首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carbonate eolian dunes can form huge sand bodies along the coasts but are seldom described in the pre-Quaternary record. The study of more than 600 thin-sections collected in present-day, Holocene and Pleistocene dunes from Sardinia, Crete, Cyprus, Tunisia, Morocco, Australia and Baja California confirms that these deposits can be easily misinterpreted as shallow marine at core or thin-section scale. The classical eolian criteria (fine-grained and well-sorted sands) are exceptional in carbonate dunes because the diversity of shapes and densities of carbonate particles lowers the critical shear velocity of the sediment thus blurring the sedimentary structures. Wind carbonate deposits are mainly heterogeneous in size and often coarse-grained. The paucity of eolianites in the pre-Quaternary record could be due to misinterpretation of these deposits. The recognition should be based on converging sedimentological and stratigraphic elements at core scale, and diagenetic (vadose diagenesis, pedogenetic imprints) and petrographical (grain verticalization, scarcity of micritic envelopes, broken and/or reworked foraminifera) clues in thin-section. Bioclastic or oolitic grainstones showing evidence of vadose diagenesis or pedogenetic imprints, should always be suspected of having an eolian origin.  相似文献   

2.
Eolian deposits and landforms are ubiquitous in western Kansas, particularly south of the Arkansas River with the presence of a stabilized dune field. Stratigraphic studies and associated optical dating reveal a complex depositional history for this dune field spanning the late Quaternary. The oldest eolian deposits from ca. 16 to 12 ka completely or partially bury high terraces with ages of ca. 16 and 33 ka. It is unknown whether these eolian deposits reflect regional aridity and/or a change in sediment availability with the transition of the Arkansas River from a single channel to a braided system. There is pervasive evidence for episodic eolian erosion and deposition ca. 9.8 to 6.3 ka, generally coincident with loess deposition on upland surfaces [Olson, C.G., Nettleton, W.D., Porter, D.A., Brasher, B.R., 1997. Middle Holocene aeolian activity on the High Plains of west-central Kansas. Holocene, 7(3): 255–261], and thus it is inferred to reflect regional aridity. Sites within the dune field show a sequence of eolian sands and weak buried soils, reflecting either dune migration or sand sheet accretion at ca. 1490, 430, 380–320, 180, and 70 yr ago, which correspond well with continental-scale droughts in the tree-ring record. Eolian sand in the Arkansas River dune field may be derived principally with variability in fluvial activity and in climate during the late Pleistocene to the middle Holocene, with substantial reactivation of eolian systems during decadal-scale drought variability in the past 2000 yr.  相似文献   

3.
Summary During the 1960's and the 1970's the Liedena Sandstone was a type deposit for “flysch-like facies” (sandstone and lutite alternations) of coastal sedimentary systems. However, the depositional system of these beds was never accurately defined. The sedimentological analysis along 100 km of outcrops in the western part of the South Pyrenean Zone (Navarre) allows these peculiar facies to be assigned to a mixed intertidal flat. Furthermore, sandy beach facies, different types of heterolithic, backbarrier deposits and conglomeratic, fluviatile facies have been recognized associated with these intriguing deposits. Generally, a northwestward-facing barrier-island system or wave-dominated delta was the likely depositional environment. The benthic foraminiferal assemblage in the intertidal deposits exhibits the typical characteristics of a marginal marine environment: extremely high dominance of one species (Pararotalia inermis), low species diversity, and a hyaline dominance with discrete amounts of miliolids. Furthermore, the most abundant species indicates that the Liedena Sandstone was deposited during the Late Eocene. Abundant footprints of aquatic birds are known in the tidal flat deposits. Six morphotypes have been distinguished: two (types 1 and 2) are ciconiforme-like; type 1 is here assigned to a new ichnotaxon,Leptoptilostipus pyrenaicus and is one of the oldest occurrences of Ciconiiforme-like ischmites in the fossil record. Two other morphotypes (5 and 6) are similar to those of the Charadriiformes and are refeered to asCharadriipeda. Finally, the affinities of the two remainder morphotypes (3 and 4) are unclear, they could have been made by Charadriiformes. Synsedimentary tectonic activity controlled the evolution of the depositional system, as the area of deposition of the Liedena Sandstone was progressively incorporated into the active thrust sheets of the Pyrenean Orogen during the Late Eocene. The structural uplift and the large amount of sediments derived from the adjacent highlands induced progradation of the depositional system and the definitive retreat of the sea from the South Pyrenean Zone.  相似文献   

4.
Geological records of early Paleogene warming are rare in low latitudinal regions. The Indian subcontinent preserves records of this global event on western and eastern margins. We attempt to decipher paleoenvironmental setup and facies architecture of the paleo-equatorial early Eocene succession at the Vastan Lignite Mine, Gulf of Cambay, western India. The Vastan lignite succession was deposited in a low-energy coastal marsh-bay complex receiving only fine-grained muddy sediments from the weathered Deccan Traps. The lower part of the Vastan lignite deposit, designated as “Vastan Succession A”, comprises four depositional facies representing distinct environments (open bay, restricted bay, creek and channel, and coastal marsh) and one diagenetic facies. Palynofacies analysis, backed by precise sedimentological framework, records changes in terrestrial supply and fluctuating marine characters of bay and marshes. Eleven Palyno-Units are identified in distinct lithofacies sequences stacked in shallowing-upward cycles representing five parasequences that constitute a Transgressive Systems Tract (TST) deposit. Each parasequence starts with a transgressive sheet deposit, followed by shallowing-upward bay fill-marsh deposits. In the vertical succession, each parasequence acquires increasing marine character, culminating in a maximum flooding surface (shell carbonate) that represents large-scale coastal onlap during early Ypresian time. The TST is followed by a Highstand Systems Tract deposit, which shows an erosional surface at the top of the upper lignite indicating Lowstand Systems Tract and a sequence boundary at ~52 Ma. The Vastan Succession A represents TST (3rd-order cycle) deposits with parasequences and hemicycles representing 4th- and 5th-order cycles. The study demonstrates sea level rise along the Indian western coastal margin in response to early Eocene warming between ~55 and ~52 Ma with maximum transgression at 53.7 Ma.  相似文献   

5.
Our knowledge of early Australasian societies has significantly expanded in recent decades with more than 220 Pleistocene sites reported from a range of environmental zones and depositional contexts. The uniqueness of this dataset has played an increasingly important role in global debates about the origins and expression of complex behaviour among early modern human populations. Nevertheless, discussions of Pleistocene behaviour and cultural innovation are yet to adequately consider the effects of taphonomy and archaeological sampling on the nature and representativeness of the record. Here, we investigate the effects of preservation and sampling on the archaeological record of Sahul, and explore the implications for understanding early cultural diversity and complexity. We find no evidence to support the view that Pleistocene populations of Sahul lacked cognitive modernity or cultural complexity. Instead, we argue that differences in the nature of early modern human populations across the globe were more likely the consequence of differences in population size and density, interaction and historical contingency.  相似文献   

6.
Central to the debate surrounding global climate change and Plio-Pleistocene hominin evolution is the degree to which orbital-scale climate patterns influence low-latitude continental ecosystems and how these influences can be distinguished from regional volcano-tectonic events and local environmental effects. The Pliocene Hadar Formation of Ethiopia preserves a record of hominin paleoenvironments from roughly 3.5 to 2.2 Ma at a temporal resolution relevant to evolutionary change within hominins and other taxa. This study integrates the high-resolution sedimentological and paleontological records at Hadar with climate proxies such as marine core isotope, dust, and sapropel records. Consistent cycling observed both between and within fluvial and lacustrine depositional environments prior to 2.9 Ma at Hadar appears to be predominantly climatic in nature. In contrast a significant change in depositional facies after 2.9 Ma to sequences dominated by conglomerate cut-and-fill cycles indicates a strong tectonic signature related to regional developments in the Main Ethiopian Rift. While specific events seen in marine proxy records may have parallels in the Hadar environmental archive, their overall patterns of high versus low variability may be even more relevant. For example, periods of relatively high-amplitude climate oscillations between 3.15 and 2.95 Ma may be linked to noted size-related morphological changes within the Hadar Australopithecus afarensis lineage and a significant increase in more arid-adapted bovid taxa. Increased aridity in East Africa during this period is also indicated by peaks in eolian dust in the marine core record. Conversely, the dominant lacustrine phase at Hadar ca. 3.3 Ma coincides with the least variable period in several climate proxy records, including marine core foraminifera delta(18)O values and eolian dust concentration. This phase is also coeval with low insolation variability and a very distinct and significant long-term period of low dust percentage in circum-Africa marine cores.  相似文献   

7.
An unusual Pleistocene patch reef is exposed in a coastal cliff at Grotto Beach, San Salvador, Bahamas. The reef is a coralline framestone constructed mainly by Porites astreoides together with a few large heads of Diploria strigosa and Montastrea annularis, and is capped by a dense thicket of Neogoniolithon strictum that is interpreted as marking the subtidal/intertidal boundary. The reef is flanked to the northeast by laminated to low-angle cross-laminated intraclastic grainstones and to the southwest by skeletal rudstone of reefal and interreefal derivation. Uranium-series dating of pure aragonite from a Diploria corallum yielded an age of 123 000±9000 years. Reef growth began on an erosional surface underlain by steeply crossbedded eolian grainstone. As the reef grew upward, it also grew laterally over adjacent penecontemporaneous subtidal sediments. The reef was eventually buried by 2.3 m of shallow subtidal and beach sediments that apparently prograded seaward during a highstand, or possibly while sea level was still rising. The shallow subtidal sediments are mainly peloidal, ooidal and skeletal grainstones that are pervasively bioturbated. The overlying beach facies comprises predominantly laminated, sparsely burrowed grainstone. The beach and shallow subtidal facies contain boulders of fine-grained laminated grainstone that are interpreted as storm-tossed blocks of beachrock. Living analogs of the Grotto Beach fossil reef lie off East Beach, San Salvador. Several of these have a flourishing cap of Neogoniolithon that extends above low-tide level and we believe that the Neogoniolithon cap of Grotto Beach reef did likewise. Wherever found in the stratigraphic record this facies should serve to identify the subtidal/intertidal boundary. The uppermost Pleistocene beach sediments associated with Grotto Beach fossil reef lie 5.8 m above present-day mean sea level, which ist strong evidence that this portion of San Salvador has undergone little subsidence since the Grotto Beach section was deposited.  相似文献   

8.
The depositional conditions that characterized the sedimentary filling in the southern sector of the Guadalquivir Basin during the late post-orogenic Neogene have been established through the sedimentological study of the Plio-Pleistocene outcrops along the Cadiz coast (SW Spain). The study has contributed to a better interpretation of the regional stratigraphy and helped to establish both depositional mechanisms and processes. Deposits show different lithofacies according to the dominant climatic and prevailing environmental conditions. Pliocene deposits show bioclastic lithofacies with abundant warm-water fossils, whereas Pleistocene sediments have a low fossil content. Stratigraphic sections indicate important depositional changes: sandstone and grainstone were deposited under a seasonal regime, whereas accumulations of large boulders and bioclasts are interpreted as event deposits, the product of episodic oceanographic processes, such as huge storms or tsunamis. These deposits do not have a seasonal character; however, given their relative frequency in the stratigraphic sections, they were probably associated with neo-tectonic activity in the Guadalquivir Foreland Basin, which was an important controlling factor in this basin. The proximity to the Africa-Eurasia plate boundary together with several historically documented earthquakes and tsunamis in the study area, suggest that these processes could explain the origin of these deposits. The seismic-tectonic activity was more intense between the late Pliocene and early Pleistocene, as shown by the presence of a well-marked angular unconformity, as well as by a higher frequency of the very high energy clastic and bioclastic accumulations.  相似文献   

9.
A thick (ca. 40 m) sequence of coastal eolian sediments occurs on a narrow peninsula on the eastern end of the island of Madeira, located in the Eastern Atlantic at 33°N latitude. The sediments consist of black volcanic sands (with or without bioclasts) as well as clay units up to 2 m thick. A series of inceptisols (Eutrochrepts) and one alfisol (a Hapludalf) are developed in these sediments. Land snail shells and secondary carbonates, in the form of well-developed rhizoliths, calcretes, fissure-fills, and soil nodules, are present in abundance. The chronology of the sequence was determined by 14C and U---Th analyses of land snail shells and secondary carbonates and amino acid epimerization analysis of land snail shells. All sediments, including the clay units, are originally of eolian origin, derived from the beach to the south of the deposit, but some have been redeposited by colluviation. Temporal variation in the lithology of the sediments relates to variations in sea-level, with black sands being deposited during lower sea level stands and clays at the lowest. It is suggested that fine marine sediments, exposed during low sea-level stands, may also be the dominant source of silty or clayey units in other coastal eolian deposits in the subtropical Atlantic and Mediterranean.

The sequence spans from 200,000–300,000 years ago up to the 20th century. Sedimentation was discontinuous and often rapid; erosional hiatuses are present. During the Holocene, eolian sands started accumulating at 8200 yr B.P. during a transgressive phase and stopped at 4500 yr B.P. as sea level approached its present height. Colluviation increased dramatically following the first human settlement of the island in the 15th century and continued up to the 20th century, as dated by amino acid epimerization analysis of land snails. Earlier periods of colluviation were identified from the age distribution of land snail shells redeposited in younger colluvium.

Paleoenvironmental reconstruction was based mainly on soil and sediment features (including rhizolith morphology) and land snail faunas but also on stable isotope variations (13C, 18O) in land snails and secondary carbonates, pollen (generally not well preserved), and phytoliths. Most of the portion of the Middle Pleistocene represented in the sequence was characterized by moderately dry conditions, in comparison to the late Pleistocene and Holocene. During the last interglacial, relatively wet conditions occurred, wetter than during the Holocene interglacial. Moderately moist conditions were present during the accumulation of the thick unit dating to ca. 80,000 yr B.P. As sea level fell subsequent to this period, conditions appear to have become drier. Starting ca. 50,000–55,000 yr B.P., conditions were especially wet, but prior to the last glacial maximum, markedly arid conditions ensued. Toward the end of the last glacial, wet conditions returned and produced the best-developed soil preserved in the sequence. Moderately moist conditions occurred during the early to middle Holocene but apparently become slightly drier after 4500 yr B.P. The impact of human settlement can be seen in the loss of woody vegetation and enhanced gullying and colluviation during the last ca. 500 years.  相似文献   


10.
11.
Conodont elements, consisting of crown and basal tissue are the well-known fossilized hard parts of Conodonta (extinct marine chordates), but the taphonomic processes leading to decomposition or remineralization of the basal tissue are not well understood. Here we focus on the taphonomy of basal tissue, reviewing the published record and describing new material from Asia and Europe (248 occurrences globally). These include crown and basal tissue in conjunction, and isolated basal bodies showing different stages of preservation. Some isolated specimens resemble phosphate rings similar to those assigned to Phosphannulus universalis. High-resolution biostratigraphy indicates that the lamellar type of conodont basal tissue is found in all facies and depositional environments. Other basal tissue types, described in the literature as tubular, mesodentine, spherulitic or lamellar with canalules, are limited to the early Palaeozoic and found exclusively in siliciclastic deposits (with the exception of spherulitic tissue). Although the stratigraphic record of basal tissue spans the range of Euconodonta (Cambrian–Triassic), this study shows that most of the isolated plate and ring-like structures are derived from early Palaeozoic coniform conodonts. Basal tissue of platform-type elements has a much more fragile shape and is therefore rarely preserved as a recognizable isolated unit.  相似文献   

12.
Paleosol carbonates from trenches excavated as part of a landscape-scale project in Bed I of Olduvai Gorge, Tanzania, were analyzed for stable carbon and oxygen isotopic composition. The approximately 60,000-year interval ( approximately 1.845-1.785 Ma) above Tuff IB records evidence for lake and fluvial sequences, volcanic eruptions, eolian and pedogenic processes, and the development of a fluvial plain in the western margin of the basin. Significant temporal variation in the carbonate delta(18)O values records variation of local precipitation and supports the shifts in climatic conditions interpreted from the lithologic record. During this period, carbonate delta(13)C values varied between depositional facies indicating that the paleolandscape supported a local biomass of about 40-60% C(4) plants within a mosaic of grassy woodlands and wooded grasslands. The lithologic and stable isotope record in this small lake basin indicates the area was much wetter, with more woody C(3) plants, during this interval than is the semi-arid area today. The record also reflects the variation in climatic conditions (wet/dry) documented by other global climate proxies for this time.  相似文献   

13.
During the Late Miocene, the marginal areas of the Mediterranean Basin were characterized by the development of mixed siliciclastic-carbonate ramps. This paper deals with a temperate siliciclastic-carbonate ramp (late Tortonian–early Messinian in age) which crops out in the Capo Vaticano area, Southern Apennines (Italy). Carbonate components are mainly represented by calcitic skeletal fragments of coralline red algae, bryozoans, bivalves, and larger foraminifera, whereas corals, brachiopods, echinoderms, and planktonic foraminifera are subordinate. In the studied ramp, the depositional geometries of the main unit, the ‘Sabbie gialle ad Heterostegina’, show a gradual steepening from low/middle (dip about 2–5°) to steep slope settings (up to 25°). The microfacies observations, the quantitative analyses of the main biogenic components as well as the rhodolith shapes and growth forms allowed the differentiation between the middle and the outer ramp depositional setting and the refining of the stratigraphic framework. The middle ramp is characterized by coralline red algal debris packstone facies often associated with larger foraminiferal floatstone/packstone facies, while the outer ramp is characterized by rhodolith floatstone/rudstone facies. These facies pass basinward into typical open-marine deposits (planktonic foraminiferal facies). The taxonomic composition of the coralline red algal assemblage points to a temperate paleoclimate and emphasizes the Miocene Mediterranean phytogeographic patterns. The absence of non-skeletal grains (ooids and green algae), the paucity of Porites patch reefs, the rare occurrence of primary marine cementation, all confirm that the studied ramp was poorly lithified within a warm–temperate setting. The flat depositional profile of the ramp can be related to the absence or paucity of primary marine carbonate cements.  相似文献   

14.
This paper documents the facies change in response to the Holocene transgression within five sediment cores taken in the lagoon of Mayotte, which contain a Type-1 depositional sequence (lowstand, transgressive and highstand deposits underlain by an erosive sequence boundary). Quantitative compositional analysis and visual examination of the bioclasts were used to document the facies changes. The distribution of the skeletal and non-skeletal grains in the lagoon of Mayotte is clearly controlled by (1) the rate and amplitude of the Holocene sea-level rise, (2) the pre-Holocene basement topography and (3) the growth-potential of the barrier reef during sea-level rise, and the changes in bathymetry and continuity during this period. The sequence boundary consists of the glacial karst surface. The change-over from the glacial lowstand is marked by the occurrence of mangrove deposits. Terrigenous and/or mixed terrigenous-carbonate muds to sandy muds with a mollusc or mollusc-ostracod assemblage dominate the transgressive deposits. Mixed carbonate-siliciclastic or carbonate sand to gravel with a mollusc-foraminifer or mollusc-coral-foraminifer assemblage characterize the early highstand deposits on the inner lagoonal plains. The early highstand deposits in the outer lagoonal plains consist of carbonate muds with a mollusc-foraminifer assemblage. Late highstand deposits consist of terrigenous muds in the nearshore bays, mixed terrigenous-carbonate sandy muds to sands with a mollusc-foraminifer assemblage on the inner lagoonal plains and mixed muds with a mollusc-foraminifer assemblage on the outer deep lagoonal plains. The present development stage of the individual lagoons comprises semi-enclosed to open lagoons with fair or good water exchange with the open ocean.  相似文献   

15.
Summary Published information and recent observation of physical and biogenic structures as well as grain size patterns along the East Frisian barrier islands (southern North Sea) have been synthesized to develop a facies model for a high energy, wave-tide-storm-influenced transgressive shoreface. As exemplified by Spiekeroog Island, three major shoreface facies (Upper, Central and Lower) are distinguishable, each of which can be subdivided into a Proximal and a Distal subfacies. A transgressive shoreface sequence in the rock record, in ascending order, will show the Upper Shoreface facies (USF) at the base. This is characterized by very well-sorted fine sands exhibiting predominantly plane lamination, which is consistent with its wave-dominated flow regime. The Central Shoreface facies (CSF) overlying the USF shows a high proportion of shells, a broad range of sediment sizes (fine sand to pebbles), and marked diversity in sedimentary structures. Graded storm beds, tidal cross-strata, mud-sand couplets, and horizontal to subhorizontal lamination are common. Swaley/hummocky (?) strata may also occur in its Distal subfacies. The sequence is topped by the Lower Shoreface facies (LSF). It consists mostly of bioturbated fine sands, although graded beds do occur. Distal sabfacies sands are consistently finer, better sorted, and more positively skewed than their Proximal counterpart. Anomalies in both coastwise and cross-shore textural trends are noted. In contrast to most other coastal settings, both fair-weather (wave- and tidal-current) and storm deposits are likely to be represented in subequal proportion in the rock record.  相似文献   

16.
The Kuwait example studied here may serve as a model for ancient carbonate ramp systems just as the classical—but markedly different—southern Arabian-Persian Gulf ramp of the Trucial Coast (United Arab Emirates). Five sedimentary facies may be distinguished on the modern southern Kuwait carbonate ramp based on quantitative sedimentological, mineralogical, and geochemical analyses of 130 surface sediment samples and by using multivariate statistics. These facies include (1) inner ramp ooid-skeletal grainstone with common aggregate grains, peloids, and molluscs, (2) limited occurrences of nearshore quartz-ooid sand, (3) mid ramp mollusk packstone to grainstone, (4) outer ramp mollusk-marl wackestone with abundant siliciclastic fines, and (5) coralgal grainstone that is found on small nearshore patch reefs and outer ramp pinnacle and platform reefs. In addition to facies (1), an aggregate grain packstone to grainstone sub-facies is mapped out where abundances of this grain type exceed 20%. Ooid-skeletal grainstone, mollusk packstone to grainstone, and coralgal grainstone are predominantly aragonitic with 5–10% insoluble residue on average. Mollusk-marl wackestone has 55% insoluble residue on average with aragonite and low-magnesium calcite predominating in the carbonate fraction. Dolomite in this facies is interpreted to be of eolian origin derived from the upwind deserts of Syria and Iraq. Facies distribution is correlated with water depth, and hence controlled by depositional energy, primarily wavebase. This correlation is seen in the results of statistical analyses and in the fact that facies boundaries are more or less parallel to depth contours. Ooid-skeletal grainstones are found in depths from 0 to <10 m. The boundary between the mollusk packstone to grainstone and the mollusk-marl wackestone, which also marks the transition from grain-supported to mud-supported textures, is situated between 15–20 m depth and is much sharper than the boundary between the ooid-skeletal and the mollusk packstone to grainstone facies. Carbonate-dominated facies may also be distinguished geochemically as indicated by significantly different carbon and oxygen isotope compositions. The latter should be kept in mind when using bulk isotope values for chemostratigraphy or for paleo-environmental reconstructions in fossil carbonate ramps and platforms.An erratum to this article can be found at .  相似文献   

17.
Summary Shallow marine tropical Devonian carbonates commonly were deposited in two major geologic settings, i.e., shallow shelf with shelf margin reef, and gently sloping ramp that grades into peritidal to supratidal, in places evaporitic facies. The facies types within these two settings can be grouped into a few distinct zones on the basis of water, energy, texture, amount of micrite, porosity, fossil assemblages, and indicaton fossils. These zones have been integrated into a composite facies model for shallow marine, tropical Devonian carbonates. The facies zones are easily recognizable in hand specimen and core, and can be used for fast and accurate facies analysis. Some facies recognizable in hand specimen or core do not easily fit into the integrated model and represent facies of short-lived depositional events, such as hurricanes or slump deposits, or spatially restricted areas, such as channel fills. Such facies have to be interpreted on a case-by-case basis by comparison to the surrounding facies and depositional framework through time. Comparisons with Cenozoic reefs reveal a number of similarities. In particular, large metazoans in both Devonian and Cenozoic reefs display a range of growth forms that is not species-specific. Furthermore, several metazoans display comparable growth forms in equivalent facies zones. For example, dendroid stromatoporoids, such asStachyodes, and branching coral, such asPorites porites, occur in equivalent facies zones.  相似文献   

18.
There have been surprisingly few empirical investigations of the fundamental principle that the architecture of depositional sequences exerts considerable control on observed patterns of faunal distribution and replacement. In this paper, we examine trilobite associations in two sequences of the Upper Ordovician (Sandbian) Bromide Formation of southern Oklahoma. Cluster analysis and ordination of genus abundance data identified five lithofacies‐related biofacies that are also differentiated by diversity patterns. Biofacies of the transgressive system tract (TST) of successive sequences are more similar to each other than they are to biofacies in the highstand systems tract (HST) of the same sequence. This similarity likely records dominance of large, robust convex sclerites in taphonomically degraded samples from condensed, strongly winnowed grainstone and rudstone. Horizons with articulated exoskeletons of isoteline trilobites preserved by obrution deposits occur most commonly in the early HST and record behavioural aggregations. Grainstone and rudstone of the later HST are less winnowed than those of the TST and show less fragmentation and sorting of sclerites. These changes in taphonomic conditions preserve ecological patterns more clearly. In most biofacies, rarefied alpha diversity (samples) and gamma diversity (biofacies) of middle‐ and outer‐ramp HST deposits are greater than in the TSTs, and biofacies replace each other down ramp. Diversity patterns do not agree with model predictions and other data sets that indicate low beta and high alpha diversity in the TST, likely because of taphonomic degradation. Vertical replacement of biofacies is expressed by the appearance of peritidal facies in which trilobites are rare. Biofacies shifts also characterize sequence boundaries and are most profound in the inner‐ramp successions characterized by sharp facies offsets. Comparison with bathymetrically similar deposits in the Taconic foreland basin showed similar diversity trends along environmental gradients, with some differences in shallow‐water settings attributed to taphonomic differences.  相似文献   

19.
The internal facies and sedimentary architecture of an Upper Jurassic inner carbonate ramp were reconstructed after the analysis and correlation of 14 logs in a 1 × 2 km outcrop area around the Mezalocha locality (south of Zaragoza, NE Spain). The studied interval is 10–16 m thick and belongs to the upper part of the uppermost Kimmeridgian–lower Tithonian Higueruelas Fm. On the basis of texture and relative proportion of the main skeletal and non-skeletal components, 6 facies and 12 subfacies were differentiated, which record subtidal (backshoal/washover, sheltered lagoon and pond/restricted lagoon) to intertidal subenvironments. The backshoal/washover subenvironment is characterized by peloidal wackestone–packstone and grainstone. The lagoon subenvironment includes oncolitic, stromatoporoid, and oncolitic-stromatoporoid (wackestone and packstone) facies. The intertidal subenvironment is represented by peloidal mudstone and packstone–grainstone with fenestral porosity. Gastropod-oncolitic (wackestone–packstone and grainstone) facies with intercalated marl may reflect local ponds in the intertidal or restricted lagoon subenvironments. Detailed facies mapping allowed us to document 7 sedimentary units within a general shallowing-upward trend, which reflect a mosaic distribution, especially for stromatoporoid and fenestral facies, with facies patches locally more than 500 m in lateral extent. External and internal factors controlled this heterogeneity, including resedimentation, topographic relief and substrate stability, combined with variations in sea-level. This mosaic facies distribution provides useful tools for more precise reconstructions of depositional heterogeneities, and this variability must be taken into account in order to obtain a solid sedimentary framework at the kilometer scale.  相似文献   

20.
魏偏偏 《人类学学报》2020,39(4):616-631
1960年,在云南省丽江市发现了三根古人类股骨,通过地层观察,仅PA108可归为更新世晚期。前人对PA108做了初步报导,为了进一步了解丽江人股骨的演化分类地位和东亚早期现代人股骨形态变异,本文对PA108的内外结构进行了详尽的分析。研究发现,PA108具有明显的早期现代人特征,即明显的股骨粗线、骨干中部后侧骨密质最厚和中部横断面轮廓形状偏椭圆。PA108标本也有一定的特殊性,体现在骨干中近端和中部骨密质厚度分布上,这可能与其股骨嵴发育较弱有关,这一特征也导致了PA108与其他东亚早期现代人之间的形态差异,这些形态变异进一步扩大了目前已知的东亚地区早期现代人变异范围。同时,在采用骨密质厚度分布模式进行分类时,建议关注股骨骨干中部骨密质最厚部位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号