首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yu R  Ma M  Wang L  Xie Q  Cao Z  Jiang X  Yao S 《Biosensors & bioelectronics》2009,24(6):1771-1776
The electrochemical quartz crystal microbalance (EQCM) technique was used to investigate the electrochemistry of neutral red (NR) in phosphate buffer solution (PBS) and the effects of coexisting heparin (Hep) or chondroitin sulfate (CS) for the first time. The pH dependence of the electrochemistry of NR was examined, and a V-shaped frequency response (versus time) was observed during the cyclic voltammetric experiment of NR in a nearly neutral medium (pH ca. 6.10-7.00), being due to the electrodeposition and stripping of the poorly soluble reduced product of NR (NR(Red)) at these pH values. The effects of potential scan rate, the concentration of NR, and several supporting electrolytes were examined at pH 6.80. The V-shaped response to the redox switching of NR was weakened by the introduction of Hep or CS, being due to the increased inhibition of the NR(Red) electrodeposition probably via the electrostatic interaction of the NR and especially the NR(Red) with Hep or CS. The height of the V-shaped response decreases with the increase of Hep or CS concentration, with limits of detection down to 3 nmol L(-1) for Hep and 2 nmol L(-1) for CS, respectively. The novel and surface-regenerable EQCM assay protocol based on the electrochemically switchable deposition of a dye is highly recommended for wide biosensing applications.  相似文献   

2.
A novel electrogenerated chemiluminescence (ECL) biosensing method for highly sensitive detection of DNA methylation and assay of the CpG methyltransferase (M. SssI) activity was developed on basis of enzyme-linkage reactions and ruthenium complex served as an ECL tag. The ECL biosensing electrode was fabricated by self-assembling 5'-thiol modified 32-mer single-strand DNA (ss-DNA)-tagged with ruthenium bis (2,2'-bipyridine) (2,2'-bipyridine-4,4'-dicarboxylic acid)-ethylenediamine on the surface of a gold electrode, and then hybridized with complementary ss-DNA to form duplex DNA (ds-DNA). When M. SssI and S-adenosylmethionine were introduced, all cytosine residues within 5'-CG-3' of ds-DNA on the biosensing electrode were methylated. After the methylated biosensing electrode was treated by HpaII endonuclease, the un-methylated cytosines were cleaved, thus led to decrease ECL signal. The ECL intensity of ECL biosensing electrode is related to the methylation level and M. SssI activity in a fixed concentration HpaII endonuclease. The increased ECL intensity was direct proportion to M. SssI activity in the range from 0.05 to 100 U/mL with a detection limit of 0.02 U/mL. This work demonstrates that the combination of the enzyme-linkage reactions with a highly sensitive ECL technique is a great promising approach for the detection of DNA methylation level, assay of the activity of MTase, and evaluation of the capability of inhibitors for the methyltransferase.  相似文献   

3.
Cai Y  Li H  Li Y  Zhao Y  Ma H  Zhu B  Xu C  Wei Q  Wu D  Du B 《Biosensors & bioelectronics》2012,36(1):6-11
Interests in using nanoporous metals for biosensing applications have been increasing. Herein, nanotubular mesoporous PdCu (NM-PdCu) alloy is used to fabricate a novel label-free electrochemical immunosensor for cancer biomarker carcinoembryonic antigen (CEA). It operates through physisorption of anti-CEA on NM-PdCu and the mixture of sulfonated graphene sheets (HSO(3)-GS) and thionine (TH) functionalized glassy carbon electrode interface as the detection platform. In this study, chitosan (CS)-PdCu is bound very strongly to carcinoembryonic antibody (anti-CEA), because of the good electron conductivity, high surface area, and good biocompatibility. CS-PdCu is immobilized on electrodes by electrostatic interactions between the negatively charged sulfo group of HSO(3)-GS and the abundant positively charged amino groups of chitosan. TH acts as the redox probe. Under the optimized conditions, the electrochemical immunosensor exhibits a wide working range from 0.01 to 12 ng/mL with a low detection limit of 4.86 pg/mL. The accuracy, reproducibility, and stability of the immunosensor are acceptable. The assay is evaluated for real serum samples, receiving satisfactory results. The nanoporous metal materials-based immunoassay provides a promising approach in clinical application and thus represents a versatile detection method.  相似文献   

4.
The simultaneous detection of nitric oxide and glutamate using an array of individually addressable electrodes, in which the individual electrodes in the array were suitably modified with a highly sensitive nitric oxide sensing chemistry or a glutamate oxidase/redox hydrogel-based glutamate biosensor is presented. In a sequence of modification steps one of the electrodes was covered first with a positively charged Ni porphyrin entrapped into a negatively charged electrodeposition paint followed by the manual modification of the second working electrode by a bienzyme sensor architecture based on crosslinked redox hydrogels with entrapped peroxidase and glutamate oxidase. Adherently growing C6-glioma cells were grown on membrane inserts and placed in close distance to the modified sensor surfaces. The current responses recorded at each electrode after stimulation of glutamate and NO release by means of K+ and bradykinin clearly demonstrate the ability of the individual electrode in the array to detect the analyte towards which its sensitivity and selectivity was targeted without interference from the neighbouring electrode or other analytes present in the test mixture.  相似文献   

5.
A novel biosensing technique for highly specific identification of gene with single-base mutation is proposed based on the implementation of the DNA ligase reaction and the biocatalyzed deposition of an insoluble product. The target gene mediated deposition of an insoluble precipitate is then transduced by quartz crystal microbalance (QCM) measurements. In this method, the DNA target hybridizes with a capture DNA probe tethered onto the gold electrode and then with a biotinylated allele-specific detection DNA. A ligase reaction is performed to generate the ligation between the capture and the detection probes, provided there is perfect match between the DNA target and the detection probe. Otherwise even when there is an allele mismatch between them, no ligation would take place. After thermal treatment at an elevated temperature, the formed duplex melts apart that merely allows the detection probe perfectly matched with the target to remain on the electrode surface. The presence of the biotinylated allele-matched probe is then detected by the QCM via the binding to streptavidin-peroxide horseradish (SA-HRP), which catalyzes the oxidative precipitation of 3,3-diaminobenzidine (DAB) by H2O2 on the electrode and provides an amplified frequency response. The proposed approach has been successfully implemented for the identification of single-base mutation in -28 site of the beta-thalassemia gene with a detection limit of 0.1 nM, demonstrating that this method provides a highly specific and cost-efficient approach for point mutation detection.  相似文献   

6.
A sensitive label-free electrochemical aptasensor was successfully fabricated for thrombin detection with nafion@graphene as platform. With electrostatic interaction between nafion and methylene blue (MB), positive charged MB was successfully assembled on nafion@graphene modified electrode surface, which provided amounts of redox probes for electrochemical aptasensor. In the presence of thrombin, the thrombin aptamer (TBA) on the electrode surface would catch the target on the electrode interface, which made a barrier for electrons and inhibits the electro-transfer, resulting in the decreased differential pulse voltammetry signals of MB. As a result, the proposed approach showed a high sensitivity and a wider linearity to thrombin in the range 0.01–50 nM with a detection limit of 6 pM.  相似文献   

7.
Electrochemistry of microperoxidase-11 (MPx-11) anchored on the mixed self-assembled monolayer (SAM) of 2-(2-mercaptoethylpyrazine) (PET) and 4,4'-dithiodibutyric acid (DTB) on gold (Au) electrode and the biosensing of uric acid (UA) is described. MPx-11 has been covalently anchored on the mixed SAM of PET and DTB on Au electrode. MPx-11 on the mixed self-assembly exhibits reversible redox response characteristic of a surface confined species. The heterocyclic ring of PET promotes the electron transfer between the electrode and the redox protein. The apparent standard rate constant kapps obtained for the redox reaction of MPx-11 on the mixed monolayer is approximately 2.15 times higher than that on the single monolayer of DTB modified electrode. MPx-11 efficiently mediates the electrocatalytic reduction of H2O2. MPx-11 electrode is highly sensitive to H2O2 and it shows linear response for a wide concentration range. The electrocatalytic activity of the MPx-11 electrode is combined with the enzymatic activity of uricase (UOx) to fabricate uric acid biosensor. The bienzyme assembly is highly sensitive towards UA and it could detect UA as low as 2 microM at the potential of -0.1 V. The biosensor shows linear response with a sensitivity of 3.4+/-0.08 nA cm(-2) microM(-1). Ascorbate (AA) and paracetamol (PA) do not significantly interfere in the amperometric sensing of UA.  相似文献   

8.
Graphene/3,4,9,10-perylenetetracarboxylic acid (GPD) with three-dimensional porous structure has been successfully synthesized and served as redox probe to construct ultrasensitive electrochemical aptasensor. The GPD nanocomposite shows promoted electrochemical redox-activity of 3,4,9,10-perylenetetracarboxylic acid (PTCA) with an obvious well-defined cathodic peak from -0.7 to 0 V that never been seen from graphene or PTCA, which avoids miscellaneous redox peaks of PTCA in electrochemical characterization, offering a novel redox probe for electrochemical sensors with highly electrochemical active area and conductivity. To the best of our knowledge, this is the first study that utilizes PTCA self-derived redox-activity as redox probe in electrochemical sensors. Moreover, the interesting GPD possesses the advantages of membrane-forming property, providing a direct immobilization of redox probes on electrode surface. This simple process not only diminishes the conventional fussy immobilization of redox probes on the electrode surface, but also reduces the participation of the membrane materials that acted as a barrier of the electron propagation in redox probe immobilization. With thrombin as a model target, the redox probe-GPD based label-free electrochemical aptasensor shows a much higher sensitivity (a detection range from 0.001 nM to 40 nM with a detection limit of 200 fM) to that of analogous aptasensors produced from other redox probes.  相似文献   

9.
A highly sensitive electrochemical immunoassay strategy based on the combination of ferrocene (Fc) label and poly(o-phenylenediamine) (PPD) film/gold nanoparticle (GNP) amplification for the detection of immunospecies is proposed using human IgG as the model analyte. A gold electrode is firstly modified with an electropolymerized film of poly(o-phenylenediamine), which provides a stable matrix with abundant amino-groups for the fabrication of sensing interface. Using glutaraldehyde as a cross-linker, cystamine is coupled onto the modified electrode. Subsequently, gold nanoparticle monolayer is assembled onto the resulting surface. Making use of the unique properties of gold nanoparticles, antibodies can be self-assembled onto the surface-confined gold nanoparticles via amine-Au affinity with a high loading amount and reserve high immunological activity. After the introduction of model analyte, the ferrocene (Fc)-labeled antibody is immobilized on the sensing interface by antibody-antigen specific reaction, resulting in a redox current signal. The peak current is proportional to the amount of the analyte. Under the optimized experimental conditions, the proposed sensing strategy provides a wide linear dynamic range from 25 to 1000pg/mL with a low detection limit of 10pg/mL. In addition, good reproducibility, high selectivity and stability are achieved. In particular, the extremely high stability of both poly(o-phenylenediamine) and gold nanoparticle monolayer allows the designed biosensing interface to withstand harsh regeneration treatment, making it reusable.  相似文献   

10.
Long F  Wu S  He M  Tong T  Shi H 《Biosensors & bioelectronics》2011,26(5):2390-2395
Ultrasensitive DNA detection was achieved using a new biosensing platform based on quantum dots (QDs) and total internal reflection fluorescence, which featured an exceptional detection limit of 3.2 amol of bound target DNA. The reusable sensor surface was produced by covalently immobilizing streptavidin onto a self-assembled alkanethiol monolayer of fiber optic probe through a heterobifunctional reagent. Streptavidin served as a versatile binding element for biotinylated single-strand DNA (ssDNA). The ssDNA-coated fiber probe was evaluated as a nucleic acid biosensor through a DNA-DNA hybridization assay for a 30-mer ssDNA, which were the segments of the uidA gene of Escherichia coli and labeled by QDs using avidin-biotin interaction. Several negative control tests revealed the absence of significant non-specific binding. It also showed that bound target DNA could easily be eluted from the sensor surface using SDS solution (pH 1.9) without any significant loss of performance after more than 30 assay cycles. A quantitative measurement of DNA binding kinetics was achieved with high accuracy, indicating an association rate of 1.38×10(6) M(-1) s(-1) and a dissociation rate of 4.67×10(-3) s(-1). The proposed biosensing platform provides a simple, cheap, fast, and robust solution for many potential applications including clinical diagnosis, pathology, and genetics.  相似文献   

11.
An electrochemical microanalytical system consisting of a microelectrode array, a micromachined flow-through assembly, and a multichannel potentiostat were constructed for highly sensitive biosensing. Thin-film platinum microelectrode arrays consisting of four interdigitated microelectrodes (IDAs), which are spaced in the sub-micrometer range, were fabricated using silicon technology. On top of this chip, a micromachined flow-through cell was mounted. Using a home made miniaturized multipotentiostat, amperometric measurements of the individual electrodes at different and changing potentials, respective to a single reference electrode, were performed simultaneously. The signal generation, signal processing and the analytical system were controlled by a computer (PC type) and special software. An improved sensor sensitivity was achieved by multielectrode detection and averaging of the IDA responses.

By applying both the oxidation and reduction potentials of reversible redox molecules to pairs of the interdigitated electrodes, an increased current generation can be observed. Thus the steady state current of mediators such as benzoquinone can be amplified by a factor of 30 compared with conventional electrodes. This measuring principle was applied to determine of the activity of hydrolases by detecting the enzyme generated p-aminophenol in the nanomolar range. By combining both, the averaging and the recycling procedures, the detection limit of amperometric biosensing devices may be lowered by about one and a half orders of magnitude.  相似文献   


12.
A biosensor for the detection of triazine- and phenylurea-type herbicides was constructed using isolated Photosystem II (PS II) complexes as a biosensing element. PSII isolated from the thermophilic cyanobacterium Synechococcus elongatus was immobilized on the surface of a screen-printed sensor composed of a graphite working electrode and Ag/AgCl reference electrode deposited on a polymeric substrate. The biosensor was mounted in a flow microcell with illumination. The principle of the detection was based on the fact that herbicides selectively block PSII electron transport activity in a concentration-dependent manner. Changes of the activity were registered amperometrically as the rate of photoreduction of an artificial electron acceptor. The setup resulted in a reusable herbicide biosensor with a good stability (half-life of 24 h) and limit of detection of approximately 10(-9) M for diuron, atrazine and simazine.  相似文献   

13.
We demonstrated a new strategy for highly sensitive electrochemical detection of cocaine by using two engineered aptamers in connection to redox-recycling signal amplification. The graphene/AuNP nanocomposites were electrochemically deposited on a screen printed carbon electrode to enhance the electron transfers. The cocaine primary binding aptamers were self-assembled on the electrode surface through sulfur-Au interactions. The presence of the target cocaine and the biotin-modified secondary binding aptamers leads to the formation of sandwich complexes on the electrode surface. The streptavidin-conjugated alkaline phosphatases (ALPs) were used as labels to generate quantitative signals. The addition of the ALP substrate and the co-reactant NADH results in the formation of a redox cycle between the enzymatic product and the electrochemically oxidized species and the signal is thus significantly amplified. Because of the effective modification of the sensing surface and signal amplification, low nanomolar (1 nM) detection limit for cocaine is achieved. The proposed aptamer-based sandwich sensing approach for amplified detection of cocaine thus opens new opportunities for highly sensitive determination of other small molecules.  相似文献   

14.
An amperometric immunosensor for the detection of the herbicide atrazine has been developed. A redox polymer PVPOs(bpy)2Cl was co-immobilized with the specific antibody on the surface of the electrode by crosslinking with PEGDGE to form an electron-conducting hydrogel. In a competitive assay the occurrence of the antibody-antigen reaction on the surface of the sensing film was detected through the 'electrical wiring' of the redox centres of antigen-labelled horseradish peroxidase and the electrode surface in the presence of H2O2 at 0.1 V (vsAg/AgCl).  相似文献   

15.
Amperometric glucose biosensor based on single-walled carbon nanohorns   总被引:2,自引:0,他引:2  
Liu X  Shi L  Niu W  Li H  Xu G 《Biosensors & bioelectronics》2008,23(12):1887-1890
The biosensing application of single-walled carbon nanohorns (SWCNHs) was demonstrated through fabrication of an amperometric glucose biosensor. The biosensor was constructed by encapsulating glucose oxidase in the Nafion-SWCNHs composite film. The cyclic voltammograms for glucose oxidase immobilized on the composite film displayed a pair of well-defined and nearly symmetric redox peaks with a formal potential of -0.453 V. The biosensor had good electrocatalytic activity toward oxidation of glucose. To decrease detection potential, ferrocene monocarboxylic acid was used as a redox mediator. The mediated glucose biosensor shows a linear range from 0 to 6.0 mM. The biosensor shows high sensitivity (1.06 microA/mM) and stability, and can avoid the commonly coexisted interference. Because of impressive properties of SWCNHs, such as high purity and high surface area, SWCNHs and their composites are expected to be promising material for biomolecular immobilization and biosensing applications.  相似文献   

16.
An immune cellular biosensing system has been constructed to assess immunomodulating effects of chemicals. Production of nitric oxide in the immune cellular biosensing system was used as readout of an immune cellular response for assessing the immunomodulating effects of chemicals. The macrophage-like cell line RAW264.7, which has signaling pathways of inducible nitric oxide synthase, was employed in the cellular biosensing system. The immune cellular biosensing system consisted of a Pt counter electrode, an Ag/AgCl reference electrode, and a gold electrode onto which a polyion complex layer was coated to allow adherence of the RAW264.7 cells. As the results of evaluating effects of a polyion complex layer on cell viabilities by using WST-8 assay, the polyion complex layer did not affect RAW264.7 cells. The polyion-coated gold electrode could measure NO without the drawback of electrochemical interference that occurs with differential pulse voltammetry. The detection limit of the immune cellular biosensing system was 4.2 nM released NO as measured by double potential step chronoamperometry. The potent immune activating abilities of lipopolysaccharide and interferon-gamma could be assessed by the cellular biosensing system; NO release from cells was detected within 600 ms.  相似文献   

17.
An ultrasensitive electrochemical immunoassay (EIA) for the detection of carcinoembryonic antigen (CEA) is described in this report. The assay involves utilizing enzyme-catalyzed deposition of a redox polymer and electrocatalytic oxidation of ascorbic acid (AA) by the deposited redox polymer, a dual-amplification scheme to enhance analytical signals. Briefly, CEA capturing antibody and redox polymer anchoring agent were covalently immobilized on a gold electrode. After incubating with CEA, the electrode was treated in detection antibody-glucose oxidase conjugate solution. Thereafter, it was dipped into the redox polymer solution. Upon the addition of glucose, the redox polymer was enzymatically reduced and deposited on the electrode surface. The deposited redox polymer exhibits excellent electrocatalytic activity towards the oxidation of AA. Consequently, CEA could be quantified amperometrically. This electrochemical immunoassay combines the specificity of the immunological reaction with the sensitivity of the doubly amplified electrochemical detection.  相似文献   

18.
This paper describes the preparation of an organic charge transfer complex (CTC) based printable enzyme electrode. CTC crystals were prepared by mixing TCNQ powder with TTF solution (in acetonitrile). Glucose oxidase (GOD) was adsorbed at the CTC crystal surface in a monolayer. A printable paste was prepared by mixing GOD-adsorbed crystals with a binder and a solvent. This paste was applied to an electrode cavity and vacuum dried. A thin layer of gelatin was cast on the paste filled dried electrode, and cross-linked with glutaraldehyde in the dry condition. The sensors were fixed in a flow injection system, and continuously polarized at 0·15 V and 37°C, and the samples were automatically injected every 30 min. The developed sensors produced a huge response curren with an extended linear range of detection (0–100 mM) and the response was unaffected by the presence of normal oxygen in the buffer solution. The sensor showed excellent stability. The performance of the sensors was significantly influenced by the binder used.  相似文献   

19.
The lipidic cubic phase was prepared by mixing monoolein (monooleoyl-rac-glycerol, MO) with water in 64:36% ratio and applied to the solid support-glassy carbon or platinum electrodes. Highly viscous, homogeneous and transparent cubic phase film remained stable and firmly attached to the electrode surface. In order to describe the efficiency of transport of small hydrophilic molecules within the film, we studied the diffusion of selected redox mediators along the network of aqueous channels present in the cubic phase structure. Loading times, diffusion coefficients and concentrations of the mediators in the layer were determined by voltammetry and chronocoulometry using two types of electrodes: a normal size electrode working in the linear diffusion regime and an ultramicroelectrode working under spherical diffusion conditions. In addition to the well-defined order, transparency and viscosity, the fast transport of small redox mediators through the aqueous channels of the cubic phase and along the interfacial water-lipid region is another important property of this matrix. The diffusion of the hydrophilic probes in the cubic phase was found to be more efficient than in the Nafion layers. Efficient transport of small redox mediators within the cubic phase means that not only enzymes and synthetic catalysts can be incorporated into the phase but also their fast communication with electrode surface will be enabled thanks to the simultaneous incorporation of small mobile redox mediators. This property of the cubic liquid crystalline phases based on lipids makes them especially interesting from the point of view of practical applications in biosensing and bioelectrocatalysis.  相似文献   

20.
The investigations described show that the formation of elemental sulfur from the biological oxidation of sulfide can be optimized by controling the redox state of the solution. The nonsoluble sulfur can be removed by gravity sedimentation and re-used as a raw material, i.e., in bioleaching processes. It was shown that, by supplying an almost stoichiometrical amount of oxygen to the recirculated gas phase, the formation of sulfate is minimized. The redox potential is mainly determined by the sulfide concentration because this compound has a high standard exchange current density with the platinum electrode surface. By maintaining a particular redox setpoint value, in fact, the reactor becomes a "sulfide-stat." It was shown that in a sulfide-oxidizing bioreactor the measured redox potential, using a polished redox electrode, is kinetically determined rather than thermodynamically. The optimal redox value for sulfur formation is between -147 and -137 mV (H2 reference electrode, 30 degrees C, pH 8). The presented results are currently used for controling several full-scale installations, which desulfurize biogas and high-pressure natural gas. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号