首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sediment trap samples collected over a seven-year period (February 1991–October 1997) from Guaymas Basin in the Gulf of California were used to study the oxygen isotope composition of five species of planktonic foraminifera, Globigerinoides ruber (white), Globigerina bulloides, Neogloboquadrina dutertrei, Pulleniatina obliquiloculata, and Globorotalia menardii. The δ18O data were analyzed for temporal and interspecies variability and were compared to local hydrography to evaluate the use of each species in reconstructing past oceanographic applications. The two surface dwelling species, G. ruber and G. bulloides displayed the lowest δ18O values (~ 0.0 to ? 5.0‰), while δ18O values for the thermocline dwelling N. dutertrei, P. obliquiloculata, and G. menardii were higher (~ 0.0 to ? 2.0‰). The δ18O of G. ruber most accurately records measured sea surface temperatures (SSTs) throughout the year. G. bulloides δ18O tracks SSTs during the winter–spring upwelling period but for the remainder of the year records slightly colder, subsurface temperatures. The difference between the δ18O of the surface dwelling species, G. ruber and G. bulloides, and that of the thermocline dwelling species, N. dutertrei, P. obliquiloculata, and G. menardii, was used to estimate the surface to thermocline temperature gradient. During the winter these δ18O differences are small (~ 0.50‰) reflecting a well-mixed water column. These interspecies δ18O differences increase during the summer (~ 1.90‰) in response to the strong thermal stratification that exists at this time of year.  相似文献   

2.
The eastern Pacific warm tongue is a region of stable and elevated sea surface temperature (SST) located just north of the equator in the eastern Pacific. This warm water mass is thought to influence the position of the Intertropical Convergence Zone (ITCZ) in the eastern Pacific and to directly influence climate in Central America. To assess the use of corals in the development of paleoclimatic reconstructions in this region, we have developed oxygen isotope (δ18O) time-series from multiple specimens of the massive coral Porites lobata collected at Clipperton Atoll (10°18′N, 109°13′ W). Six near-monthly δ18O records from different sized (age) colonies where produced for the interval 1986–1994, and three of these were extended back to 1969. All corals sampled were found to contain numerous fish-grazing skeletal scars (~0.5?mm deep scallop shaped hiatuses). Samples collected at 1?mm intervals showed anomalous 18O/16O in the area of a bite scar, with 2 to 2.5?mm sampling intervals (10–12/year) minimizing these effects. Our results show that the average δ18O disequilibrium offset (vital effect) from equilibrium seawater composition for individual corals can vary by up to 0.4‰. However all δ18O results suggest that the vital effect offset is constant over time. Similar “offsets” are observed in the tops of old (age=~100?y) and young (age=~10?y) colonies, further suggesting that the biologically mediated vital effect offset does not change as a Porites colony ages. A 6-coral average composite δ18O record was constructed from 1985–1994 and a 3-coral average δ18Oanomaly record was constructed from 1969–1994. Regression analysis between monthly SST and the 6 coral average δ18O records yields an r 2 correlation of 0.54 (individual r 2-values ranged from 0.27–0.55). The 3 coral δ18Oanomaly average record has an even lower correlation to SST, with an r 2 of 0.40. Potential causes of the only moderate correlation to SST are explored and we find that inferred salinity effects, fish grazing scars, and slight chronology imperfections have all contributed to a reduced correlation to SST. Nevertheless, all El Niño events in this time period appear to be recorded by coral skeletal δ18O.  相似文献   

3.
Fimbria lohani (Mollusca: Bivalvia) nom. nov. pro Fimbria subpectunculus (d’ Orbigny, 1850) from the Lutetian (Middle Eocene) of Paris basin, name preoccupied. The names Fimbria magna ( Anton, 1838) and Fimbria subpectunculus (d’ Orbigny, 1850) are nomenclaturally invalid to designate the species from the Lutetian (Middle Eocene) of the Paris Basin. Fimbria lohani nom. nov. is proposed here as a replacement to correct the homonymy Corbis subpectunculus d’ Orbigny, 1850 non d’ Archiac, 1850.  相似文献   

4.
Stable isotopes in mollusc shells, together with variable growth rates and other geochemical properties, can register different environmental clues, including seawater temperature, salinity and primary productivity. However, the strict biological control over the construction of biominerals exerted by many calcifying organisms can constrain the use of these organisms for paleoenvironmental reconstructions. Biologically controlled calcification is responsible for the so called vital effects that cause a departure from isotopic equilibrium during shell formation, resulting in lower shell oxygen and carbon compared to the equilibrium value. We investigated shell oxygen and carbon isotopic composition of the bivalve Chamelea gallina in six sites along with a latitudinal gradient on the Adriatic Sea (NE Mediterranean Sea). Seawater δ18O and δ13CDIC varied from North to South, reflecting variations in seawater temperature, salinity, and chlorophyll concentration among sites. Shell δ18O and δ13C differed among sites and exhibited a wide range of values along with the ~400 km latitudinal gradient, away from isotopic equilibrium for both isotopes. These results hampered the utilization of this bivalve as a proxy for environmental reconstructions, in spite of C. gallina showing promise as a warm temperature proxy. Rigorous calibration studies with a precise insight of environment and shell growth are crucial prior to considering this bivalve as a reliable paleoclimatic archive.  相似文献   

5.
Specimens of the benthic foraminifer Ammonia beccarii were cultured in the laboratory in order to determine the relation between temperature and Mg/Ca and oxygen isotope values in their tests. Asexual reproduction in this species provides a large number of juveniles that were allowed to grow into maturity at temperatures ranging from 10 to 27 °C and at salinities ranging from 18 to 33 PSU. The Mg/Ca in a calcite increase exponentially and δ18O decreases linearly with the temperature. Salinity has no significant impact on either Mg/Ca or δ18O. We show how the combination of these two parameters can be used to reconstruct seawater δ18O and temperature in shallow marine habitats.  相似文献   

6.
A technique based on homogenisation of rapidly frozen tissue was used to investigate the regulation of intracellular pH (pHi) in freshwater and marine fish from diverse environmental temperatures. The following species were held at ambient temperatures of ca. 1°C (Notothenia coriiceps; Antarctica), 5°C (Pleuronectes platessa, Myoxocephalus scorpius; North Sea), and 26°C (Oreochromis niloticus; African lakes). The effects of seasonal acclimatisation to 4, 11 and 18°C were also examined in rainbow trout in the winter, autumn and summer, respectively. Extracellular (whole blood) pH (pHe) did not follow the constant relative alkalinity relationship, where pH+=pOH for any particular temperature, over a range of 1–26°C (overall δpHeT=0.009±0.002 U °C−1; P<0.001), apparently being regulated by ionic fluxes and ventilation. Intracellular pH (pHi) was also regulated independently of pN(=0.5 pK water) in all species of fish examined. The inverse relationship between pHi and environmental temperature gave an overall δpHiT of −0.010±0.001 U °C−1 (for both white and red muscle) and −0.004±0.003 U °C−1 (cardiac muscle). However, between 1 and 11°C δpHiT was much higher (P<0.001), −0.022±0.003 U °C−1 (white muscle) and −0.022±0.004 U °C−1 (red muscle). The possible adaptive roles for these different acid–base responses to environmental temperature variation among tissues and species, and the potential difficulties of estimating pHi, are discussed.  相似文献   

7.
The carbon isotope ratios (δ13C values) of samples of Kalanchoë species collected in Africa were compared with previous data obtained with species from Madagascar. In contrast to the Malagasy species which cover the whole range of δ13C values from ?10 to ? 30%o, indicating high inter- and intraspecific diversity of CAM performance, in the African species nearly all δ13C values were less negative than ?18%0. Thus, in the African species the CAM behaviour is characterized by CO2 uptake proceeding mainly during the night. The distribution of δ13C values among the species clearly mirrors the taxonomic groups and the three sections of the genus Kalanchoë sensu lato. The Kitchingia section comprises only groups having CAM with a high proportion of carbon acquisition by the C3-pathway of photosynthesis. The same holds true for the first three groups of the Bryophyllum section, whereas in the following groups of the section CAM with CO2 proceeding mainly during the night is common. The latter CAM mode is typical also for the majority of groups and species in the section Eukalanchoë. The African Kalanchoë species belong to the Eukalanchoë section, whereas in Madagascar all three sections are abundant. The data support the view that the centre of adaptive radiation of the genus is located in Madagascar. They also suggest that high CAM variability is abundant in the more primitive taxa of the genus, whereas the phylogenetically more derived taxa show a stereotype CAM with CO2 uptake taking place only during the night.  相似文献   

8.
Climate reconstructions using stable isotopes (δ18O and δ13C values) in tree rings are based on relationships between present climatic conditions and isotopic series. This widely used approach relies on the assumption that correlations between stable isotopes and climatic conditions are steady over time. In this paper, we evaluate the strength of the correlations between δ18O and δ13C series with several climatic parameters on fourteen black spruce trees coming from three different sites, in northeastern Canada. We applied a 21-year moving window on the r Pearson calculated between stable isotopes and March–May and June–August precipitation, June–August and April–June maximal temperatures. Our results indicate that despite the large distance and differences in stand conditions between the sites, the three sites responded in the same way over time. We show that because the climatic ambiance has changed during the 1980–1990 period due to a positive North Atlantic Oscillation index the δ13C values are not controlled anymore by spring precipitation or summer maximal temperature in the following two decades. As opposed to δ13C series, the relationship between summer maximal temperature and δ18O values was stable over time, and decreased only in the last decade. All these results attest of a “divergence problem” in the last decades which is most pronounced for δ13C series. We conclude that the spruce δ18O series appears to be the most appropriate indicator for reconstructing June–August maximal temperature in the studied area despite the divergence issue, given that the calibration–validation tests and reconstruction can exclude the divergent last decade.  相似文献   

9.
Stable isotopic compositions of carbon (δ13C) and oxygen (δ18O) in plants reflect growth conditions. Therefore, these isotopes might be good indicators of changes in environmental factors, such as variations in air temperature caused by climate change. It is predicted that climate change will lead to a greater increase in minimum air temperatures (primarily during the night) than in maximum air temperatures (primarily during the day) in many parts of Japan. In the present study, we investigated whether the δ13C and δ18O of the rice grain Koshihikari (Oryza sativa L.) from the northern latitudes (30.49°–37.14°) of Japan reflect variations in air temperature during grain filling and are related to the yield and proportion of first-grade rice (<15 % transparency, roundness, and cracking) as an indicator of quality. We revealed that rice δ13C was not correlated with mean maximum or minimum air temperatures for each prefecture. By contrast, rice δ18O was positively correlated with mean minimum air temperature, suggesting that rice δ18O reflects changes in night air temperature. We further showed that an increase in the mean minimum air temperature during grain filling had a negative effect on rice yield and quality. Our findings indicate that the δ18O of rice grain may be a good indicator of physiological changes in response to minimum air temperatures during grain filling.  相似文献   

10.
Tooth enamel apatite carbonate carbon and oxygen isotope ratios of modern kangaroos (Macropus spp.) collected on a 900-km latitudinal transect spanning a C3–C4 transition zone were analysed to create a reference set for palaeoenvironmental reconstruction in southern Australia. The carbon isotope composition of enamel carbonate reflects the proportional intake of C3 and C4 vegetation, and its oxygen isotope composition reflects that of ingested water. Tooth enamel forms incrementally, recording dietary and environmental changes during mineralisation. Analyses show only weak correlations between climate records and latitudinal changes in δ13C and δ18O. No species achieved the δ13C values (~?1.0 ‰) expected for 100 % C4 grazing diets; kangaroos at low latitudes that are classified as feeding primarily on C4 grasses (grazers) have δ13C of up to ?3.5 ‰. In these areas, δ13C below ?12 ‰ suggests a 100 % C3 grass and/or leafy plant (browse) diet while animals from higher latitude have lower δ13C. Animals from semi-arid areas have δ18O of 34–40 ‰, while grazers from temperate areas have lower values (~28–30 ‰). Three patterns with implications for palaeoenvironmental reconstruction emerge: (1) all species in semi-arid areas regularly browse to supplement limited grass resources; (2) all species within an environmental zone have similar carbon and oxygen isotope compositions, meaning data from different kangaroo species can be pooled for palaeoenvironmental investigations; (3) relatively small regional environmental differences can be distinguished when δ13C and δ18O data are used together. These data demonstrate that diet–isotope and climate–isotope relationships should be evaluated in modern ecosystems before application to the regional fossil record.  相似文献   

11.
The Thomel Level of the Lambruisse section in the Vocontian Basin (southeast France), which is marked by intercalations of black shales and organic-rich marls, accumulated during the oceanic anoxic event 2 (OAE2) occurring in the Cenomanian-Turonian (C-T) boundary interval. Calcareous nannofossil biostratigraphic investigation of this interval revealed a total of five nannofossil zones, corresponding to the UC3-UC8 zones (Middle Cenomanian-Middle Turonian) as defined by Burnett. Biostratigraphically important taxa observed in the section include Cretarhabdus striatus, Axopodorhabdus albianus, Lithraphidites acutus, Corollithion kennedyi, Helenea chiastia, Quadrum gartneri, Q. intermedium, Eiffellithus eximius, Eprolithus octopetalus and E. eptapetalus. The two nannofossil events commonly used in the delineation of the C-T boundary, namely the LO of H. chiastia and the FO of Q. gartneri, occur less than 2 m apart in the studied section. These two bioevents define the limits of the UC6 nannofossil Zone and occur within the Whiteinella archaeocretacea foraminifer Zone. Previous litho- and chemostratigraphic analyses indicate that the δ13C profile of the section corresponds well with changes in lithofacies and fluctuations in the total organic carbon (TOC) and calcium carbonate content of the section. Initial increase in the δ13C values occurs within the UC3-UC4a undifferentiated zone, coinciding with the onset of the deposition of the organic-rich sediments of the Thomel Level and a drastic decline in the CaCO3 values. The plateau of high δ13C values, on the other hand, occurs within the UC5 zone, between the LO of C. kennedyi and the LO of H. chiastia (and FO of Q. gartneri). This interval of high δ13C values also corresponds to the interval of high TOC and low CaCO3 values. The integrated nannofossil, planktonic foraminifer and δ13C data provide a precise biostratigraphic and chemostratigraphic framework of the C-T boundary in the Lambruisse section that can be used in future studies in the Vocontian Basin and allow correlations with other well-studied C-T boundary sections.  相似文献   

12.
Tree-ring stable oxygen and carbon isotope ratios (δ18O and δ13C) are an important archive for climate reconstructions. However, it remains unclear whether the polyvinyl acetate emulsion, often used for the preservation and fixation of wood samples, influences δ18O and δ13C signals. Further uncertainties are associated with the possible effects of geographical origin and cambial age of historical samples. Here, we present annually-resolved and absolutely-dated δ18O and δ13C measurements of 21 living oaks (Quercus robur and Q. petraea) from the Czech Republic. We find that the δ18O and δ13C signals in the extracted alpha-cellulose are not affected by polyvinyl acetate treatment. Covering the entire 20th century and reaching until 2018 CE, our dataset reveals spatial and temporal coherency within and between the individual δ18O and δ13C chronologies of different oak species, sample locations, and tree ages. Highly significant (p < 0.01) Pearson’s correlation coefficients of the site-specific δ13C and δ18O chronologies range from 0.48–0.77 and 0.36–0.56, respectively. The isotopic inter-series correlations of Q. robur and Q. petraea from the same site are 0.75 and 0.43 for the mean δ13C and δ18O values, respectively. Significant (p < 0.01) correlations of 0.49 and 0.84 are found for δ13C and δ18O, respectively, when all measurements from all sampling locations and tree ages are included. Our study shows that non-pooled oak δ18O and δ13C measurements from both species, different locations, and diverse tree ages can be combined into robust isotopic chronologies for climate reconstructions.  相似文献   

13.

Key message

Eucalyptus and Acacia species were surprisingly similar with respect to variations in δ 13 C, δ 15 N. Both genera respond with speciation and associated changes in leaf structure to drought.

Abstract

Stable carbon and nitrogen isotope ratios (δ13C and δ15N) in leaves of eucalypts (Corymbia and Eucalyptus) and Acacia (and some additional Fabaceae) species were investigated together with specific leaf area (SLA), leaf nitrogen (N) and leaf phosphorous (P) concentration along a north–south transect through Western Australia covering winter- and summer-dominated rainfall between 100 and 1,200 mm annually. We investigated 62 eucalypts and 78 woody Fabaceae species, mainly of the genus Acacia. Leaf δ13C values of Eucalyptus and Acacia species generally increased linearly with latitude from ?29.5 ± 1.3 ‰ in the summer-dominated rainfall zone (15°S–18°S) to about ?25.7 ± 1.1 ‰ in the winter-dominated rainfall zone (29°S–31°S). δ15N increased initially with southern latitudes (0.5 ± 1.6 ‰ at 15°S; 5.8 ± 3.3 ‰ at 24–29°S) but decreased again further South (4.6 ± 3.5 ‰ at 31°S). The variation in δ13C and δ15N was probably due to speciation of Eucalyptus and Acacia into very local populations. There were no species that were distributed over the whole sampling area. The variation in leaf traits was larger between species than within species. Average nitrogen concentrations were 11.9 ± 1.05 mg g?1 in Eucalyptus, and were 18.7 ± 4.1 mg g?1 in Acacia. Even though the average nitrogen concentration was higher in Acacia than Eucalyptus, δ15N gave no clear indication for N2 fixation in Acacia. In a multiple regression, latitude (as a surrogate for rainfall seasonality), mean rainfall, leaf nitrogen concentration, specific leaf area and nitrogen fixation were significant and explained 69 % of the variation of δ13C, but only 36 % of the variation of δ15N. Higher nitrogen and phosphorus concentration could give Acacia an advantage over Eucalyptus in arid regions of undefined rainfall seasonality.  相似文献   

14.
Pacific halibut, Hippoglossus stenolepis, is one of the most important commercial groundfish and is managed as a single coast-wide population from Alaska to northern California. Nevertheless, genetic investigations did not show success in detecting the population structure of the species. Here I report stable oxygen and carbon isotope analyses (δ18O and δ13C) in otoliths to discriminate the stock differences from two sample locations between the Washington coast (WC) and the northern Puget Sound (PS), and two sample years in 2007 and 2008. In general the δ18O values of halibut otoliths from WC ranged from ?0.2 to 1.8‰, higher than the PS samples from ?0.5 to 1.4‰. In contrast, the δ13C values from WC ranged from ?3.6 to ?1.0‰, lower than the PS samples from ?3.2 to ?1.2‰. Results from the otolith nuclei (age-0 halibut) and the 8th (the earliest maturity age for male halibut) and edge otolith rings (the latest location where the fish lived) showed significant differences between halibut samples from PS and WC. In particular, the sample location difference (between PS and WC) in both δ13C and δ18O data was significant and markedly larger than the sample year difference (between 2007 and 2008). These isotopic signatures provide evidence that the PS halibut may belong to a distinct stock that is significantly different from WC halibut.  相似文献   

15.
Oxygen and carbon isotopic profiles across the shells of well-preserved bivalves and gastropods from the Pliocene Pinecrest Beds near Sarasota, Florida, provide detailed records of the paleoen-vironmental and paleoclimatic conditions under which these high-density shell beds accumulated, as well as offer insight into shell-growth rates and longevity. Eight turritellid gastropods were analyzed from within and surrounding two Turritella-rich beds, an upper bed within unit 2(2.5-2.0 Ma) and a lower bed situated near the top of the main shell bed, unit 6/7(3.5-2.5 Ma). Three bivalves plus another turritellid specimen from a lower horizon (middle of unit 6/7), considered to represent offshore, normal-marine conditions, were also analyzed. The isotopic profiles of all shells reflect year-round shell growth in a seasonal, subtropical to warm-temperate paleoenvironment. Cyclical patterns in δ18O reflect annual variations in water temperature which on average ranged from 15 to 24d?C; minimum paleoseasonality contrasts varied from 7 to 9d?C. Summer paleo-temperatures compare favorably with those detemined from ostracodes, whereas winter temperatures appear slightly cooler. Except for one pectinid specimen, temperature differences between horizons and specimens are small. Annual δ18O cycles indicate: Turritella apicalis lived longer and grew slightly faster than Turritella gladeensis; and, shell growth rates and increment formation in Mercenaria campechiensis are comparable to modern Florida populations. Coincident episodes of heavy δ18O and light δ18C in both turritellids and bivalves suggest a pattern of seasonal upwelling. This cool, nutrient-rich, upwelled water may be partially responsible for the great abundance of Pinecrest fossils. □Stable isotopes, Pliocene, Pinecrest Beds, Florida, upwelling, paleotemperature, mollusk, Turritella.   相似文献   

16.
Stable carbon and oxygen isotope analyses of mammalian carnivoran and herbivore species from the late Pleistocene Valdegoba cave site in northern Spain imply competition and partitioning in resource use. In general, the data support the previously recognized ecology for the analyzed species. δ13C values show that the ecosystem around the cave was dominated by C3 plants. The observed δ18O values are similar to what is found in modern environments. The analyzed bovids, Bos primigenius, Capra pyrenaica, and Rupicapra rupicapra, showed the most positive δ13C values. Bos primigenius had the most positive mean carbon isotope value and is suggested to feed on grasses in open environments. Values for Capra pyrenaica primarily indicate grass feeding, while Rupicapra rupicapra had the widest diet for the analyzed species, likely including grass and browse. Cervus elaphus, Equus ferus, Equus hydruntinus, and Stephanorhinus hemitoechus displayed more negative δ13C values indicating the use of similar resources. The smallest species analyzed, Castor fiber, displayed the most negative δ13C and δ18O values, implying a preference for eating C3 plants and being semi-aquatic. The canids, Canis lupus and Vulpes vulpes, displayed the most positive δ13C and δ18O values, and overlap many of the sampled ungulate species. Positive δ18O values in canids implies that this group obtains much of its water from its prey, uses a different water source, or has physiological differences from the other carnivorans that influence oxygen isotope values. Lynx pardinus had values similar to the canids. Crocuta crocuta had δ13C values more negative than expected for a generalist predator. These values are likely due to concentration of diet on taxa from more forested environments. The most negative δ13C values are observed in the bears, Ursus arctos and Ursus spelaeus. These values are the likely result of hibernation and the inclusion of significant vegetation in bear diets.  相似文献   

17.
Bats in hot roosts experience some of the most thermally challenging environments of any endotherms, but little is known about how heat tolerance and evaporative cooling capacity vary among species. We investigated thermoregulation in three sympatric species (Nycteris thebaica, Taphozous mauritianus and Sauromys petrophilus) in a hot, semi-arid environment by measuring body temperature (T b), metabolic rate and evaporative water loss (EWL) at air temperatures (T a) of 10?C42?°C. S. petrophilus was highly heterothermic with no clear thermoneutral zone, and exhibited rapid increases in EWL at high T a to a maximum of 23.7?±?7.4?mg?g?1?h?1 at T a????42?°C, with a concomitant maximum T b of 43.7?±?1.0?°C. T. mauritianus remained largely normothermic at T as below thermoneutrality and increased EWL to 14.7?±?1.3?mg?g?1?h?1 at T a????42?°C, with a maximum T b of 42.9?±?1.6?°C. In N. thebaica, EWL began increasing at lower T a than in either of the other species and reached a maximum of 18.6?±?2.1?mg?g?1?h?1 at T a?=?39.4?°C, with comparatively high maximum T b values of 45.0?±?0.9?°C. Under the conditions of our study, N. thebaica was considerably less heat tolerant than the other two species. Among seven species of bats for which data on T b as well as roost temperatures in comparison to outside T a are available, we found limited evidence for a correlation between overall heat tolerance and the extent to which roosts are buffered from high T a.  相似文献   

18.
Soil nitrogen (N) supply and uptake by regenerating trees is an important ecosystem attribute but difficult to quantify in partial-cut forests where light availability varies. The foliar attributes of N concentration (N%) and N per unit area (Na) may help characterize the influence of soil nutrition, but ideally the relationship between soils and foliage would be tested separately by species across well-defined light gradients. To do this, we examined foliar attributes of four tree species across gradients of light availability in 12 year-old partially-cut forests in northwest British Columbia, Canada. There were no differences in forest floor or mineral soil N mineralization rates across the light gradients, and for western hemlock (Tsuga heterophylla) and hybrid white spruce (Picea glauca x sitchensis), this consistent level of soil N supply corresponded with unchanging foliar N%. In contrast, foliar N% of Betula papyrifera (paper birch) and Thuja plicata (western redcedar) declined with shading, perhaps due to shifts in root-shoot biomass allocation for B. papyrifera, and climatic constraints on shade tolerance for T. plicata. Leaf δ13C approached an asymptote at approx. 40% full light for the coniferous species, but increased linearly with light for B. papyrifera. Foliar Na was linearly correlated with leaf δ13C for three species, reflecting the dual effect of light and nutrition on photosynthesis processes, and suggesting that foliar Na may be a simple parameter to integrate both resource constraints on regenerating saplings. These results demonstrate both support for and limits to foliar attributes among species in isolating soil N effects against light constraints in partial-cut forests.  相似文献   

19.
《Marine Micropaleontology》2010,77(3-4):92-103
We determined the stable oxygen and carbon isotopic composition of live (Rose Bengal stained) tests belonging to different size classes of two benthic foraminiferal species from the Pakistan continental margin. Samples were taken at two sites, with water depths of about 135 and 275 m, corresponding to the upper boundary and upper part of the core region of the oxygen minimum zone (OMZ). For Uvigerina ex gr. Uvigerina semiornata and Bolivina aff. Bolivina dilatata, δ13C and δ18O values increased significantly with increasing test size. In the case of Uvigerina ex gr. U. semiornata, δ13C increased linearly by about 0.105‰ for each 100-μm increment in test size, whereas δ18O increased by 0.02 to 0.06‰ per 100 μm increment. For Bolivina aff. B. dilatata the relationship between test size and stable isotopic composition is better described by logarithmic equations. A strong positive linear correlation is observed between δ18O and δ13C values of both taxa, with a constant ratio of δ18O and δ13C values close to 2:1. This suggests that the strong ontogenetic effect is mainly caused by kinetic isotope fractionation during CO2 uptake. Our data underline the necessity to base longer δ18O and δ13C isotope records derived from benthic foraminifera on size windows of 100 μm or less. This is already common practice in down-core isotopic studies of planktonic foraminifera.  相似文献   

20.
Biogenic calcretes associated with a regional Cretaceous to Paleogene subaerial unconformity and an intraformational composite (polygenic) surface in Upper Cretaceous intra-platform peritidal successions in central Dalmatia and eastern Istria, Croatia (Adriatic-Dinaridic Carbonate Platform), were analyzed for their δ13C and δ18O signatures in order to provide insight into the conditions of subaerial exposure and calcrete development. The distinctly negative δ13C signatures of biogenic calcretes marking the regional subaerial unconformity differ considerably from the δ13C values of the host marine limestones. This indicates carbon isotope exchange of primary marine CaCO3 with CO2 released by root and rhizomicrobial respiration and subsequent precipitation of pedogenic calcrete. The range of δ13C (from ?13.1 to ?8.2 ‰ Vienna PeeDee Belemnite standard, VPDB) and δ18O (from ?10.1 to ?6.1 ‰ VPDB) values of calcretes are similar to those reported from calcretes elsewhere, and the δ13C values of biogenic calcretes with typical Microcodium aggregates (?13.1 to ?12.3 ‰ VPDB) at the ?ibenik locality are very close to, or at the lower limit of, values for soil carbonates formed in isotopic equilibrium with soil CO2. These values are expected for authigenic pedogenic carbonates formed under the influence of C3 plant communities, without influence from heavier carbon from pre-existing carbonate and lack of input of atmospheric CO2. Such low δ13C values support the interpretation of Microcodium aggregates as being precipitated under a direct biological control within the soil, although the relationship between formation mechanisms and stable isotope signatures of Microcodium needs further investigation. The δ13C values (?4.4 to ?3.6 ‰ VPDB) of rhizogenic calcretes formed inside firmground Thalassinoides burrows of the composite surface at the ?ibenik locality are more negative than the δ13C values of the host marine limestones, which confirms that the composite surface went through a phase of meteoric pedo(dia)genesis. However, the overall δ13C values of calcretes are less negative than expected, which might reflect contamination from associated primary marine carbonate. This study represents the first detailed stable isotope investigation of calcretes from carbonate successions of the External Dinarides, and the results may be applied to discontinuities present in other shallow-water carbonate rock successions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号