首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Antimalarial drug development and new targets   总被引:4,自引:0,他引:4  
The Molecular Approaches to Malaria (MAM2000) conference, Lorne, Australia, 2-5 February 2000, brought together world-class malaria research scientists. The development of new tools and technologies - transfection, DNA microarrays and proteomic analysis - and the availability of DNA sequences generated by the Malaria Genome Project, along with more classic approaches, have facilitated the identification of novel drug targets, the development of new antimalarials and the generation of a deeper understanding of the molecular mechanism(s) of drug resistance in malaria. It is hoped that combinations of these technologies could lead to strategies that enable the development of effective, efficient and affordable new drugs to overcome drug-resistant malaria, as discussed at MAM2000 and outlined here by Ian Macreadie and colleagues.  相似文献   

2.

Background  

We analysed 48 non-redundant antibiotic target proteins from all bacteria, 22 antibiotic target proteins from E. coli only and 4243 non-drug targets from E. coli to identify differences in their properties and to predict new potential drug targets.  相似文献   

3.
Genomics and the discovery of new drug targets   总被引:3,自引:0,他引:3  
Molecular medicine and genomics technologies are inseparable for defining new molecular targets. cDNA databases and elementary informatic tools provide instantaneous glimpses of gene families or tissue-restricted expression patterns as a means of new target identification. In addition, cDNA microarrays and two-dimensional gel electrophoresis unmask the expression of genes with unassigned or unexpected functions. Depletion of mRNA with ribozymes or neutralization of proteins with intracellular antibodies enable investigators to reject or embrace new molecular hypotheses about the determinants of disease, pharmacology or toxicology.  相似文献   

4.
This review is focused on recent data on structure and functions of PCSK9 proprotein convertase, a newly identified participant in cholesterol metabolism in mammalian organisms, including humans. Proprotein convertase acts as a molecular chaperone for the low density lipoprotein (LDL) receptor, targeting it to the lysosomal degradation pathway. Various mutations increasing the PCSK9 affinity toward the LDL receptor cause autosomal dominant hypercholesterolemia. In contrast, loss-of-function mutations in PCSK9 gene decrease the blood plasma cholesterol level, thus acting as a protection factor against atherosclerosis and coronary heart disease. It is supposed that pharmacological agents inhibiting the interaction between PCSK9 and LDL receptor may substantially amplify the benefits of drugs—statins and cholesterol absorption blockers—in the treatment of all types of hypercholesterolemia, including its widespread multigenic and multifactorial forms.  相似文献   

5.
Sirtuins: novel targets for metabolic disease in drug development   总被引:1,自引:0,他引:1  
Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produces beneficial effects on glucose homeostasis and insulin sensitivity. Activation of SIRT1 leads to enhanced activity of multiple proteins, including peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) and FOXO which helps to mediate some of the in vitro and in vivo effects of sirtuins. Resveratrol, a polyphenolic SIRT1 activator, mimics the effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance. In this review, we summarize recent research advances in unveiling the molecular mechanisms that underpin sirtuin as therapeutic candidates and discuss the possibility of using resveratrol as potential drug for treatment of diabetes.  相似文献   

6.
Host-bacterial coevolution and the search for new drug targets   总被引:1,自引:0,他引:1  
Understanding the coevolution between humans and our microbial symbionts and pathogens requires complementary approaches, ranging from community analysis to in-depth analysis of individual genomes. Here we review the evidence for coevolution between symbionts and their hosts, the role of horizontal gene transfer in coevolution, and genomic and metagenomic approaches to identify drug targets. Recent studies have shown that our symbiotic microbes confer many metabolic capabilities that our mammalian genomes lack, and that targeting mechanisms of horizontal gene transfer is a promising new direction for drug discovery. Gnotobiotic ('germ-free') mice are an especially exciting new tool for unraveling the function of microbes, whether individually or in the context of complex communities.  相似文献   

7.
8.
9.
10.
《Cell》2022,185(10):1793-1805.e17
  1. Download : Download high-res image (166KB)
  2. Download : Download full-size image
  相似文献   

11.
Advances in lipid separation methods and mass spectrometry technologies allow the fine characterization of the lipidome of parasites, ranging from unicellular protists to worms, which cause threatening infections in vertebrates, including humans. Specific lipid structures or lipid metabolic pathways can inspire the development of novel antiparasitic drugs. Changes in the lipid balance in membranes of parasites can also provide clues on the dynamics of drugs and some mechanisms of drug resistance. This review highlights recent trends in parasite lipidomics, combined with functional analyses, for the discovery of novel targets and the development of novel drugs.  相似文献   

12.
Harris TK 《IUBMB life》2003,55(3):117-126
Growth factor binding events to receptor tyrosine kinases result in activation of phosphatidylinositol 3-kinase (PI3K), and activated PI3K generates the membrane-bound second messengers phosphatidylinositol 3,4-diphosphate [PI(3,4)P2] and PI(3,4,5)P3, which mediate membrane translocation of the phosphoinositide-dependent kinase-1 (PDK1) and protein kinase B (PKB, also known as Akt). In addition to the kinase domain, PDK1 and PKB contain a pleckstrin homology (PH) domain that binds to the second messenger, resulting in the phosphorylation and activation of PKB by PDK1. Recent evidence indicates that constitutive activation of PKB contributes to cancer progression by promoting proliferation and increased cell survival. The indicating of PDK1 and PKB as primary targets for discovery of anticancer drugs, together with the observations that both PDK1 and PKB contain small-molecule regulatory binding sites that may be in proximity to the kinase active site, make PDK1 and PKB ideal targets for the development of new strategies to structure-based drug design. While X-ray structures have been reported for the kinase domains of PDK1 and PKB, no suitable crystals have been obtained for either PDK1 or PKB with their PH domains intact. In this regard, a novel structure-based strategy is proposed, which utilizes segmental isotopic labeling of the PH domain in combination with site-directed spin labeling of the kinase active site. Then, long-range distance restraints between the 15N-labeled backbone amide groups of the PH domain and the unpaired electron of the active site spin label can be determined from magnetic resonance studies of the enhancement effect that the paramagnetic spin label has on the nuclear relaxation rates of the amide protons. The determination of the structure and position of the PH domain with respect to the known X-ray structure of the kinase active site could be useful in the rational design of potent and selective inhibitors of PDK1 and PKB by 'linking' the free energies of binding of substrate (ATP) analogs with analogs of the inositol polar head group of the phospholipid second messenger. The combined use of X-ray crystallography, segmental isotopic and spin labeling, and magnetic resonance studies can be further extended to the study of other dynamic multidomain proteins and targets for structure-based drug design.  相似文献   

13.
Half a century after the introduction of Amphotericin B the management of cryptococcosis remains unsatisfactory. The disease, caused primarily by the two fungal species Cryptococcus neoformans and Cryptococcus gattii, remains responsible for considerable morbidity and mortality despite standard medical care. Current therapeutic options are limited to Amphotericin B, azoles and 5‐flucytosine. However, this organism has numerous well‐characterized virulence mechanisms that are amenable to pharmacological interference and are thus potential therapeutic targets. Here, we discuss existing approved antifungal drugs, resistance mechanisms to these drugs and non‐standard antifungal drugs that have potential in treatment of cryptococcosis, including immunomodulatory strategies that synergize with antifungal drugs, such as cytokine administration or monoclonal antibodies. Finally, we summarize attempts to target well‐described virulence factors of Cryptococcus, the capsule or fungal melanin. This review emphasizes the pressing need for new therapeutic alternatives for cryptococcosis.  相似文献   

14.
In spite of the rapid advances in the development of the new proteomic technologies, there are, to date, relatively fewer studies aiming to explore the neuronal proteome. One of the reasons is the complexity of the brain, which presents high cellular heterogeneity and a unique subcellular compartmentalization. Therefore, tissue fractionation of the brain to enrich proteins of interest will reduce the complexity of the proteomics approach leading to the production of manageable and meaningful results. In this review, general considerations and strategies of proteomics, the advantages and challenges to exploring the neuronal proteome are described and summarized. In addition, this article presents an overview of recent advances of proteomic technologies and shows that proteomics can serve as a valuable tool to globally explore the changes in brain proteome during various disease states. Understanding the molecular basis of brain function will be extremely useful in identifying novel targets for the treatment of brain diseases.  相似文献   

15.
Many genes have been listed as putatively essential for bacterial viability in the Database of Essential Genomes (DEG), although few have been experimentally validated. By prioritising targets according to the criteria suggested by the Research and Training in Tropical Diseases (TDR) Targets database, we have developed a modified down-selection tool to identify essential genes conserved across diverse genera. Using this approach we identified 52 proteins conserved to 7 or more of the 14 genomes in DEG. We confirmed the validity of the down-selection by attempting to make mutants of 8 of these targets in a model organism, Yersinia pseudotuberculosis, which is not closely related to any of the bacteria in DEG. Mutants were recovered for only one of the 8 targets, suggesting that the other 7 were essential in Y. pseudotuberculosis, an impressive success rate compared to other approaches of identification for such targets. Identification of essential proteins common in diverse bacterial genera can then be used to facilitate the selection of effective targets for novel broad-spectrum antibiotics.  相似文献   

16.
《Cell》2023,186(11):2361-2379.e25
  1. Download : Download high-res image (156KB)
  2. Download : Download full-size image
  相似文献   

17.
For many infectious diseases, novel treatment options are needed in order to address problems with cost, toxicity and resistance to current drugs. Systems biology tools can be used to gain valuable insight into pathogenic processes and aid in expediting drug discovery. In the past decade, constraint-based modeling of genome-scale metabolic networks has become widely used. Focusing on pathogen metabolic networks, we review in silico strategies used to identify effective drug targets and highlight recent successes as well as limitations associated with such computational analyses. We further discuss how accounting for the host environment and even targeting the host may offer new therapeutic options. These systems-level approaches are beginning to provide novel avenues for drug targeting against infectious agents.  相似文献   

18.
Recent advances in the developmental biology, genetics and cell biology of the inner ear are guiding research to novel therapeutic modalities - a market currently estimated to be at least US Dollars 10 billion. This article highlights prospects to manipulate the mammalian hearing organ with gene and stem cell delivery to the inner ear to protect, repair or regenerate the hair cells, supporting cells and associated nerves.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号