首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The Candida albicans HOG1 gene (HOG1CA) was cloned by functional complementation of the osmosensitive phenotype associated with Saccharomyces cerevisiae hog1 delta mutants. HOG1CA codes for a 377-amino-acid protein, 78% identical to S. cerevisiae Hog1p. A C. albicans hog1 null mutant was found to be sensitive to osmotic stress and failed to accumulate glycerol on high-osmolarity media.  相似文献   

4.
D R Kirsch  M H Lai  J O'Sullivan 《Gene》1988,68(2):229-237
The Saccharomyces cerevisiae cytochrome P450 L1A1 (lanosterol 14 alpha-demethylase)-coding gene was used as a hybridization probe to isolate two HindIII fragments of 2.5 kb and 6.85 kb from a phage lambda library of Candida albicans nucleotide sequences. Restriction endonuclease mapping and Southern blot hybridization experiments indicated that these fragments represent two allelic forms of the same gene. This cloned sequence, when introduced into S. cerevisiae or C. albicans on a multiple copy vector, produced an increase in cytochrome P450 content and resistance to imidazole antifungal agents which are inhibitors of cytochrome P450 L1A1. In addition, the cloned sequence was able to complement a cytochrome P450 L1A1 gene disruption when introduced into S. cerevisiae. These data indicate that the cloned sequence codes for the lanosterol 14 alpha-demethylase cytochrome P450 L1A1 from C. albicans.  相似文献   

5.
Chitin synthase activity was studied in yeast and hyphal forms of Candida albicans. pH-activity profiles showed that yeast and hyphae contain a protease-dependent activity that has an optimum at pH 6.8. In addition, there is an activity that is not activated by proteolysis in vitro and which shows a peak at pH 8.0. This suggests there are two distinct chitin synthases in C. albicans. A gene for chitin synthase from C. albicans (CHS1) was cloned by heterologous expression in a Saccharomyces cerevisiae chs1 mutant. Proof that the cloned chitin synthase is a C. albicans membrane-bound zymogen capable of chitin biosynthesis in vitro was based on several criteria. (i) the CHS1 gene complemented the S. cerevisiae chs1 mutation and encoded enzymatic activity which was stimulated by partial proteolysis; (ii) the enzyme catalyses incorporation of [14C]-GlcNAc from the substrate, UDP[U-14C]-GlcNAc, into alkali-insoluble chitin; (iii) Southern analysis showed hybridization of a C. albicans CHS1 probe only with C. albicans DNA and not with S. cerevisiae DNA; (iv) pH profiles of the cloned enzyme showed an optimum at pH 6.8. This overlaps with the pH-activity profiles for chitin synthase measured in yeast and hyphal forms of C. albicans. Thus, CHS1 encodes only part of the chitin synthase activity in C. albicans. A gene for a second chitin synthase in C. albicans with a pH optimum at 8.0 is proposed. DNA sequencing revealed an open reading frame of 2328 nucleotides which predicts a polypeptide of Mr 88,281 with 776 amino acids. The alignment of derived amino acid sequences revealed that the CHS1 gene from C. albicans (canCHS1) is homologous (37% amino acid identity) to the CHS1 gene from S. cerevisiae (sacCHS1).  相似文献   

6.
The thymidylate synthase (TS) gene was isolated from a genomic Candida albicans library by functional complementation of a Saccharomyces cerevisiae strain deficient in TS. The gene was localized on a 4-kilobase HindIII DNA fragment and was shown to be expressed in a Thy- strain of Escherichia coli. The nucleotide sequence of the TS gene predicted a protein of 315 amino acids with a molecular weight of 36,027. The gene was cloned into a T7 expression vector in E. coli, allowing purification of large amounts of C. albicans TS. It was also purified from a wild-type C. albicans strain. Comparison of several enzyme properties including analysis of amino-terminal amino acid sequences showed the native and cloned C. albicans TS to be the same.  相似文献   

7.
As with many other fungi, including the budding yeast Saccharomyces cerevisiae, the dimorphic fungus Candida albicans encodes the novel translation factor, elongation factor 3 (EF-3). Using a rapid affinity chromatography protocol, EF-3 was purified to homogeneity from C. albicans and shown to have an apparent molecular mass of 128 kDa. A polyclonal antibody raised against C. albicans EF-3 also showed cross-reactivity with EF-3 from S. cerevisiae. Similarly, the S. cerevisiae TEF3 gene (encoding EF-3) showed cross-hybridization with genomic DNA from C. albicans in Southern hybridization analysis, demonstrating the existence of a single gene closely related to TEF3 in the C. albicans genome. This gene was cloned by using a 0.7 kb polymerase chain reaction-amplified DNA fragment to screen to C. albicans gene library. DNA sequence analysis of 200 bp of the cloned fragment demonstrated an open reading frame showing 51% predicted amino acid identity between the putative C. albicans EF-3 gene and its S. cerevisiae counterpart over the encoded 65-amino-acid stretch. That the cloned C. albicans sequence did indeed encode EF-3 was confirmed by demonstrating its ability to rescue an otherwise non-viable S. cerevisiae tef3:HIS3 null mutant. Thus EF-3 from C. albicans shows both structural and functional similarity to EF-3 from S. cerevisiae.  相似文献   

8.
目的克隆、测序近平滑念珠菌ERG11基因的编码区序列并进行生物信息学分析。方法运用生物信息学的方法 ,通过与白念珠菌ERG11基因碱基序列同源性比对,在近平滑念珠菌基因组(www.sanger.ac.uk/sequencing/Candida/pa-rapsilosis/)中寻找可能的ERG11基因序列(CpERG11),并据此序列设计引物,经PCR扩增近平滑念珠菌标准株(ATCC22019)的ERG11基因片段,产物经电泳、纯化、克隆到质粒prG-AMAI-NotI中,转染DH10B大肠杆菌细胞,并酶切鉴定筛选阳性克隆测序分析。结果近平滑念珠菌ERG11编码区由1569个碱基组成,编码一段含522个氨基酸的多肽。近平滑念珠菌ERG11的编码区序列与白念珠菌、热带念珠菌、光滑念珠菌、酿酒酵母菌ERG11基因的同源性分别为74%、75%、65%、64%。该近平滑念珠菌ERG11的编码区为唑类药物作用靶酶基因。结论成功克隆、测序、并生物信息学分析近平滑念珠菌ERG11基因的编码区序列,为进一步的功能研究奠定基础。  相似文献   

9.
10.
The question of how the loss of regulatory mechanisms for a metabolic enzyme would affect the fitness of the corresponding organism has been addressed. For this, the fructose-1,6-bisphosphatase (FbPase) from Saccharomyces cerevisiae has been taken as a model. Yeast strains in which different controls on FbPase (catabolite repression and inactivation; inhibition by fructose-2,6-bisphosphate and AMP) have been removed have been constructed. These strains express during growth on glucose either the native yeast FbPase, the Escherichia coli FbPase which is insensitive to inhibition by fructose-2,6-bisphosphate, or a mutated E. coli FbPase with low sensitivity to AMP. Expression of the heterologous FbPases increases the fermentation rate of the yeast and its generation time, while it decreases its growth yield. In the strain containing high levels of an unregulated bacterial FbPase, cycling between fructose-6-phosphate and fructose-1,6-bisphosphate reaches 14%. It is shown that the regulatory mechanisms of FbPase provide a slight but definite competitive advantage during growth in mixed cultures.  相似文献   

11.
The Saccharomyces cerevisiae RHO1 gene encodes a low-molecular-weight GTPase. One of its recently identified functions is the regulation of beta-1,3-glucan synthase, which synthesizes the main component of the fungal cell wall (J. Drgonova et al., Science 272:277-279, 1996; T. Mazur and W. Baginsky, J. Biol. Chem. 271:14604-14609, 1996; and H. Qadota et al., Science 272:279-281, 1996). From the opportunistic pathogenic fungus Candida albicans, we cloned the RHO1 gene by the PCR and cross-hybridization methods. Sequence analysis revealed that the Candida RHO1 gene has a 597-nucleotide region which encodes a putative 22.0-kDa peptide. The deduced amino acid sequence predicts that Candida albicans Rho1p is 82.9% identical to Saccharomyces Rho1p and contains all the domains conserved among Rho-type GTPases from other organisms. The Candida albicans RHO1 gene could rescue a S. cerevisiae strain containing a rho1 deletion. Furthermore, recombinant Candida albicans Rho1p could reactivate the beta-1,3-glucan synthesis activities of both C. albicans and S. cerevisiae membranes in which endogenous Rho1p had been depleted by Tergitol NP-40-NaCl treatment. Candida albicans Rho1p was copurified with the beta-1,3-glucan synthase putative catalytic subunit, Candida albicans Gsc1p, by product entrapment. Candida albicans Rho1p was shown to interact directly with Candida albicans Gsc1p in a ligand overlay assay and a cross-linking study. These results indicate that Candida albicans Rho1p acts in the same manner as Saccharomyces cerevisiae Rho1p to regulate beta-1,3-glucan synthesis.  相似文献   

12.
根据白念珠菌角鲨烯环氧化酶基因的开放读框中编码1MSSVKY6的序列和编码492NEIVR496的序列分别设计上、下游引物,以白念珠菌ATCC11006的基因组DNA为模板进行PCR扩增;将PCR产物克隆并做序列分析后,在大肠杆菌中进行表达。结果表明PCR获得大小约为1.5kb的产物,测序分析表明克隆的产物大小为1491bp,正是白念珠菌角鲨烯环氧化酶基因的开放读框,表达得到约为80kDa大小的蛋白,与理论计算一致。本研究为开展特比萘芬与其作用靶酶关系的研究奠定了基础。  相似文献   

13.
14.
15.
16.
Saccharomyces cerevisiae GSC1 (also called FKS1) and GSC2 (also called FKS2) have been identified as the genes for putative catalytic subunits of beta-1,3-glucan synthase. We have cloned three Candida albicans genes, GSC1, GSL1, and GSL2, that have significant sequence homologies with S. cerevisiae GSC1/FKS1, GSC2/FKS2, and the recently identified FKSA of Aspergillus nidulans at both nucleotide and amino acid levels. Like S. cerevisiae Gsc/Fks proteins, none of the predicted products of C. albicans GSC1, GSL1, or GSL2 displayed obvious signal sequences at their N-terminal ends, but each product possessed 10 to 16 potential transmembrane helices with a relatively long cytoplasmic domain in the middle of the protein. Northern blotting demonstrated that C. albicans GSC1 and GSL1 but not GSL2 mRNAs were expressed in the growing yeast-phase cells. Three copies of GSC1 were found in the diploid genome of C. albicans CAI4. Although we could not establish the null mutation of C. albicans GSC1, disruption of two of the three GSC1 alleles decreased both GSC1 mRNA and cell wall beta-glucan levels by about 50%. The purified C. albicans beta-1,3-glucan synthase was a 210-kDa protein as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and all sequences determined with peptides obtained by lysyl endopeptidase digestion of the 210-kDa protein were found in the deduced amino acid sequence of C. albicans Gsc1p. Furthermore, the monoclonal antibody raised against the purified beta-1,3-glucan synthase specifically reacted with the 210-kDa protein and could immunoprecipitate beta-1,3-glucan synthase activity. These results demonstrate that C. albicans GSC1 is the gene for a subunit of beta-1,3-glucan synthase.  相似文献   

17.
Khalaf RA  Zitomer RS 《Genetics》2001,157(4):1503-1512
We have identified a repressor of hyphal growth in the pathogenic yeast Candida albicans. The gene was originally cloned in an attempt to characterize the homologue of the Saccharomyces cerevisiae Rox1, a repressor of hypoxic genes. Rox1 is an HMG-domain, DNA binding protein with a repression domain that recruits the Tup1/Ssn6 general repression complex to achieve repression. The C. albicans clone also encoded an HMG protein that was capable of repression of a hypoxic gene in a S. cerevisiae rox1 deletion strain. Gel retardation experiments using the purified HMG domain of this protein demonstrated that it was capable of binding specifically to a S. cerevisiae hypoxic operator DNA sequence. These data seemed to indicate that this gene encoded a hypoxic repressor. However, surprisingly, when a homozygous deletion was generated in C. albicans, the cells became constitutive for hyphal growth. This phenotype was rescued by the reintroduction of the wild-type gene on a plasmid, proving that the hyphal growth phenotype was due to the deletion and not a secondary mutation. Furthermore, oxygen repression of the hypoxic HEM13 gene was not affected by the deletion nor was this putative ROX1 gene regulated positively by oxygen as is the case for the S. cerevisiae gene. All these data indicate that this gene, now designated RFG1 for Repressor of Filamentous Growth, is a repressor of genes required for hyphal growth and not a hypoxic repressor.  相似文献   

18.
The dihydrofolate reductase gene from Candida albicans has been cloned and partially characterized. A genomic bank from C. albicans strain 10127/5 was constructed in Escherichia coli and screened for trimethoprim resistance. A plasmid pMF1, carrying the resistance marker was isolated and characterized by restriction mapping and Southern blotting. Cells harbouring pMF1 were as sensitive as the parental cells to a wide spectrum of antibacterial agents, except for trimethoprim; the dihydrofolate reductase activity from these cells was trimethoprim resistant.  相似文献   

19.
20.
We have recently cloned an oligopeptide transport gene from Candida albicans denoted OPT1 . This gene showed significant sequence similarity to three open reading frames (ORFs) with no previously established function: isp4 from Schizosaccharomyces pombe and Saccharomyces cerevisiae YJL212C and YPR194C , identified during the genome project. The S . pombe gene isp4 was originally identified by Sato et al . as a gene that was upregulated through nitrogen starvation induction of meiosis. However, an isp4Δ strain exhibited a wild-type phenotype with respect to sexual differentiation. We have found that the same isp4Δ strain is deficient in tetrapeptide transport activity as measured by its resistance to toxic tetrapeptides, by its inability to accumulate a radiolabelled tetrapeptide and by the inability to use tetrapeptides as a sole source of an amino acid to satisfy an auxotrophic requirement. Similarly, we found that the ORF YPR194C from S . cerevisiae encodes an oligopeptide transporter. Sequence analyses as well as physiological evidence has led us to propose that the proteins encoded by isp4 and the genes identified from S . cerevisiae and C . albicans comprise a new group of transporters specific for small oligopeptides, which we have named the OPT family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号