data demonstrate that the levels of specific phospho- and glycolipids in glomeruli and/or tubules are associated with diabetic renal pathology. We suggest that hyperglycemia-induced DN pathogenic mechanisms require intermediate oxidative steps that involve specific phospholipid and glycolipid species.  相似文献   

2.
3.
It is known that the number of limiting nutrients may affect the species richness of plant communities, but it is unclear whether the type of nutrient limitation is also important. I place the results from a study in Patagonia (elsewhere in this issue) in the context of the number and types of nutrients that are limiting. I present four mechanisms through which N or P limitation may potentially influence species richness. These mechanisms are related to: (i) the number of forms in which P or N are present in soil and the plant traits needed to acquire them, (ii) the mechanisms and traits that control species competition and coexistence under N or P limitation, (iii) the regional species pools of plants capable of growing under N- and P-limited conditions, and (iv) the interaction between the type of nutrient limitation and community productivity. It appears likely that P limitation can favour a higher species richness than N limitation, in at least in a variety of low productive plant communities, but evidence to support this conclusion is so far lacking. The four mechanisms proposed here offer a framework for exploring whether the type of nutrient limitation per se, or an interaction with productivity, is a potential driver for variation in species diversity.  相似文献   

4.
In many soils plants have to grow in a shortage of phosphate, leading to development of phosphate-saving mechanisms. At the cellular level, these mechanisms include conversion of phospholipids into glycolipids, mainly digalactosyldiacylglycerol (DGDG). The lipid changes are not restricted to plastid membranes where DGDG is synthesized and resides under normal conditions. In plant cells deprived of phosphate, mitochondria contain a high concentration of DGDG, whereas mitochondria have no glycolipids in control cells. Mitochondria do not synthesize this pool of DGDG, which structure is shown to be characteristic of a DGD type enzyme present in plastid envelope. The transfer of DGDG between plastid and mitochondria is investigated and detected between mitochondria-closely associated envelope vesicles and mitochondria. This transfer does not apparently involve the endomembrane system and would rather be dependent upon contacts between plastids and mitochondria. Contacts sites are favored at early stages of phosphate deprivation when DGDG cell content is just starting to respond to phosphate deprivation.  相似文献   

5.
Xie C  Pei XT 《生理科学进展》2003,34(2):127-131
凝集素是一类蛋白质或糖蛋白。自然界中,很多植物可产生凝集素。植物凝集素在分子间的识别过程中起着重要作用。本文主要就新近发现的豆类凝集素FRIL的生物学特性及体外维持造血干/祖细胞的作用机制进行综述。  相似文献   

6.
The lactoperoxidase-mediated radioiodination has been applied to study the transbilayer distribution of phospho- and glycolipids in Acholeplasma laidlawii membranes. After radioiodination, about 5% of the 125I-iodine was found in membrane lipids. A comparison of the labeling intensities of the various lipid species between iodinated intact cells and isolated membranes revealed that the glycolipids monoglucosyldiglyceride and diglucosyldiglyceride are located almost exclusively in the outer half of the bilayer, whereas the phospholipids phosphatidylglycerol and diphosphatidylglycerol as well as the phosphoglycolipids glycerophosphoryl-diglucosyldiglyceride and glycerophosphoryl-monoglucosyldiglyceride are almost equally distributed in the outer and inner halves of A. laidlawii membranes.  相似文献   

7.
This paper reviews the contribution of P. Gadal’s group to the study of phosphoenolpyruvate carboxylase (PEPC) in plants. It highlights how molecular biology and genetics have helped to advance our understanding of the PEPC multigene family, including evolutionary aspects, and the regulatory mechanisms controlling the expression of the gene encoding the photosynthetic isoform of C4 plants. Preliminary experiments using plant transformation with the aim of determining the role of PEPC isoforms in different physiological contexts and to improve crop yield are also reported.  相似文献   

8.
The major phospholipids of Halorubrum lacusprofundi grown at 25 degrees C were archaeol phosphatidylglycerol, archaeol phosphatidylglycerylsulphate and archaeol phosphatidylglycerylphosphate methyl ester. Glycolipids included a monoglycosyl archaeol and the sulphate ester of a diglycosyl archaeol. Cultures grown at 12 degrees C contained the same suite of phospho- and glycolipids, with the addition of a series of unsaturated analogues with up to six double bonds. The patterns of unsaturation were similar for all the phospholipid series, but a different pattern occurred in the glycolipids. The analytical techniques used in this study allow facile detection of unsaturated archaeal cell membrane lipids that are degraded by commonly used chemical derivatization procedures.  相似文献   

9.
《Phytochemistry》1987,26(6):1627-1630
Biosynthesis of polar lipids (phospho- and glycolipids) from [1-14C]acetate was observed in mature needles from hydroponically grown jack pine seedlings. Treatment of the seedlings with vanadium (V) or nickel (Ni) produced marked concentration-dependent inhibitions in the biosynthesis of all polar lipids. Nickel appeared to be more inhibitory than V at 10 ppm. Fumigation of seedlings with gaseous SO2 (0.34 ppm) also resulted in reduced biosynthesis of polar lipids. Combined treatment of plant seedlings with metal (V or Ni) and SO2 produced inhibitory effects that were very similar to those produced by metal alone; however, SO2 did produce an additive inhibitory effect at 10 ppm V.  相似文献   

10.
The lactoperoxidase-mediated radioiodination has been applied to study the transbilayer distribution of phospho- and glycolipids in Acholeplasma laidlawii membranes. After radioiodination, about 5% of the 125I-iodine was found in membrane lipids. A comparison of the labeling intensities of the various lipid species between iodinated intact cells and isolated membranes revealed that the glycolipids monoglucosyldiglyceride and diglucosyldiglyceride are located almost exclusively in the outer half of the bilayer, whereas the phospholipids phosphatidylglycerol and diphosphatidylglycerol as well as the phosphoglycolipids glycerophosphoryl-diglucosyldiglyceride and glycerophosphoryl-monoglucosyldiglyceride are almost equally distributed in the outer and inner halves of A. laidlawii membranes.  相似文献   

11.
12.
Lactobacillus gasseri ATCC33323(T) expresses four enzymes showing phospho-β-galactosidase activity (LacG1, LacG2, Pbg1 and Pbg2). We previously reported the purification and characterization of two phospho-β-galactosidases (Pbg1 and Pbg2) from Lactobacillus gasseri JCM1031 cultured in lactose medium. Here we aimed to characterize LacG1 and LacG2, and classify the four enzymes into 'phospho-β-galactosidase' or 'phospho-β-glucosidase.' LacG1 and recombinant LacG2 (rLacG2), from Lb. gasseri ATCC33323(T), were purified to homogeneity using column chromatography. Kinetic experiments were performed using sugar substrates, o-nitrophenyl-β-D-galactopyranoside 6-phosphate (ONPGal-6P) and o-nitrophenyl-β-D-glucopyranoside 6-phosphate (ONPGlc-6P), synthesized in our laboratory. LacG1 and rLacG2 exhibited high k(cat)/K(m) values for ONPGal-6P as compared with Pbg1 and Pbg2. The V(max) values for ONPGal-6P were higher than phospho-β-galactosidases previously purified and characterized from several lactic acid bacteria. A phylogenetic tree analysis showed that LacG1 and LacG2 belong to the phospho-β-galactosidase cluster and Pbg1 and Pbg2 belong to the phospho-β-glucosidase cluster. Our data suggest two phospho-β-galactosidase, LacG1 and LacG2, are the primary enzymes for lactose utilization in Lb. gasseri ATCC33323(T). We propose a reclassification of Pbg1 and Pbg2 as phospho-β-glucosidase.  相似文献   

13.
Reactive oxygen species (ROS) are constantly produced in plants, as the metabolic by-products or as the signaling components in stress responses. High levels of ROS are harmful to plants. In contrast, ROS play important roles in plant physiology, including abiotic and biotic tolerance, development, and cellular signaling. Therefore, ROS production needs to be tightly regulated to balance their function. Respiratory burst oxidase homologue (RBOH) proteins, also known as plant nicotinamide adenine dinucleotide phosphate oxidases, are well studied enzymatic ROS-generating systems in plants. The regulatory mechanisms of RBOH-dependent ROS production in stress responses have been intensively studied. This has greatly advanced our knowledge of the mechanisms that regulate plant ROS production. This review attempts to integrate the regulatory mechanisms of RBOHD-dependent ROS production by discussing the recent advance. AtRBOHD-dependent ROS production could provide a valuable reference for studying ROS production in plant stress responses.  相似文献   

14.
15.
Arsenolipids     
Natural arsenolipids are analogues of neutral lipids, like monoglycerides, glycolipids, phospho- and also phosphonolipids. They have been found in microorganisms, fungi, plants, lichens, in marine mollusks, sponges, other invertebrates, and in fish tissues. This review presented structures of natural arsenolipids (and derivatives), their distribution, biogenesis in algae and invertebrates, synthesis, and also biological activity. Arsenolipids are thought to be end products of arsenate detoxification processes, involving reduction and oxidative methylation and adenosylation. The proposed biogenesis of arsenolipids is based on the natural occurrence of arsenic metabolites, and all the intermediates in the proposed pathway have been identified as natural products of algal origin. Different arseno species are shown to be inhibitors of glycerol kinase, bovine carbonic anhydrase, and also is an effective therapy for acute promyelocytic leukemia, and there has been promising activity noted in other hematologic and solid tumors. Arsonoliposomes demonstrated high anti-trypanosomal activity against Trypanosoma brucei and inhibit growth of some types of cancer cells (HL-60,C6 and GH3).  相似文献   

16.
The stereospecific influx of D-glucose into liposomes formed on sonication of different glyco- and phospholipids with transport proteins from human erythrocyte ghosts solubilized with Triton x-100 was measured as an index of their total D-glucose transport activity. Specific D-glucose transport increased when acidic phospho- and glycolipids (especially sulfatide) were added to the phosphatidylcholine bilayers of the model membranes while cholesterol strongly inhibited the process. The modulation of D-glucose transport activity and its possible correlation with the lipid composition and the chemico-physical state of the erythrocytes is discussed.  相似文献   

17.
The relationship between plant diversity and animal diversity on a broadscale and its mechanisms are uncertain. In this study, we explored this relationship and its possible mechanisms using data from 186 nature reserves across China on species richness of vascular plants and terrestrial vertebrates, and climatic and topographical variables. We found significant positive correlations between species richness in almost all taxa of vascular plants and terrestrial vertebrates. Multiple regression analyses indicated that plant richness was a significant predictor of richness patterns for terrestrial vertebrates (except birds), suggesting that a causal association may exist between plant diversity and vertebrate diversity in China. The mechanisms for the relationships between species richness of plants and animals are probably dependent on vertebrate groups. For mammals (endothermic vertebrates), this relationship probably represents the integrated effects of plants on animals through trophic links (i.e. providing foods) and non-trophic interactions (i.e. supplying habitats), whereas for amphibians and reptiles (ectothermic vertebrates), this may be a result of the non-trophic links, such as the effects of plants on the resources that amphibians and reptiles require.  相似文献   

18.
Herbivorous insects use a variety of physiological mechanisms to cope with noxious (i.e., unpalatable and/or toxic) compounds in their food plants. Here, I review what is known about this coping process, focusing on one species of caterpillar, the tobacco hornworm (Manduca sexta). Herbivorous insects possess both preingestive (i.e., chemosensory) and postingestive response mechanisms for detecting plant secondary compounds. Stimulation of either class of detection mechanism inhibits feeding rapidly by reducing biting rate and/or bite size. This aversive response is highly adaptive during encounters with secondary plant compounds that are toxic. The insect's dilemma is that many harmless or mildly toxic compounds also activate the aversive response. To overcome this dilemma, herbivorous insects employ at least three mechanisms for selectively deactivating their aversive response to relatively harmless secondary plant compounds: (1) the presence of carbohydrates can mask the unpalatable taste of some secondary plant compounds; (2) prolonged dietary exposure to some unpalatable secondary plant compounds can initiate long-term adaptation mechanisms in the peripheral and central gustatory system; and (3) dietary exposure to toxic compounds can induce production of P450 detoxication enzymes. Thus, herbivorous insects utilize an integrated suite of physiological mechanisms to detect potentially toxic compounds in foods, and then selectively adapt to those that do not pose a serious threat to their growth and survivorship.  相似文献   

19.
A total mixture of phospho- and glycolipids from sea macrophytes Sargassum pallidum, Ulva fenestrata, Zostera marinawas separated and the fatty acid composition was determined. Biological activity of the mixtures of polar lipids and natural antioxidants (echinochrome A from the flat sea urchin Scaphechinus mirabilis and a polyphenolic complex from the sea grass Zostera marina) were studied under conditions of impairments of carbohydrate and lipid metabolism. Doses and compositions of mixtures of polar lipids and antioxidants possessing high corrective activity were optimized in mice with the experimental model of atherosclerosis and diabetes. Based on these results possible mechanisms of the effects of polar lipids containing various polyunsaturated fatty acids and the investigated antioxidants have been proposed. The developed compositions may be used for creation of new biologically active additives and drugs.  相似文献   

20.
Phosphorus (P) is an essential plant nutrient and one of the most limiting in natural habitats as well as in agricultural production world-wide. The control of P acquisition efficiency and its subsequent uptake and translocation in vascular plants is complex. The physiological role of key cellular structures in plant P uptake and underlying molecular mechanisms are discussed in this review, with emphasis on phosphate transport across the cellular membrane at the root and arbuscular-mycorrhizal (AM) interfaces. The tools of molecular genetics have facilitated novel approaches and provided one of the major driving forces in the investigation of the basic transport mechanisms underlying plant P nutrition. Genetic engineering holds the potential to modify the system in a targeted way at the root-soil or AM symbiotic interface. Such approaches should assist in the breeding of crop plants that exhibit improved P acquisition efficiency and thus require lower inputs of P fertilizer for optimal growth. Whether engineering of P transport systems can contribute to enhanced P uptake will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号