首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In the area of Haidach (Northern Calcareous Alps, Austria), coral-rudist mounds, rudist biostromes, and bioclastic limestones and marls constitute an Upper Cretaceous shelf succession approximately 100 meters thick. The succession is part of the mixed siliciclasticcarbonate Gosau Group that was deposited at the northern margin of the Austroalpine microplate. In its lower part, the carbonate succession at Haidach comprises two stratal packages that each consists, from bottom to top, of a coral-rudist mound capped by a rudist biostrome which, in turn, is overlain by bioclastic limestones and, locally, marls. The coral-rudist mounds consist mainly of floatstones. The coral assemblage is dominated by Fungiina, Astreoina, Heterocoeniina andAgathelia asperella (stylinina). From the rudists, elevators (Vaccinites spp., radiolitids) and recumbents (Plagioptychus) are present. Calcareous sponges, sclerosponges, and octocorals are subordinate. The elevator rudists commonly are small; they settled on branched corals, coral heads, on rudists, and on biolastic debris. The rudists, in turn, provided settlement sites for corals. Predominantly plocoid and thamnasteroid coral growth forms indicate soft substrata and high sedimentation rates. The mounds were episodically smothered by carbonate mud. Many corals and rudists are coated by thick and diverse encrustations that indicate high nutrient level and/or turbid waters. The coral-rudist mounds are capped byVaccinites biostromes up to 5 m thick. The establishment of these biostromes may result from unfavourable environmental conditions for corals, coupled with the potential of the elevator rudists for effective substrate colonization. TheVaccinites biostromes are locally topped by a thin radiolitid biostrome. The biostromes, in turn, are overlain by bioclastic limestones; these are arranged in stratal packages that were deposited from carbonate sand bodies. Approximately midsection, an interval of marls with abundantPhelopteria is present. These marls were deposited in a quiet lagoonal area where meadows of sea grass or algae, coupled with an elevated nutrient level, triggered the mass occurrence ofPhelopteria. The upper part of the Haidach section consists of stratal packages that each is composed of a rudist biostrome overlain by bioclastic wackestones to packstones with diverse smaller benthic foraminifera and calcareous green algae. The biostromes are either built by radiolitids,Vaccinites, andPleurocora, or consist exclusively of radiolitids (mainlyRadiolites). Both the biostromes and the bioclastic limestones were deposited in a low-energy lagoonal environment that was punctuated by high-energy events.In situ-rudist fabrics typically have a matrix of mudstone to rudistclastic wackestone; other biogens (incl. smaller benthic foraminifera) are absent or very rare. The matrix of rudist fabrics that indicate episodic destruction by high-energy events contain a fossil assemblage similar to the vertically associated bioclastic limestones. Substrata colonized by rudists thus were unfavourable at least for smaller benthic foraminifera. The described succession was deposited on a gently inclined shelf segment, where coral-rudist mounds and hippuritid biostromes were separated by a belt of bioclastic sand bodies from a lagoon with radiolitid biostromes. The mounds document that corals and Late Cretaceous elevator rudists may co-occur in close association. On the scale of the entire succession, however, mainly as a result of the wide ecologic range of the rudists relative to corals, the coral-dominated mounds and the rudist biostromes are vertically separated.  相似文献   

2.
Summary Microbial reefs, together with stromatolitic mounds and ooid shoals, constitute massive limestones in Famennian platform marginal strata in Guilin, in sharp contrast to the well-known coral-stromatoporoid reefs in the Givetian and Frasnian. Microbes played a significant and important role as stabilizers in the Famennian carbonate deposits of Guilin. A reef at Zhaijiang was constructed byEpiphyton andRenalcis, and is representative of such carbonate buildups. The reef is situated 10 km west of Guilin and corresponds to a microbe-dominated platform margin carbonate complex. Organisms in the Zhaijiang microbial reef are low diversity and dominated by ostracods and two genera of microbes,Epiphyton andRenalcis. Other microbial genera such asSphaerocodium andWetheredella occur in most of reef facies in Guilin, but their role as reef builder is doubtful because they occur only in minor amounts. The same four genera occur in volumetrically significant amounts in the upper Devonian carbonate complexes of Alberta. Canada and Western Australia. However.Epiphyton is more abundant in the Guilin reefs. The Zhaijiang microbial reef developed above Famennian proximal slope faices, as suggested by reef architecture and paleogeographic setting. The facies sequence of the microbial reef can be divided into three parts. The lower part is composed of medium-bedded bioclastic grainstones with a few microbial framestone lithoclasts, representing a proximal slope facies. The middle part consists of thin-bedded mudstone and shale with limestone lenses that are thought to be low stand deposits. In some cross sections, mudstone and shale infilled tidal channels that developed in the bioclastic grainstones.Renalcis-Epiphyton framestone constitutes the upper part with massive stacking patterns. The reef is 35 m thick and over 50 m in width. Nine litho- and biofacies are recognized. Zhaijiang reef provides an example of a binder guild-dominated buildup in the almost vacant reef ecosystem of the Famennian and represents a characteristic kind of reef after the Frasnian/Famennian extinction.  相似文献   

3.
Summary The Belgian Frasnian carbonate mounds occur in three stratigraphic levels in an overall backstepping succession. Petit-Mont and Arche Members form the famous red and grey “marble” exploited for ornamental stone since Roman times. The evolution and distribution of the facies in the mounds is thought to be associated with ecologic evolution and relative sea-level fluctuations. Iron oxides exist in five forms in the Frasnian mounds; four are undoubtedly endobiotic organized structures: (1) microstromatolites and associated forms (blisters, veils...), possibly organized in “endostromatolites”; (2) hematitic coccoids and (3) non dichotomic filaments. The filaments resemble iron bacteria of theSphaerotilus-Leptothrix “group”; (4) networks of dichotomic filaments ascribable to fungi; (5) a red ferruginous pigment dispersed in the calcareous matrix whose distribution is related to the mound facies type. The endobiotic forms developed during the edification of the mounds, before cementation by fibrous calcite. The microbial precipitation of iron took place as long as the developing mounds were bathed by water impoverished in oxygen.  相似文献   

4.
Summary During the uppermost Carboniferous and lowermost Permian algal mounds were formed in inner shelf settings of the Carnic Alps (Austria/Italy). A specific mound type, characterized by the dominance of the dasyclad green alga Anthracoporella was studied in detail with regard to geometry, relationship between mound and intermound rocks, composition of the sediment, biota and diagenetic criteria. The two meter-sized mounds studied, occur within depositional sequences of transgressive systems tracts in the Lower Pseudoschwagerina Limestones (uppermost Gzhelian) at the flank of the Schulterkofel. The mounds consist of an Anthracoporella core facies with a spongecrust boundstone facies at the base and at the top. The massive limestones of the Anthracoporella core facies exhibit abundant algal tufts and bushes, frequently in life position. The limestones of the intermound facies represented by thin-bedded bioclastic wackestones and packstones with abundant phylloid algae underlie and overlie the mounds. Intercalations of intermound beds within the mound facies indicate sporadic disruption of mound growth. Onlapping of intermound beds on steep mound flanks indicate rapid stabilization and lithification of mound flanks and the existence of a positive paleorelief. Asymmetrical shape of the mounds may be current controlled. Mound and intermound biota differ in the prevailing algae but are relatively similar with regard to associated foraminifera. Conspicuous differences concern bioerosion and biogenic encrustations. Bothare, high in intermound areas but low in the Anthracoporella core facies. The mounds show no ecological zonation. The mounds grew by in-place accumulation of disintegrated algal material and trapped bioclastic material between erect algal thalli. The comparison of the various Anthracoporella mounds demonstrates that almost each mound had ist own history. Establishing a general model for these mounds is a hazardous venture.  相似文献   

5.
The Tortonian bioclastic sands of Anjou (W France) are weakly cemented mixed siliciclastic–carbonate deposits. The carbonate fraction can reach up to 90%, and is irregularly spread over the area of the original depositional platform. The temperate marine water character is demonstrated by the lack of ooids, green algae, and biohermal scleractinians, and is dominated by numerous species of bryozoans and bivalves, associated with red algae, barnacles, and echinoderms (bryomol facies; Heterozoan association). Skeletal grains are weakly cemented. The presence of large submarine dunes indicates a platform bounded by a tide-domination of a succession that developed rapidly under highstand and shelf margin wedge system tracts. The tide-dominated “Faluns de l’Anjou” provides a model different from many other examples of temperate carbonate settings, which are often wave-dominated.  相似文献   

6.
Bioclastic accumulations often occur on top of Tethysian carbonate platforms and crinoids are a common constituent of these bioclastic deposits on Lower and Middle Liassic carbonate platforms. In contrast, the relevant literature contains few examples in which the main constituent of the lumachels is thin-shelled bivalves (filaments). This paper presents a study of a filament lumachelle cropping out on top of a Middle Jurassic carbonate platform. The carbonate platform is represented by the Jabalcuz Formation, found in one of the northernmost Subbetic units (south of Jaén city). The lumachelle marks the demise of the carbonate platform and has special features that characterize the drowning phase. This process has been related with the syn-rift extensional tectonics associated to the opening of the Tethys westwards. Stratigraphically, the lumachelle occurs on top of shallow-water oolite limestones (Middle Jurassic) and is overlain by radiolarian-rich pelagic and resedimented deposits (Latest Callovian–Oxfordian). It occurs as a body (about 1.5 km wide and up to 8 m thick) made up entirely of densely packed thin bivalve shells. A remarkable feature of the bivalve shell beds is stromatolite-like crumpled lamination at the outcrop. The observations made at the outcrop scale, by microscope under transmitted light, and by cathodoluminiscence favor a diagenetic origin for this striking structure. Other hypotheses, such as its possible relation with seismicity, cannot be confirmed. The filaments would have filled one of the former basins that originated in relation with syn-rift fault-block tectonics leading to the demise of the carbonate platform. Tectonics was one of the main factors setting in motion a carbonate productivity crisis and the inhibition of a diverse benthic community. Once production failed in the carbonate factory, storms and probably hurricanes as well, swept shell deposits from the shallowest areas of the shallow-water carbonate platform and accumulated them in a coevally formed small half-graben basin. At least three main depositional stages can be differentiated in the fill of this half-graben basin, which was a sediment trap for the accumulation and preservation of the tiny bivalve shells against ebb surges. The massive accumulation of valves, the shortage of micrite around the filaments, outcrop morphology and facies relationships, along with regional geology, are among the arguments supporting this interpretation.  相似文献   

7.
《Palaeoworld》2016,25(4):539-568
In this paper, we describe the upper Cisuralian Safetdara and Gundara formations of the Darvaz mountains, North Pamir, which were part of the Kunlun Arc, developed along the active Eurasian margin. The Safetdara Formation comprises massive limestones (mainly cyanobacterial, Tubiphytes and Archaeolithoporella boundstones) alternating with well-bedded bioclastic and oncoidal limestones and an interval of recessive shales. The formation crops out above the Chelamchi Formation consisting of turbiditic siltstones and sandstones with bioclastic silty limestones yielding massive limestone olistoliths. The Gundara Formation consists of fine sandstones at the base, followed by well-bedded marly bioclastic, oncoidal and microbial limestones, bearing a rich silicified brachiopod fauna in life-position. Two new taxa have been identified in this association: the cemented coralliform Gundaria insolita n. gen. n. sp. and the pedicle attached Hemileurus politus n. sp. The inferred environmental setting is that of shoal deposits of warm, shallow, high energy, clear marine waters for the Safetdara Formation. The agglutinated microbial reefs to cluster reefs of the Gundara Formation were probably growing in a muddier, quieter and probably slightly deeper setting.The foraminifers of the Brevaxina Zone suggest a Bolorian age for the top of the Chelamchi Formation, the Safetdara Formation and the base of the Gundara Formation. Kungurian conodonts have been found in the lower part of the Safetdara Formation. The biostratigraphic data from the sedimentary succession of North Pamir, integrated with those already obtained from Southeast Pamir, allow to refine the correlations between the Tethyan regional scale and the International Time Scale. In particular, it seems now clear that the Bolorian and the lower part of the Kubergandian correlate to the Kungurian.  相似文献   

8.
Kinga Hips  János Haas 《Facies》2009,55(3):421-442
The Permian–Triassic boundary and basal Triassic shallow-marine successions were studied and correlated in sections of two structural units in Hungary (Transdanubian Range and Bükk units). Core sections in the Transdanubian Range unit recovered inner ramp deposits whereas outcrops in the Bükk unit expose deposits of the deeper ramp area of the western Tethys. The inner ramp section (studied ca. 10 m in thickness) is characterized by a succession of dolomites overlain by bioclastic limestones, peloidal grainstones (which recorded the biotic decline) and oolites with finely crystalline limestone interlayers. The deeper ramp section (studied ca. 15 m in thickness) is characterized by a succession of bioclastic limestones and marlstones, mudstone beds (recording the first biotic decline), the ‘boundary shales’ (recording the second biotic decline and the stable carbon isotope marker), mudstones with wackestone laminae, and stromatolite boundstones. Accordingly, oolite formation and microbial micrite precipitation represent carbonate sedimentary responses of end-Permian mass extinction on the carbonate shelf. In both successions, mudstones predominate the upsection, suggesting a relative sea-level rise. The succession of the deep ramp area exhibits a continuous sediment accumulation and the diagenesis here was influenced by marine and marine-derived pore water. The δ13C curve shows a continuous change towards more negative values, starting in bioclastic limestones, followed by a sharp symmetric negative peak at the second biotic decline that is a chemostratigraphic marker of the boundary event. Facies and microfacies trend of the inner ramp carbonates in the Transdanubian Range unit exhibits close similarities to that found in many South Alpine sections. Relict peloidal deposits, formed cemented submarine hardground substrate, indicate the extinction level. Sedimentary and diagenetic features of the overlying oolite bedset revealed slightly different depositional environments in the two studied Transdanubian Range unit sections. Petrography of the oolites highlighted shallow burial diagenetic alterations which includes marine cementation, marine-burial replacement and dolomitization. A lack of the specific negative peak in the δ13C values is most likely due to the multiple redeposition events of the sedimentary grains. This led to the conclusion that the deeper ramp deposits (e.g., in Bükk unit) have greater potential for recognizing trends in processes, affecting the marine environments and related to the end-Permian mass extinction, at the western Tethys.  相似文献   

9.
Summary During the Late Albian, Early and Middle Cenomanian in the NW part of the Adriatic Carbonate Platform (presentday Istria) specific depositional systems characterised by frequent lateral and vertical facies variations were established within a formerly homogeneous area, ranging from peritidal and barrier bars to the offshore-transition zone. In southern Istria this period is represented by the following succession: thin-bedded peritidal peloidal and stromatolitic limestones (Upper Albian); well-bedded foreshore to shoreface packstones/grainstones with synsedimentary dliding and slumping (Vraconian-lowermost Cenomanian); shoreface to off-shore storm-generated limestones (Lower Cenomanian); massive off-shore to shoreface carbonate sand bodies (Lower Cenomanian); prograding rudist bioclastic subaqueous dunes (Lower to Middle Cenomanian); rudist biostromes (Lower to Middle Cenomanian), and high-energy rudist and ostreid coquina beds within skeletal wackestones/packstones (Middle Cenomanian). Rapid changes of depositional systems near the Albian/Cenomanian transition in Istria are mainly the result of synsedimentary tectonics and the establishment of extensive rudist colonies producing enormous quantities of bioclastic material rather than the influence of eustatic changes. Tectonism is evidenced by the occurrence of sliding scars, slumps, small-scale synsedimentary faults and conspicuous bathymetric changes in formerly corresponding environments. Consequently, during the Early Cenomanian in the region of southern Istria, a deepening of the sedimentary environments occurred towards the SE, resulting in the establishment of a carbonate ramp system. Deeper parts of the ramp were below fair-weather wave base (FWWB), while the shallower parts were characterised by high-energy environments with extensive rudist colonies, and high organic production leading to the progradation of bioclastic subaqueous dunes. This resulted in numerous shallowing- and coarsening-upwards clinostratified sequences completely infilling formerly deeper environments, and the final re-establishment of the shallow-water environments over the entire area during the Middle Cenomanian.  相似文献   

10.
Mud mounds: A polygenetic spectrum of fine-grained carbonate buildups   总被引:2,自引:0,他引:2  
Summary This research report contains nine case studies (part II to X) dealing with Palaeozoic and Mesozoic mud mounds, microbial reefs, and modern zones of active micrite production, and two parts (I and XI) summarizing the major questions and results. The formation of different types ofin situ formed micrites (automicrites) in close association with siliceous sponges is documented in Devonian, Carboniferous, Triassic, Jurassic and Cretaceous mounds and suggests a common origin with a modern facies found within reef caves. Processes involved in the formation of autochthonous micrites comprise: (i) calcifying mucus enriched in Asp and Glu, this type presumably is linked to the formation of stromatolites, thrombolites and massive fabrics; (ii) protein-rich substances within confined spaces (e.g. microcavities) result in peloidal pockets, peloidal coatings and peloidal stromatolites, and (iii) decay of sponge soft tissues, presumably enriched with symbiotic bacteria, lead to the micropeloidal preservation of parts of former sponge bodies. As a consequence, there is strong evidence that the primary production of micrite in place represents the initial cause for buildup development. The mode of precipitation corresponds to biologically-induced, matrix-mediated mineralization which results in high-Mg-calcites, isotopically balanced with inorganic cements or equilibrium skeletal carbonates, respectively. If distinct automicritic fabrics are absent, the source or origin of micrite remains questionable. However, the co-occurring identifiable components are inadequate, by quantity and physiology, to explain the enhanced accumulation of fine-grained calcium carbonate. The stromatolite reefs from the Permian Zechstein Basin are regarded as reminiscent of ancestral (Precambrian) reef facies, considered the precursor of automicrite/sponge buildups. Automicrite/sponge buildups represent the basic Phanerozoic reef type. Analogous facies are still present within modern cryptic reef habitats, where the biocalcifying carbonate factory is restricted in space.  相似文献   

11.
Markus Aretz 《Geobios》2002,35(2):187
The disused quarry east of Castelsec offers a view of shallow-marine carbonates of the poorly known Uppermost Mississippian of the Montagne Noire. At Castelsec, sections are studied in two characteristic facies types (bioclastic wackestone and microbial dominated boundstone) of the Upper Mississippian. The succession is rich in rugose corals and carbonate microfossils. Six genera with seven species belonging to a rugose coral fauna consisting of at least eight genera with several species are described herein; Dibunophyllum castelsecensis sp. nov. is described as new. Twenty-seven carbonate microfossils of different groups have been identified. The Castelsec succession is Brigantian in age, based on the stratigraphic occurrence of rugose corals, foraminifers, and calcareous algae observed in both sections. The rugose coral fauna shows relationships with the well-known fauna of northwestern Europe and the Ouralian-Asian Province. Typical elements of northwestern Europe are missing at Castelsec and vice versa. This differentiation between north and south is interpreted as responses to different palaeolatitudes and tectonic settings.  相似文献   

12.
Modern carbonate tufa towers in the alkaline (~pH 9.5) Big Soda Lake (BSL), Nevada, exhibit rapid precipitation rates (exceeding 3 cm/year) and host diverse microbial communities. Geochemical indicators reveal that carbonate precipitation is, in part, promoted by the mixing of calcium-rich groundwater and carbonate-rich lake water, such that a microbial role for carbonate precipitation is unknown. Here, we characterize the BSL microbial communities and evaluate their potential effects on carbonate precipitation that may influence fast carbonate precipitation rates of the active tufa mounds of BSL. Small subunit rRNA gene surveys indicate a diverse microbial community living endolithically, in interior voids, and on tufa surfaces. Metagenomic DNA sequencing shows that genes associated with metabolisms that are capable of increasing carbonate saturation (e.g., photosynthesis, ureolysis, and bicarbonate transport) are abundant. Enzyme activity assays revealed that urease and carbonic anhydrase, two microbial enzymes that promote carbonate precipitation, are active in situ in BSL tufa biofilms, and urease also increased calcium carbonate precipitation rates in laboratory incubation analyses. We propose that, although BSL tufas form partially as a result of water mixing, tufa-inhabiting microbiota promote rapid carbonate authigenesis via ureolysis, and potentially via bicarbonate dehydration and CO2 outgassing by carbonic anhydrase. Microbially induced calcium carbonate precipitation in BSL tufas may generate signatures preserved in the carbonate microfabric, such as stromatolitic layers, which could serve as models for developing potential biosignatures on Earth and elsewhere.  相似文献   

13.
Well-preserved dome-shaped carbonate stromatolites occur in the lowermost part of the Sinemurian of the Lusitanian Basin (Portugal), at S. Pedro de Moel region (W of the basin). Deposition in the region took place on a westward-dipping carbonate ramp. The stromatolitic mounds are not found anywhere else in the Sinemurian of the basin and therefore are regarded as specific bioevents. In contrast to marginal-marine stromatolitic crusts, subtidal carbonate mounds other than sponge-mounds have been seldom reported in the Lower Jurassic, in particular in the Sinemurian, either from Europe or North-Africa. Therefore, the case documented here contributes to enhance the knowledge on stromatolites of this age in the Peri-Tethyan and Proto-Atlantic regions. The depositional setting of the studied succession is interpreted as a mainly low-energy, restricted marine one, punctuated by higher-energy episodes and, locally, subjected to more open marine influence. The existence of a topographic high and detached shoals at a more distal location of the ramp is likely, considering regional seismic evidence, the record in offshore (to the W) wells of peloidal/ooid wacke-packstones with detrital quartz and occurrence of a few ooid grainstones in the studied section. The inferred positive relief would act as a physical constraint that, coupled with the low-gradient of the ramp, defined an embayment-like environment in which the prevailing ecological conditions must have been, for the part of the succession bearing the stromatolites, unfavorable for many benthic organisms, favoring the microbial community. The upper part of the succession suggests stepwise environmental openness to more marine influence alternating with frequent environmental restriction.  相似文献   

14.
Andrej Šmuc  Jože Čar 《Facies》2002,46(1):205-216
Summary An Upper Ladinian to Lower Carnian succession in the Idrija-Cerkno region (W Slovenia) is described and correlated with similar successions in the Dolomites. Structurally, the area belongs to the Rodne unit (Trnovo nappe, NW Dinarides). The succession was reconstructed from three stratigraphically superimposed sections. The Orehovska Grapa section is characterised by finegrained turbidites composed of sandy mudstones with intercalations of lenses and beds of trachy-andesite tuff and resedimented tuffs. Beds of hemipelagic light grey wackestone are rarely interstratified. These rocks are correlative with the Upper Ladinian Wengen Group. The Police1 section is composed of black shaly marls and mudstones, hemipelagic wackestone, tuffaceous sand-stones, and in the upper part, of calciturbidites overlain by black laminated shales. The section is correlated with the lower part of the San Cassiano Formation. The Police 2 section consists mainly of wavy bedded peloidal and bioclastic limestone, alternating with thin interbeds of shaly mudstones and marls. The limestone and mudstones are interpreted as tempestites and gradually pass into bedded and massive dolomite of Early Carnian age. This succession is similar to the transition from the San Cassiano Formation to the Cassian Dolomite. The studied succession represents a shallowing upward basinal sequence capped by carbonate platform deposits. Palaeogeographically it is a Late Ladinian transition from the carbonate platform in the south to the typical basinal area in the north.  相似文献   

15.
Bioclastic accumulations composed of crinoids, brachiopods, molluscs, spongiomorphs and scleractinian corals occur within Upper Triassic strata of the lower Baldonnel Formation at Pardonet Hill in northeastern British Columbia Canada. These small buildups (∼100 to 500 m3) have planar bases and broadly convex tops. These mounds are interpreted as small patch reefs composed of packstone, bioclastic floatstone/rudstone and carbonate breccia intercalated with mixed siliciclastic carbonate sediments deposited in a shallow subtidal setting (i.e. above fairweather wave base). Amalgamated hummocky cross-stratified to current ripple-laminated, quartz-dominated sandstone beds and numerous sharp-based, normally graded bioclastic (commonly encrinitic) packstone/grainstone — quartz–sandstone couplets characterize inter-reef lithologies.Conodont biostratigraphy indicates that the Pardonet Hill patch reefs occur within strata dated as earliest Upper Carnian (lower nodosus zone). The Pardonet Hill patch reefs originated and developed during an interval of regional sea level lowstand. Strata within which these patch reefs occur represent the westernmost migration of the Triassic shoreline in western Canada. Disappearance of coral reefs in the study area may have been affected by rapid marine transgression and failure of reef faunas to recolonize the new shore zone further to the east.The Pardonet Hill locality occurred on the western margin of the North American craton during the Triassic. Prior to their discovery reef-like structures dominated by corals in the western Panthalassa were limited to allochthonous terranes (now part of the Cordillera). The Pardonet Hill patch reefs occur at approximately 30° Triassic paleolatitude. In modern settings, this is at the extreme latitudinal margin of subtropical zooxanthellate reef development. The presence of benthic faunas characteristic of low-paleolatitude settings on the northwestern coast of Pangea has significant implications in paleotectonic and paleoenvironmental reconstructions.  相似文献   

16.
Summary The development of carbonate ramp depositional systems in the Neogene of the Mediterranean Region represents a widespread feature so far analysed in several papers. It is striking to note that the evolution of upper Miocene carbonate ramps, characterized by the presence of coralgal bioherms, highlights the events leading to the Messinian salinity crisis. The coralgal bioherms of preevaporite Messinian age exhibit fossil assemblages indicating marine waters with normal salinity, whereas stromatolitic and microbial encrustations underline the deterioration of the environment during the Messinian salinity crisis. Maiella Mountain is a broad carbonate massif located in Abruzzo (Central Italy). The late lower Oligocene-Messinian part of its stratigraphic succession consists of stacked non-tropical carbonate ramp deposits related to third and higher order sequences. The investigations performed in the southernmost portion of the massif allowed to recognize a complete fourth order carbonate depositional sequence on a homoclinal ramp of pre-evaporite Messinian age. The presence of small coralgal patch reefs and overlaying microbial encrustations is significant. A transect exhibits the stratigraphic framework of the area. The data show how local parameters play a notable role in the development of these deposits.  相似文献   

17.
A succession of Frasnian mounds on the southern border of the Dinant Synclinorium (Belgium) was investigated for their facies architecture, sedimentary dynamics and palaeogeographic evolution. Seven mound facies were defined from the Arche (A) and Lion (L) members, each characterized by a specific range of textures and association of organisms (A2/L2: red or pink limestone with stromatactis, corals and crinoids; A3/L3: grey, pink or green limestone with stromatactis, corals and stromatoporoids; A4/L4: grey limestone with corals, peloids and dasycladaceens; A5/L5: grey microbial limestone; A6/L6: grey limestone with dendroid stromatoporoids; A7/L7: grey laminated limestone with fenestrae; and A8/L8: grey bioturbated limestone). Laterally equivalent sediments include substantial reworked material from the buildups and background sedimentation. Textures and fossils suggest that A2/L2 and A3/L3 facies developed close to storm wave base, in a subphotic environment. Facies A4/L4, occurring near fair weather wave base in the euphotic zone, includes lenses of A5/L5 with stromatolitic coatings and thrombolithes. A6/L6 corresponds to a slightly restricted environment and shows a progressive transition to fenestral limestone of A7/L7. This facies was deposited in a moderately restricted intertidal area. A8/L8 developed in a quiet lagoonal subtidal environment. The mounds started with A2/L2 or A3/L3 in which microbial lenses and algal facies A4/L4 became progressively more abundant upwards. Following 20 m of laterally undifferentiated facies, more restricted facies occur in the central part of the buildups. This geometry suggests the initiation of restricted sedimentation, sheltered by bindstone or floatstone facies. The facies interpretation shows that after construction of the lower part of the mounds during a transgression and a sea-level highstand, a lowstand forced reef growth to the margin of the buildups, initiating the development of atoll-like crowns during the subsequent transgressive stage. The persistence of restricted facies results from the balance between sea-level rise and reef growth.  相似文献   

18.
Cretaceous shallow-marine carbonate rocks of SW Slovenia were deposited in the northern part of the Adriatic Carbonate Platform. A 560-m-thick continuous Upper Cenomanian to Santonian carbonate succession has been studied near Hru?ica Village in Matarsko Podolje. With regard to lithological, sedimentological, and stratigraphical characteristics, the succession has been divided into nine lithostratigraphic units, mainly reflecting regressive and transgressive intervals of larger scale. During the latest Cenomanian and Early Turonian, hemipelagic limestones were deposited on top of shallow-marine lagoon and peritidal Upper Cenomanian deposits indicating relative sea-level rise. Subsequently, the deeper marine depositional setting was gradually filled by clinoform bioclastic sand bodies overlain by peritidal and shallow-marine low-energy mainly lagoonal lithofacies. Similar lithofacies of predominately inner ramp/shelf depositional settings prevail over the upper part (i.e., Coniacian to Santonian) of the succession. In the area, the Upper Cetaceous carbonate rocks are separated from the overlying Lower Eocene (Upper Paleocene?) carbonate sequence by regional unconformity denoted by distinct paleokarstic features. On the Adriatic Carbonate Platform the deeper marine carbonate setting, developed at the Cenomanian/Turonian boundary, is usually correlated with OAE2 and related eustatic sea-level rise. Similarly, subsequent reestablished shallow-marine conditions are related to Late Turonian long- and short-term sea-level fall. However, we are suggesting that deeper marine deposits were deposited in a tectonically induced intraplatform basin formed simultaneously with the uplift of the northern and northeastern marginal parts of the Adriatic Carbonate Platform.  相似文献   

19.
Dr. Karl Krainer 《Facies》1995,33(1):195-214
Summary A heretofore undocumented example of skeletal mounds formed by the dasycladacean algaAnthracoporella spectabilis is described from mixed carbonate-clastic cycles (Auernig cyclothems) of the Late Carboniferous (Gzhelian) Auernig Group of the central Carnic Alps in southern Austria. The massive mound facies forms biostromal reef mounds that are up to several m thick and extend laterally over more than 100 m. The mound facies is developed in the middle of bedded limestones, which are up to 16 m thick. These limestones formed during relative sea-level highstands when clastic influx was near zero. The mound facies is characterized by well developed baffler and binder guilds and does not show any horizontal or vertical zonation. Within the massive mound faciesAnthracoporella is frequently found in growth position forming bafflestones and wackestones composed of abundantAnthracoporella skeletons which toppled in situ or drifted slightly.Anthracoporella grew in such profusion that it dominated the available sea bottom living space, forming ‘algal meadows’ which acted as efficient sediment producers and bafflers. BecauseAnthracoporella could not provide a substantial reef framework, and could not withstand high water turbulence, the biostromal skeletal mounds accumulated in shallow, quiet water below the active wave base in water depths less than 30 m. The massive mound facies is under- and overlain by, and laterally grades into bedded, fossiliferous limestones of the intermound facies, composed mainly of different types of wackestones and packstones. Individual beds containAnthracoporella andArchaeolithophyllum missouriense in growth position, forming “micromounds’. Two stages of mound formation are recognized: (1) the stabilization stage when bioclastic wackestones accumulated, and (2) the skeletal mound stage when the sea-bottom was colonized byAnthracoporella and other members of the baffler and binder guilds, formingAnthracoporella bafflestones and wackestones of the mound facies. A slight drop in sea-level led to the termination of the mound growth and accumulation of organic debris, particularly calcareous algae, fusulinids, crinoids and bryozoans, forming well bedded limestones, which overlie the mound facies  相似文献   

20.
The Upper Jurassic complex of Zegarowe Rocks is situated on the Kraków–Wieluń Upland in southern Poland. The complex is dominated by massive limestones representing carbonate buildups. The successive stages of carbonate buildup development include: colonisation, aggradational growth and progradation phases. In the colonisation phase, on top of loose peloidal-ooid sands micritic peloidal thrombolites developed. Peloidal and agglutinated thrombolites and stromatolites proliferated during the aggradational growth phase, whereas the progradation phase was characterised by shallowing and related development of agglutinated stromatolites with coprolites. The latter were the effect of periodical stabilisation of detrital sediments by microbial mats. The Zegarowe Rocks complex developed upon an elevation of the Late Jurassic stable northern shelf of the Tethys. This elevation was formed due to local decrease in subsidence rate, induced by the presence of a Palaeozoic granitoid intrusion in the shelf substratum. The carbonate buildups of the Zegarowe Rocks complex, initially developing as sediment-starved mounds upon fault-controlled intraplatform highs under strongly restricted background sedimentation rate, were replaced by agglutinated microbial reefs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号