首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the residue-selective modification of proteins with polymers at arginine residues is reported. The difficulty in modifying arginine residues lies in the fact that they are less reactive than lysine residues. Consequently, typical chemo-selective reactions which employ "kinetic" selectivity (active esters, Michael addition, etc.) cannot be used to target these residues. The chemistry exploited herein relies on "thermodynamic" selectivity to achieve selective modification of arginine residues. ω-Methoxy poly(ethylene glycol) bearing an α-oxo-aldehyde group was synthesized and used to demonstrate the selective modification of lysozyme at arginine residues. In addition, the optimization of reaction conditions for coupling as well as the stability of the formed adduct toward dilution, toward a nucleophilic buffer, and toward acidification are reported. It was concluded that this approach is a convenient, mild, selective, and catalyst-free method for protein modification.  相似文献   

2.
Methylation of lysine and arginine is known to be critical in cellular processes. However, methylation of other amino acidic residues has been largely overlooked. Here, we report a systematic screening for methylation of side chains of aspartate and glutamate (D/E-methylation), involving exhaustive nano-HPLC/MS/MS, a protein sequence database search, and manual verification. The putative D/E-methylated peptides were confirmed by MS/MS of synthetic peptides. Our analysis identified several D/E-methylation substrate proteins and their modification sites in human and yeast cells. To our knowledge, this is the first report conclusively identifying in vivo D/E-methylation substrates and their modification sites in eukaryotic cells, demonstrating that D/E-methylations are abundant protein modifications. The substrate proteins identified here provide a stepping stone for future biochemical characterization of protein methylation pathways.  相似文献   

3.
Post-translational lysine methylation and acetylation are two major modifications of lysine residues. They play critical roles in various biological processes, especially in gene regulation. Identification of protein methylation and acetylation sites would be a foundation for understanding their modification dynamics and molecular mechanism. This work presents a method called PLMLA that incorporates protein sequence information, secondary structure and amino acid properties to predict methylation and acetylation of lysine residues in whole protein sequences. We apply an encoding scheme based on grouped weight and position weight amino acid composition to extract sequence information and physicochemical properties around lysine sites. The prediction accuracy for methyllysine and acetyllysine are 83.02% and 83.08%, respectively. Feature analysis reveals that methyllysine is likely to occur at the coil region and acetyllysine prefers to occur at the helix region of protein. The upstream residues away from the central site may be close to methylated lysine in three-dimensional structure and have a significant influence on methyllysine, while the positively charged residues may have a significant influence on acetyllysine. The online service is available at http://bioinfo.ncu.edu.cn/inquiries_PLMLA.aspx.  相似文献   

4.
The human lens becomes increasingly yellow with age and thereby reduces our perception of blue light. This coloration is associated with lens proteins (crystallins), but its molecular basis was unknown. Here we show that the coloration occurs because of the interaction of crystallins with a UV filter compound, 3-hydroxykynurenine glucoside (3-OHKG). Crystallin modification results from deamination of the 3-OHKG amino acid side chain, yielding an unsaturated ketone that is susceptible to nucleophilic attack by cysteine, histidine, and lysine residues. This novel protein modification contributes to age-related lens coloration and may play a role in human nuclear cataractogenesis.  相似文献   

5.
Zhang X  Tamaru H  Khan SI  Horton JR  Keefe LJ  Selker EU  Cheng X 《Cell》2002,111(1):117-127
AdoMet-dependent methylation of histones is part of the "histone code" that can profoundly influence gene expression. We describe the crystal structure of Neurospora DIM-5, a histone H3 lysine 9 methyltranferase (HKMT), determined at 1.98 A resolution, as well as results of biochemical characterization and site-directed mutagenesis of key residues. This SET domain protein bears no structural similarity to previously characterized AdoMet-dependent methyltransferases but includes notable features such as a triangular Zn3Cys9 zinc cluster in the pre-SET domain and a AdoMet binding site in the SET domain essential for methyl transfer. The structure suggests a mechanism for the methylation reaction and provides the structural basis for functional characterization of the HKMT family and the SET domain.  相似文献   

6.
Relatively conservative modifications of three proteins were carried out to alter their surface properties. The protein properties modified were hydrophobicity and charge. This was done by acylation of amino groups with anhydrides. For the hydrophobic modification experiments, two proteins (beta-lactoglobulin and bovine serum albumin [BSA]) and four anhydrides (hexanoic, butyric, succinic, acetic) were used. For the modification of surface charge the protein thaumatin was selected and various proportions of the free amino groups were blocked with acetic anhydride to give a series of proteins with differing isoelectric points. Detailed characterization and purification of selected modified proteins was carried out including molecular weight measurements and conformational analysis. The criteria used for selecting the modified proteins for subsequent investigation of their partitioning in aqueous two-phase systems (ATPS) is described. With a judicious choice of starting material it was found that limited chemical modifications to proteins could effectively alter surface hydrophobicity or charge almost independently, with little effect on other molecular properties. It appears, however, that the method for chemical modification and the reaction conditions must also be carefully controlled. (c) 1996 John Wiley & Sons, Inc.  相似文献   

7.
The introduction of non-natural entities into proteins by chemical modification has numerous applications in fundamental biological science and for the development and manipulation of peptide and protein therapeutics. The reduction of native disulfide bonds provides a convenient method to access two nucleophilic cysteine residues that can serve as ideal attachment points for such chemical modification. The optimum bioconjugation strategy utilizing these cysteine residues should include the reconstruction of a bridge to mimic the role of the disulfide bond, maintaining structure and stability of the protein. Furthermore, the bridging chemical modification should be as rapid as possible to prevent problems associated with protein unfolding, aggregation, or disulfide scrambling. This study reports on an in situ disulfide reduction-bridging strategy that ensures rapid sequestration of the free cysteine residues in a bridge, using dithiomaleimides. This approach is then used to PEGylate the peptide hormone somatostatin and retention of biological activity is demonstrated.  相似文献   

8.
Jacob MH  Amir D  Ratner V  Gussakowsky E  Haas E 《Biochemistry》2005,44(42):13664-13672
A variety of biophysical methods used to study proteins requires protein modification using conjugated molecular probes. Cysteine is the main residue that can be modified without the risk of altering other residues in the protein chain. It is possible to label several cysteines in a protein using highly selective labeling reactions, if the cysteines react at very different rates. The reactivity of a cysteine residue introduced into an exposed surface site depends on the fraction of cysteine in the deprotonated state. Here, it is shown that cysteine reactivity differences can be effectively predicted by an electrostatic model that yields site-specifically the fractions of cysteinate. The model accounts for electrostatic interactions between the cysteinyl anion and side chains, the local protein backbone, and water. The energies of interaction with side chains and the main chain are calculated by using the two different dielectric constants, 40 and 22, respectively. Twenty-six mutants of Escherichia coli adenylate kinase were produced, each containing a single cysteine at the protein surface, and the rates of the reaction with 5,5'-dithiobis(2-nitrobenzoic acid) (Ellman's reagent) were measured. Cysteine residues were chosen on the basis of locations that were expected to allow modification of the protein with minimal risk of perturbing its structure. The reaction rates spanned a range of 6 orders of magnitude. The correlation between predicted fractions of cysteinate and measured reaction rates was strong (R = 92%) and especially high (R = 97%) for cysteines at the helix termini. The approach developed here allows reasonably fast, automated screening of protein surfaces to identify sites that permit efficient preparations of double- or triple-labeled protein.  相似文献   

9.
The light chain of kallikrein-cleaved human high molecular weight kininogen is solely responsible for its cofactor activity in blood clotting. Sequencing of the NH2-terminal region of the light chain reported herein identified the third kallikrein cleavage site of high molecular weight kininogen as Arg-437. The co-factor activity of high molecular weight kininogen consists of the capacity to bind to negatively charged surfaces and to factor XI or prekallikrein. Chemical modification of the histidines by either photooxidation or ethoxyformic anhydride affected the equivalent of 14-16 of 23 histidines available and resulted in over 90% loss in procoagulant activity. The modified protein had drastically reduced surface- and zinc-binding capacity, but it bound successfully to either factor XI or prekallikrein. In contrast, modification of two carboxyl groups, which led to approximately 80-90% loss of procoagulant activity, seriously compromised protein binding but left surface binding unaffected. All 3 tryptophans were modified at pH 4.0 with N-bromosuccinimide with a 70% reduction in procoagulant activity, but only 1 tryptophan was available for reaction at pH 7.35, resulting in a 50% loss in activity. Tryptophan modification at acidic pH affected protein binding but did not modify surface or zinc binding. Modification of both available tyrosine and 9 of 18 available lysine residues did not have a significant effect on the procoagulant activity of the light chain. These studies indicate that histidines participate in surface binding and that free carboxyl groups and tryptophan side chains are involved in binding of high molecular weight kininogen to other clotting factors.  相似文献   

10.
Immune reactions to citrulline-containing proteins appear to be central in the immunopathogenesis of rheumatoid arthritis. Citrulline residues are introduced into proteins by deimination of arginine residues, likely by an enzymatic process. There is a need to characterize which proteins in the inflamed joints of rheumatoid patients contain citrulline in situ. The characterization of deiminated proteins will be greatly facilitated by specific modification of peptide-bound citrulline residues that will enable specific enrichment and detection of citrulline-containing peptides. This study presents the details of such a modification method. The chemistry behind the reaction of the ureido group of citrulline with 2,3-butanedione in the presence of antipyrine is unraveled. Parameters for optimization of the reaction with respect to specificity and completeness, including the testing of different acids, reactant concentrations, and reaction time, are presented. This modification reaction is specific for citrulline residues. The modified product shows a characteristic mass shift of +238Da, as demonstrated by mass spectrometry. The product absorbs UV-Vis radiation at 464nm, and it is demonstrated that this can be used to selectively monitor citrulline-containing peptides during the separation of protein digests. Finally, the structure of the product of modified citrulline is solved by nuclear magnetic resonance spectroscopy using N-butylurea as a model substance. The results presented should facilitate the development of tags that can be used for the enrichment and subsequent detection of citrulline-containing protein fragments by mass spectrometry.  相似文献   

11.
Modified nucleotides are universally conserved in all living kingdoms and are present in almost all types of cellular RNAs, including tRNA, rRNA, sn(sno)RNA, and mRNA and in recently discovered regulatory RNAs. Altogether, over 110 chemically distinct RNA modifications have been characterized and localized in RNA by various analytical methods. However, this impressive list of known modified nucleotides is certainly incomplete, mainly due to difficulties in identification and characterization of these particular residues in low abundance cellular RNAs. In DNA, modified residues are formed by both enzymatic reactions (like DNA methylations, for example) and by spontaneous chemical reactions resulting from oxidative damage. In contrast, all modified residues characterized in cellular RNA molecules are formed by specific action of dedicated RNA-modification enzymes, which recognize their RNA substrate with high specificity. These RNA-modification enzymes display a great diversity in terms of the chemical reaction and use various low molecular weight cofactors (or co-substrates) in enzymatic catalysis. Depending on the nature of the target base and of the co-substrate, precise chemical mechanisms are used for appropriate activation of the base and the co-substrate in the enzyme active site. In this review, we give an extended summary of the enzymatic mechanisms involved in formation of different methylated nucleotides in RNA, as well as pseudouridine residues, which are almost universally conserved in all living organisms. Other interesting mechanisms include thiolation of uridine residues by ThiI and the reaction of guanine exchange catalyzed by TGT. The latter implies the reversible cleavage of the N-glycosidic bond in order to replace the initially encoded guanine by an aza-guanosine base. Despite the extensive studies of RNA modification and RNA-modification machinery during the last 20 years, our knowledge on the exact chemical steps involved in catalysis of RNA modification remains very limited. Recent discoveries of radical mechanisms involved in base methylation clearly demonstrate that numerous possibilities are used in Nature for these difficult reactions. Future studies are certainly required for better understanding of the enzymatic mechanisms of RNA modification, and this knowledge is crucial not only for basic research, but also for development of new therapeutic molecules.  相似文献   

12.
Methylation in vivo is a post-translational modification observed in several organisms belonging to eucarya, bacteria, and archaea. Although important implications of this modification have been demonstrated in several eucaryotes, its biological role in hyperthermophilic archaea is far from being understood. The aim of this work is to clarify some effects of methylation on the properties of beta-glycosidase from Sulfolobus solfataricus, by a structural comparison between the native, methylated protein and its unmethylated counterpart, recombinantly expressed in Escherichia coli. Analysis by Fourier transform infrared spectroscopy indicated similar secondary structure contents for the two forms of the protein. However, the study of temperature perturbation by Fourier transform infrared spectroscopy and turbidimetry evidenced denaturation and aggregation events more pronounced in recombinant than in native beta-glycosidase. Red Nile fluorescence analysis revealed significant differences of surface hydrophobicity between the two forms of the protein. Unlike the native enzyme, which dissociated into SDS-resistant dimers upon exposure to the detergent, the recombinant enzyme partially dissociated into monomers. By electrospray mapping, the methylation sites of the native protein were identified. A computational analysis of beta-glycosidase three-dimensional structure and comparisons with other proteins from S. solfataricus revealed analogies in the localization of methylation sites in terms of secondary structural elements and overall topology. These observations suggest a role for the methylation of lysyl residues, located in selected domains, in the thermal stabilization of beta-glycosidase from S. solfataricus.  相似文献   

13.
Specific cell activity results from developmental and environmental control over the expression of our genes. A key component in epigenetic forms of biological regulation is the methylation of lysine residues in histone proteins. This post-translational modification of chromatin has been vigorously studied over the past few years. Highly specific enzymes catalyzing the synthesis and targeted removal of methyl marks, as well as protein motifs recognizing distinct methylated lysines, have been identified. Here, we provide a molecular overview of discrete structural mechanisms that allow these modular proteins to effect and recognize particular lysine methylation imprints on the chromatin polymer.  相似文献   

14.
Protein lysine methylation occurs extensively in the Crenarchaeota, a major kingdom in the Archaea. However, the enzymes responsible for this type of posttranslational modification have not been found. Here we report the identification and characterization of the first crenarchaeal protein lysine methyltransferase, designated aKMT, from the hyperthermophilic crenarchaeon Sulfolobus islandicus. The enzyme was capable of transferring methyl groups to selected lysine residues in a substrate protein using S-adenosyl-l-methionine (SAM) as the methyl donor. aKMT, a non-SET domain protein, is highly conserved among crenarchaea, and distantly related homologs also exist in Bacteria and Eukarya. aKMT was active over a wide range of temperatures, from ∼25 to 90°C, with an optimal temperature at ∼60 to 70°C. Amino acid residues Y9 and T12 at the N terminus appear to be the key residues in the putative active site of aKMT, as indicated by sequence conservation and site-directed mutagenesis. Although aKMT was identified based on its methylating activity on Cren7, the crenarchaeal chromatin protein, it exhibited broad substrate specificity and was capable of methylating a number of recombinant Sulfolobus proteins overproduced in Escherichia coli. The finding of aKMT will help elucidate mechanisms underlining extensive protein lysine methylation and the functional significance of posttranslational protein methylation in crenarchaea.  相似文献   

15.
The low density lipoprotein (LDL) cell surface receptors on human fibroblasts grown in culture bind specific plasma lipoproteins, initiating a series of events which regulate intracellular cholesterol metabolism. Specificity for the interaction with the receptors resides with the protein moieties of the lipoproteins, specifically with the B and E apoproteins of LDL and certain high density lipoproteins (HDLc HDLl), respectively. It was previously established that the amino acid arginine is a functionally significant residue in or near the recognition sites on the B and E apoproteins and that modification of this residue abolishes the ability of these apolipoproteins to bind to the receptor. The present study indicates that lysine residues are also involved in the lipoprotein-receptor interaction. Chemical modification of 15% of the lysine residues of LDL by carbamylation with cyanate or 20% by acetoacetylation with diketene prevents the LDL from competitively displacing unmodified 125I-LDL from the high affinity receptor sites or from binding directly to the receptor. Moreover, quantitative reversal of the aceto-acetylation of the lysine residues of LDL by hydroxylamine treatment regenerates the lysyl residues and reestablishes greater than 90% of the original binding activity of the LDL. The reversibility of this reaction establishes that the loss of binding activity which follows lysine modification is not due to an irreversible alteration of the LDL or HDLc but is probably due to an alteration of a property of the recognition site associated with specific lysine residues. While acetoacetylation and carbamylation neutralize the positive charge on the epsilon-amino group of lysine, reductive methylation selectively modifies lysine residues of LDL and HDLc without altering the positive charge, yet abolishes their ability to bind to the receptor. Preservation of the charge but loss of binding activity following reductive methylation of the lipoproteins suggests that the specificity of the recognition site does not reside simply with the presence of positive charges but depends on other more specific properties of the site determined by the presence of a limited number of the lysine (and arginine) residues. The precise role of lysine remains to be defined, but its function may be to establish and maintain the conformation of the recognition site or the alignment of reactive residues, or both, or to chemically react, through its epsilon-amino group, with the receptor (hydrogen bond formation would be such a possibility).  相似文献   

16.
The Trg protein mediates chemotactic response of Escherichia coli to the attractants ribose and galactose. Like other transducers, Trg is a transmembrane protein that undergoes post-translational covalent modification. The modifications are hydrolysis (deamidation) of certain glutamine side chains to create glutamate residues and methylation of specific glutamates to form carboxyl methyl esters. Analysis of radiolabeled, tryptic peptides by high performance liquid chromatography and gas-phase sequencing allowed direct identification of the modified residues of Trg. The protein has 5 methyl-accepting residues. Four, at positions 304, 310, 311, and 318, are contained in a 23-residue tryptic peptide ending in lysine. The fifth, at position 500, is within a 25-residue tryptic peptide ending in arginine. At two sites, 311 and 318, glutamines are deamidated to create methyl-accepting glutamates. There is not a required order of modification among the sites. However, there is a substantial preference for methylation on the arginine peptide and, among sites on the lysine peptide, for the middle pair. Comparison of sequences surrounding modified residues identified in this work for Trg and previously for Tsr and Tar suggests a consensus sequence for methyl-accepting sites of Ala/Ser-Xaa-Xaa-Glu-Glu*-Xaa-Ala/OH-Ala-OH/Ala, where OH signifies Ser or Thr and the asterick marks the site of modification.  相似文献   

17.
Methylation of arginine residues, catalyzed by protein arginine methyltransferases (PRMTs), is one important protein posttranslational modification involved in epigenetic regulation of gene expression. A fast and effective assay for PRMT can provide valuable information for dissecting the biological functions of PRMTs, as well as for screening small-molecule inhibitors of arginine methylation. Currently, among the methods used for PRMT activity measurement, many contain laborious separation procedures, which restrict the applications of these assays for high-throughput screening (HTS) in drug discovery. The authors report here a mix-and-measure method to measure PRMT activity based on the principle of scintillation proximity assay (SPA). In this assay, (3)H-AdoMet was used as methyl donor, and biotin-modified histone H4 peptide served as a methylation substrate. Following the methylation reaction catalyzed by PRMTs, streptavidin-coated SPA beads were added to the reaction solution, and SPA signals were detected by a MicroBeta scintillation counter. No separation step is needed, which simplifies the assay procedure and greatly enhances the assay speed. Particularly, the miniaturization and robustness suggest that this method is suited for HTS of PRMT inhibitors.  相似文献   

18.
The interaction of 3',5'-bis-O-(alpha,beta,alpha',beta'-tetrafluoropyrid-gamma-yl)thymidine with various nucleophilic reagents was studied to evaluate the possibility of molecular design of new types of nucleic acid analogues using SNAr reactions. The reactions with morpholine and sodium azide led to the introduction of one and two nucleophilic residues into each of the polyfluorinated pyridine rings. The nucleophilic polycondensation with bifunctional reagents ethylenediamine and hexamethylenediamine depended on the nature of nucleophile and reaction conditions and resulted in the formation of supramolecules containing about five or more than 20 pyrimidine bases.  相似文献   

19.
The chemical modification of amino acid side-chains followed by mass spectrometric detection can reveal at least partial information about the 3-D structure of proteins. In this work we tested diethylpyrocarbonate, as a common histidyl modification agent, for this purpose. Appropriate conditions for the reaction and detection of modified amino acids were developed using angiotensin II as a model peptide. We studied the modification of several model proteins with a known spatial arrangement (insulin, cytochrome c, lysozyme and human serum albumin). Our results revealed that the surface accessibility of residues is a necessary, although in itself insufficient, condition for their reactivity; the microenvironment of side-chains and the dynamics of protein structure also affect the ability of residues to react. However the detection of modified residues can be taken as proof of their surface accessibility, and of direct contact with solvent molecules.  相似文献   

20.
Enzymatic protein-O-carboxylmethylation transfers methyl groups from S-adenosylmethionine to aspartyl and/or glutamyl residues of various methyl acceptor proteins. The function of this post-translational modification of protein, originally detected as “methanol-forming” activity in pituitary gland, has remained enigmatic in nervous tissue. Theories concerning the function of protein methylation have focused on possible roles in neurotransmitter release, neurophysin carboxylmethylation, regulation of calmodulin and calmodulin-binding proteins, chemotaxis, processing of precursor peptides, and repair/recognition of racemized D-amino acids. However, difficulties in establishing quantitative and temporal relationships between methylation and the biochemical event described have led to controversies. Similarly, the alkaline lability of the carboxylmethyl ester bond has led to difficulties in using the high resolution gel electrophoresis systems so successfully used in characterization of other post-translational events. Recent studies localizing protein-O-carboxylmethyltransferase to neurons in the rat brain suggest that this enzyme may be involved in signal transduction in the CNS. Alternative theories concerning protein methylation will be discussed and future directions for research in this area will be outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号