首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macroevolutionary patterns of sexual size dimorphism (SSD) indicate how sexual selection, natural selection, and genetic and developmental constraints mold sex differences in body size. One putative pattern, known as Rensch's rule, posits that, among species with female‐larger SSD, the relative degree of SSD declines with species' body size, whereas, among male‐larger SSD species, relative SSD increases with size. Using a dataset of 196 chelonian species from all fourteen families, we investigated the correlation in body size evolution between male and female Chelonia and the validity of Rensch's rule for the taxon and within its major clades. We conclude that male–female correlations in body size evolution are high, although these correlations differ among chelonian families. Overall, SSD scales isometrically with body size; Rensch's rule is valid for only one family, Testudinidae (tortoises). Because macroevolutionary patterns of SSD can vary markedly among clades, even in a taxon as morphologically conservative as Testudines, one must guard against inappropriately pooling clades in comparative studies of SSD. The results of the present study also indicate that regression models that assume the x‐variable (e.g. male body size) is measured without statistical error, although frequently reported, will result in erroneous conclusions about phylogenetic trends in sexual size dimorphism. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 108 , 396–413.  相似文献   

2.
In a model group of giant reptiles, we explored the allometric relationships between male and female body size and compared the effects of sexual and fecundity selection, as well as some proximate causes, on macroevolutionary patterns of sexual size dimorphism (SSD). Monitor lizards are a morphologically homogeneous group that has been affected by extreme changes in body size during their evolutionary history, resulting in 14‐fold differences among the body sizes of recent species. Here, we analysed data concerning the maximum and/or mean male and female snout–vent lengths in 42 species of monitor lizard from literary sources and supplemented these data with measurements made in zoos. There was a wide scale of SSD from nearly monomorphic species belonging mostly to the subgenus Odatria and Prasinus group of the Euprepriosaurus to apparently male‐larger taxa. The variable best explaining SSD was the body size itself; the larger the species, the higher the SSD. This pattern agrees with the currently discussed Rensch's rule, claiming that the relationship between male and female body size is hyperallometric, i.e. the allometric exponent of this relationship exceeds unity and thus SSD increases with body size in the case of male‐larger taxa. All our estimates of the reduced major axis regression slopes of this relationship ranged from 1.132 to 1.155. These estimates are significantly higher than unity, and thus unequivocally corroborate the validity of Rensch's rule in this reptilian group. In spite of our expectation that the variation in SSD can be alternatively explained by variables reflecting the strength of sexual selection (presence of male combat), fecundity selection (e.g. clutch size and mass) and/or proximate ecological factors (habitat type), none of these variables had consistent effects on SSD, especially when the data were adjusted to phylogenetic dependence and/or body size. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 293–306.  相似文献   

3.
Sexual dimorphism has implications for a range of biological and ecological factors, and intersexual morphological differences within a species provide an ideal opportunity for investigating evolutionary influences on phenotypic variation. We investigated sexual size dimorphism (SSD) in an agamid species, Rankinia [Tympanocryptis] diemensis , to determine whether overall size and/or relative morphological trait size differences exist and whether geographic variation in size dimorphism occurs in this species. Relative morphological trait proportions included a range of head, limb, and inter-limb measurements. We found significant overall intersexual adult size differences; females were the larger sex across all sites but the degree of dimorphism between the sexes did not differ between sites. This female-biased size difference is atypical for agamid lizards, which are usually characterized by large male body size. In this species, large female-biased SSD appears to have evolved as a result of fecundity advantages. The size of relative morphological trait also differed significantly between the sexes, but in the opposite direction: relative head, tail, and limb sizes were significantly larger in males than females. This corresponds to patterns in trait size usually found in this taxonomic group, where male head and limb size is important in contest success such as male–male rivalry. There were site-specific morphological differences in hatchlings, including overall body size, tail, inter-limb, thigh, and hindlimb lengths; however, there were no sex-specific differences indicating the body size differences present in the adult form occur during ontogeny.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 699–709.  相似文献   

4.
Sexual size dimorphism and sex ratios in dragonflies (Odonata)   总被引:1,自引:0,他引:1  
Sexual size dimorphism and biased sex ratios are common in animals. Rensch's rule states that sexual size dimorphism (SSD) would increase with body size in taxa where males are larger than females and decrease with body size in taxa where females are larger. We tested this trend in dragonflies (Odonata) by analysing body size of 21 species and found support for Rensch's rule. The increase in SSD with increasing size among species can be explained by sexual selection favouring large males. We also estimated the slope of the relationship between sex ratio and size ratio in populations of the 21 species. A negative slope would suggest that the larger sex suffers from high mortality in the larval stage, consistent with riskier foraging. The slope of this relationship was negative, but after correcting for phylogentic non-independence with independent contrasts the relationship was no longer statistically significant, perhaps because of phylogenic inertia or low sample size.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 507–513.  相似文献   

5.
Sexual dimorphism is usually interpreted in terms of reproductive adaptations, but the degree of sex divergence also may be affected by sex-based niche partitioning. In gape-limited animals like snakes, the degree of sexual dimorphism in body size (SSD) or relative head size can determine the size spectrum of ingestible prey for each sex. Our studies of one mainland and four insular Western Australian populations of carpet pythons ( Morelia spilota ) reveal remarkable geographical variation in SSD, associated with differences in prey resources available to the snakes. In all five populations, females grew larger than males and had larger heads relative to body length. However, the populations differed in mean body sizes and relative head sizes, as well as in the degree of sexual dimorphism in these traits. Adult males and females also diverged strongly in dietary composition: males consumed small prey (lizards, mice and small birds), while females took larger mammals such as possums and wallabies. Geographic differences in the availability of large mammalian prey were linked to differences in mean adult body sizes of females (the larger sex) and thus contributed to sex-based resource partitioning. For example, in one population adult male snakes ate mice and adult females ate wallabies; in another, birds and lizards were important prey types for both sexes. Thus, the high degree of geographical variation among python populations in sexually dimorphic aspects of body size and shape plausibly results from geographical variation in prey availability.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 77 , 113–125.  相似文献   

6.
This study aimed to identify potential factors responsible for geographically structured morphological variation within the widespread Australian frogs Limnodynastes tasmaniensis Günther and L. peronii Duméril & Bibron. There was support for James's rule, and both latitude and present climate explained large amounts of the variation in body size and shape (particularly in L. peronii ). There was also some support for the influence of several biogeographical barriers. Finally, both species were sexually dimorphic for body size and the degree of sexual size dimorphism (SSD) varied geographically. Climate was an important explanation for SSD variation in L. peronii , while latitude was most important for L. tasmaniensis . Geographical variations in sexual selection via male–male physical competition and climate-related resources are suggested as potential explanations for SSD variation in L. peronii .  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 39–56.  相似文献   

7.
Odonata (dragonflies and damselflies) exhibit a range of sexual size dimorphism (SSD) that includes species with male-biased (males > females) or female-biased SSD (males < females) and species exhibiting nonterritorial or territorial mating strategies. Here, we use phylogenetic comparative analyses to investigate the influence of sexual selection on SSD in both suborders: dragonflies (Anisoptera) and damselflies (Zygoptera). First, we show that damselflies have male-biased SSD, and exhibit an allometric relationship between body size and SSD, that is consistent with Rensch's rule. Second, SSD of dragonflies is not different from unit, and this suborder does not exhibit Rensch's rule. Third, we test the influence of sexual selection on SSD using proxy variables of territorial mating strategy and male agility. Using generalized least squares to account for phylogenetic relationships between species, we show that male-biased SSD increases with territoriality in damselflies, but not in dragonflies. Finally, we show that nonagile territorial odonates exhibit male-biased SSD, whereas male agility is not related to SSD in nonterritorial odonates. These results suggest that sexual selection acting on male sizes influences SSD in Odonata. Taken together, our results, along with avian studies (bustards and shorebirds), suggest that male agility influences SSD, although this influence is modulated by territorial mating strategy and thus the likely advantage of being large. Other evolutionary processes, such as fecundity selection and viability selection, however, need further investigation.  相似文献   

8.
There are numerous hypotheses to explain the evolution of sexual dimorphism in spiders. One of the most controversial is the differential mortality model (DMM) which proposes that differing rates of (adult) male and female mortality can result in a skewed operational sex ratio and lead to the evolution of small males. This hypothesis has been examined using a comparative approach which assumes that the behaviour of males and females could be used as a surrogate measure of mortality. We tested this assumption using two model species, Hogna helluo and Pardosa milvina (Araneae: Lycosidae) that differ in the degree of sexual dimorphism both in terms of body size and level of activity. Our data demonstrate that differences in male and female behaviour are not predictive of differences in mortality. Rather, as in other organisms, mortality is a complex phenomenon dependent on activity as well as size. These data call into question the methods previously used to test the DMM and suggest that understanding sexual size dimorphism (SSD) in spiders will require evaluation of historical constraints as well as how size currently influences fitness in each sex.  © 2003 The Linnean Society of London . Biological Journal of the Linnean Society , 2003, 78 , 97−103.  相似文献   

9.
Among species with sexual size dimorphism (SSD), taxa in which males are the larger sex have increasing SSD with increasing body size, whereas in taxa in which females are the larger sex, SSD decreases with body size: Rensch's rule. We show in flying lizards, a clade of mostly female‐larger species, that SSD increases with body size, a pattern similar to that in clades with male‐biased SSD or more evenly mixed SSD. The observed pattern in Draco appears due to SSD increasing with evolutionary changes in male body size; specifically divergence in body size among species that are in sympatric congeneric assemblages. We suggest that increasing body size, resulting in decreased gliding performance, reduces the relative gliding cost of gravidity in females, and switches sexual selection in males away from a small‐male, gliding advantage and toward selection on large size and fighting ability as seen in many other lizards. Thus, selection for large females is likely greater than selection for large males at the smaller end of the body size continuum, whereas this relationship reverses for species at the larger end of the continuum. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 270–282.  相似文献   

10.
Sexual‐size dimorphism (SSD) is widespread in animals. Body length is the most common trait used in the study of SSD in reptiles. However, body length combines lengths of different body parts, notably heads and abdomens. Focusing on body length ignores possible differential selection pressures on such body parts. We collected the head and abdomen lengths of 610 lizard species (Reptilia: Squamata: Sauria). Across species, males have relatively larger heads, whereas females have relatively larger abdomens. This consistent difference points to body length being an imperfect measure of lizard SSD because it comprises both abdomen and head lengths, which often differ between the sexes. We infer that female lizards of many species are under fecundity selection to increase abdomen size, consequently enhancing their reproductive output (enlarging either clutch or offspring size). In support of this, abdomens of lizards laying large clutches are longer than those of lizards with small clutches. In some analyses, viviparous lizards have longer abdomens than oviparous lizards with similar head lengths. Our data also suggest that male lizards are under sexual selection to increase head size, which is positively related to winning male–male combats and to faster grasping of females. Thus, larger heads could translate into higher probability to mate. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 665–673.  相似文献   

11.
Sexual size dimorphism (SSD) varies widely across and within species. The differential equilibrium model of SSD explains dimorphism as the evolutionary outcome of consistent differences in natural and sexual selection between the sexes. Here, we comprehensively examine a unique cross-continental reversal in SSD in the dung fly, Sepsis punctum. Using common garden laboratory experiments, we establish that SSD is male-biased in Europe and female-biased in North America. When estimating sexual (pairing success) and fecundity selection (clutch size of female partner) on males under three operational sex ratios (OSRs), we find that the intensity of sexual selection is significantly stronger in European versus North American populations, increasing with male body size and OSR in the former only. Fecundity selection on female body size also increases strongly with egg number and weakly with egg volume, however, equally on both continents. Finally, viability selection on body size in terms of intrinsic (physiological) adult life span in the laboratory is overall nil and does not vary significantly across all seven populations. Although it is impossible to prove causality, our results confirm the differential equilibrium model of SSD in that differences in sexual selection intensity account for the reversal in SSD in European versus North American populations, presumably mediating the ongoing speciation process in S. punctum.  相似文献   

12.
Rensch's rule, a macroevolutionary pattern in which sexual size dimorphism (SSD) increases with body size in male‐biased SSD species, or decreases with female‐biased SSD species, has been investigated in many vertebrates because it indicates whether SSD is being driven by sexual selection or a different force (i.e. fecundity or natural selection). Evidence in turtles has shown some conflicting results, which may be explained by the different phylogenies used in the analyses. Because the newly available well‐resolved phylogeny of family Kinosternidae provides evidence for the ancient monophyly of Staurotypidae and Kinosternidae and their recognition as separate families (previously Staurotypidae was considered as a subfamily within Kinosternidae) and introduced the genus Cryptochelys for the monophyletic leucostomum clade, we revisit the pattern of SSD and body size in Kinosternidae. By contrast to what had been proposed, we found that the Kinosternidae as formerly recognized (i.e. including Staurotypus and Claudius) and the restricted Kinosternidae both follow a pattern consistent with Rensch's rule. Our analysis with published body size data did not change our results, confirming the importance of the phylogeny used in macroevolutionary studies. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 806–809.  相似文献   

13.
Patterns of sexual size dimorphism (SSD) and cranial dimorphism are well documented. However, limited examinations exist of the contrasts in the patterns and nature of dimorphism across body regions (e.g. cranium, pelvis), particularly when these regions have different sex-specific functions (e.g. display in mating, locomotion, and reproduction). Using landmark-based morphometric techniques, we investigated size and shape dimorphism variation in the crania and pelves of two closely-related fox species within the genus Urocyon . Although we found no significant size and shape dimorphism in the crania of either species, we did find significant dimorphism in the pelvis: its size was dimorphic in Urocyon littoralis (but not in Urocyon cinereoargenteus ) and its shape was dimorphic in both species (though more pronounced in U. littoralis ). The observation of greater dimorphism in the pelvis than in the cranium suggests that factors such as offspring size and locomotor mode play a greater role in sexual dimorphism than simple 'whole body' allometric affects associated with dimorphism in body size.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 339–353.  相似文献   

14.
Rensch’s rule describes a pattern of allometry in sexual size dimorphism (SSD): when males are the larger sex (male-biased SSD), SSD increases with increasing body size, and when females are the larger sex (female-biased SSD), SSD decreases with increasing body size. While this expectation generally holds for taxa with male-biased or mixed SSD, examples of allometry for SSD consistent with Rensch’s rule in groups with primarily female-biased SSD are remarkably rare. Here, I show that the majority of dwarf chameleons (Bradypodion spp.) have female-biased SSD. In accordance with Rensch’s rule, the group exhibits an allometric slope of log(female size) on log(male size) less than one, although statistical significance is dependent on the phylogenetic comparative method used. In this system, this pattern is likely due to natural selection on both male and female body size, combined with fecundity selection on female body size. In addition to quantifying SSD and testing Rensch’s rule in dwarf chameleons, I discuss reasons why Rensch’s rule may only rarely apply to taxa with female-biased SSD.  相似文献   

15.
One paradoxical finding in some mammals is the presence of male–male intrasexual competition in the absence of sexual size dimorphism. It has been a major goal of evolutionary biologists for over a century to understand why some species in which large males can monopolize multiple mates while excluding smaller competitors, exhibit little or no sexual dimorphism. In this paper I examine three of the main hypotheses that have been proposed to explain this conundrum using as study case the Heteromyidae, a rodent family with subtle sexual size dimorphism. Using a phylogenetic comparative approach, I address the potential influence of (1) fecundity selection, (2) covariation between pre- and post-copulatory traits, and (3) environmental constraints (resource shortage) in explaining patterns of body size and sexual size dimorphism (SSD) across 62 heteromyid species. Baculum size, a proxy of the strength of post-copulatory sexual selection, and SSD were negatively correlated suggesting that heteromyid rodents balance their reproductive investment between pre- and post-copulatory traits, which may prevent the evolution of extensive SSD. Results also support a role for resource competition in moderating SSD. The amount of SSD correlated negatively with latitude. This can be explained if high productivity relaxes the level of intrasexual competition among females, leading to more male-biased dimorphism since forces acting on both sexes are not cancelled. In line with this argument, territorial species exhibited a higher dimorphism in comparison with social species. No support was found for the fecundity selection hypothesis. Overall, this study provides insight into the factors driving observed patterns of sexual dimorphism in this iconic group and highlights the need to consider a broader framework beyond sexual selection for better understanding the evolution of dimorphism in this family.  相似文献   

16.
In mammals, ‘female‐biased’ sexual size dimorphism (SSD), in which females are larger than males, is uncommon. In the present study, we examined Sylvilagus, a purported case of female‐biased SSD, for evolutionary correlations among species between SSD, body‐size, and life‐history variables. We find that: (1) although most species are female‐biased, the degree and direction of SSD vary more than was previously recognized and (2) the degree of SSD decreases with increasing body size. Hence, Sylvilagus provides a new example, unusual for a female‐biased taxon, in which allometry for SSD is consistent with ‘Rensch's Rule’. As a corollary to Rensch's Rule, we observe that changes in SSD in Sylvilagus are typically associated with larger, more significant changes in males than females. Female‐biased SSD could be produced by selection for larger females, smaller males, or both. Although larger female size may be related to high fecundity and the extremely rapid fetal and neonatal growth in Sylvilagus, we find little evidence for a correlation between SSD and various fecundity‐related traits in among‐species comparisons. Smaller male size may confer greater reproductive success through greater mobility and reduced energetic requirements. We propose that a suite of traits (female dispersion, large male home ranges, reduced aggression, and a promiscuous mating system) has favoured smaller males and thus influenced the evolution of SSD in cottontails. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 141–156.  相似文献   

17.
Female‐biased sexual size dimorphism (SSD) is widespread in many invertebrate taxa. One hypothesis for the evolution of SSD is the dimorphic niche hypothesis, which states that SSD evolved in response to the different sexual reproductive roles. While females benefit from a larger body size by producing more or larger eggs, males benefit from a faster development, which allows them to fertilize virgin females (protandry). To test this hypothesis, we studied the influence of temperature and intraspecific density on the development of Chorthippus montanus. We reared them in monosexual groups under different conditions and measured adult body size, wing length, nymphal mortality, and development time. The present study revealed an inverse temperature–size relationship: body size increased with increasing temperature in both sexes. Furthermore, we found intersexual differences in the phenotypic response to population density, supporting the dimorphic niches hypothesis. At a lower temperature, female development time increased and male body size decreased with increasing density. Because there was no food limitation, we conclude that interference competition hampered development. By contrast to expectations, mortality decreased with increasing density, suggesting that interference did not negatively affect survival. The present study shows that sex‐specific niche optima may be a major trigger of sexual dimorphisms. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 48–57.  相似文献   

18.
Hypotheses for the adaptive significance of extreme female-biased sexual size dimorphism (SSD) generally assume that in dimorphic species males rarely interfere with each other. Here we provide the first multivariate examination of sexual selection because of male-male competition over access to females in a species with 'dwarf' males, the orb-weaving spider Argiope aurantia. Male A. aurantia typically try to mate opportunistically during the female's final moult when she is defenceless. We show that, contrary to previous hypotheses, the local operational sex ratio (males per female on the web) is male-biased most of the season. Both interference and scramble competition occur during opportunistic mating, the former leading to significant selection for large male body size. Male condition and leg length had no effect on mating success independent of size. We discuss these findings in the context of the evolution of extreme female-biased SSD in this clade.  相似文献   

19.
Allometry for sexual size dimorphism (SSD) is common in animals, but how different evolutionary processes interact to determine allometry remains unclear. Among related species SSD (male : female) typically increases with average body size, resulting in slopes of less than 1 when female size is regressed on male size: an allometric relationship formalized as 'Rensch's rule' . Empirical studies show that taxa with male-biased SSD are more likely to satisfy Rensch's rule and that a taxon's mean SSD is negatively correlated with allometric slope, implicating sexual selection on male size as an important mechanism promoting allometry for SSD. I use body length (and life-history) data from 628 (259) populations of seven species of anadromous Pacific salmon and trout (Oncorhynchus spp.) to show that in this genus life-history variation appears to regulate patterns of allometry both within and between species. Although all seven species have intraspecific allometric slopes of less than 1, contrary to expectation slope is unrelated to species' mean SSD, but is instead negatively correlated with two life-history variables: the species' mean marine age and variation in marine age. Second, because differences in marine age among species render SSD and body size uncorrelated, the interspecific slope is isometric. Together, these results provide an example of how evolutionary divergence in life history among related species can affect patterns of allometry for SSD across taxonomic scales.  相似文献   

20.
Female-biased sexual size dimorphism is uncommon among vertebrates and traditionally has been attributed to asymmetric selective pressures favoring large fecund females (the fecundity-advantage hypothesis) and/or small mobile males (the small-male advantage hypothesis). I use a phylogenetically based comparative method to address these hypotheses for the evolution and maintenance of sexual size dimorphism among populations of three closely related lizard species (Phrynosoma douglasi, P. ditmarsi, and P. hernandezi). With independent contrasts I estimate evolutionary correlations among female body size, male body size, and sexual size dimorphism (SSD) to determine whether males have become small, females have become large, or both sexes have diverged concurrently in body size during the evolutionary Xhistory of this group. Population differences in degree of SSD are inversely correlated with average male body size, but are not correlated with average female body size. Thus, variation in SSD among populations has occurred predominantly through changes in male size, suggesting that selective pressures on small males may affect degree of SSD in this group. I explore three possible evolutionary mechanisms by which the mean male body size in a population could evolve: changes in size at maturity, changes in the variance of male body sizes, and changes in skewness of male body size distributions. Comparative analyses indicate that population differentiation in male body size is achieved by changes in male size at maturity, without changes in the variance or skewness of male and female size distributions. This study demonstrates the potential of comparative methods at lower taxonomic levels (among populations and closely related species) for studying microevolutionary processes that underlie population differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号