首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The single gene encoding limit dextrinase (pullulan 6-glucanohydrolase; EC 3.2.1.41) in barley (Hordeum vulgare) has 26 introns that range in size from 93 to 822 base pairs. The mature polypeptide encoded by the gene has 884 amino acid residues and a calculated molecular mass of 97,417 D. Limit dextrinase mRNA is abundant in gibberellic acid-treated aleurone layers and in germinated grain. Gibberellic acid response elements were found in the promoter region of the gene. These observations suggest that the enzyme participates in starch hydrolysis during endosperm mobilization in germinated grain. The mRNA encoding the enzyme is present at lower levels in the developing endosperm of immature grain, a location consistent with a role for limit dextrinase in starch synthesis. Enzyme activity was also detected in developing grain. The limit dextrinase has a presequence typical of transit peptides that target nascent polypeptides to amyloplasts, but this would not be expected to direct secretion of the mature enzyme from aleurone cells in germinated grain. It remains to be discovered how the enzyme is released from the aleurone and whether another enzyme, possibly of the isoamylase group, might be equally important for starch hydrolysis in germinated grain.  相似文献   

2.
Barley limit dextrinase (LD) that catalyses hydrolysis of α-1,6 glucosidic linkages in starch-derived dextrins is inhibited by limit dextrinase inhibitor (LDI) found in mature seeds. LDI belongs to the chloroform/methanol soluble protein family (CM-protein family) and has four disulfide bridges and one glutathionylated cysteine. Here, thioredoxin is shown to progressively reduce disulfide bonds in LDI accompanied by loss of activity. A preferential reduction of the glutathionylated cysteine, as indicated by thiol quantification and molecular mass analysis using electrospray ionisation mass spectrometry, was not related to LDI inactivation. LDI reduction is proposed to cause conformational destabilisation leading to loss of function.  相似文献   

3.
Limit dextrinase (LD) is a unique de-branching enzyme involved in starch mobilization of barley grains during malting, and closely related to malt quality. Genotypic variation of LD activity is controlled by genetic factors and also affected by environmental conditions. Correlation analysis between LD activity and four malt quality parameters showed that LD activity was positively correlated with diastatic power, Kolbach index and the quality of malt extract, while negatively correlated with viscosity. The structure-based association analysis demonstrated that HvLDI, a gene encoding limit dextrinase inhibitor, was a major determinant of LD activity and malt quality. The single nucleotide polymorphisms associated with LD activity could be used in early generation selection for barley breeding.  相似文献   

4.
The barley protein limit dextrinase inhibitor (LDI), structurally related to the alpha-amylase/trypsin inhibitor family, is an inhibitor of the starch debranching enzyme limit dextrinase (LD). In order to investigate the function of LDI, and the consequences for starch metabolism of reduced LDI activity, transgenic barley plants designed to downregulate LDI by antisense were generated. Homozygous antisense lines with reduced LDI protein level and activity were analysed and found to have enhanced free LD activity in both developing and germinating grains. In addition the antisense lines showed unpredicted pleiotropic effects on numerous enzyme activities, for example, alpha- and beta-amylases and starch synthases. Analysis of the starch showed much reduced numbers of the small B-type starch granules, as well as reduced amylose relative to amylopectin levels and reduced total starch. The chain length distribution of the amylopectin was modified with less of the longer chains (>25 units) and enhanced number of medium chains (10-15 units). These results suggest an important role for LDI and LD during starch synthesis as well as during starch breakdown.  相似文献   

5.
The limit dextrinase inhibitor (LDI) from barley seeds acts specifically on limit dextrinase (LD), an endogenous starch debranching enzyme. LDI is a 14 kDa hydrophobic protein containing four disulfide bonds and one unpaired thiol group previously found to be either glutathionylated or cysteinylated. It is a member of the so-called CM-protein family that includes α-amylase and serine protease inhibitors, which have been extremely challenging to produce recombinantly in functional form and in good yields. Here, LDI is produced in very high yields by secretory expression by Pichia pastoris applying high cell-density fermentation in a 5L fed-batch bioreactor. Thus about 200mg of LDI, which showed twofold higher inhibitory activity towards LD than LDI from barley seeds, was purified from 1L of culture supernatant by His-tag affinity chromatography and gel filtration. Electrospray ionization mass spectrometry verified the identity of the produced glutathionylated LDI-His(6). At a 1:1M ratio the recombinant LDI completely inhibited hydrolysis of pullulan catalyzed by 5-10 nM LD. LDI retained stability in the pH 2-12 range and at pH 6.5 displayed a half-life of 53 and 33 min at 90 and 93°C, respectively. The efficient heterologous production of LDI suggests secretory expression by P. pastoris to be a promising strategy to obtain other recombinant CM-proteins.  相似文献   

6.
Lee HJ  Duke MV  Duke SO 《Plant physiology》1993,102(3):881-889
Barley (Hordeum vulgare L.) that had been malted for 5 d developed only a small amount of bound (inactive) limit dextrinase, and very little free (active) enzyme was detected. Continuation of malting for up to 10 d only slightly increased the amount of both bound and free forms. Grain grown under conditions of ample moisture (wet grown) for 5 d produced a much higher amount of bound enzyme but a similarly low amount of free enzyme compared to malting conditions. After 10 d of growth there was a decrease in the amount of bound enzyme and a large increase in the amount of free enzyme, such that almost all of the enzyme was present in the free form. A more detailed study of limit dextrinase development in wet-grown grains revealed that a bound form was rapidly produced soon after germination. Five to 6 d after germination the amount of bound enzyme decreased rapidly and a very low amount was found in grains 9 d after germination. Meanwhile, a free form appeared slightly later and its initial rate of development was slow. At about 5 d after germination, precisely when the bound enzyme began to decrease, the free form increased rapidly, so that by 9 d after germination nearly all the enzyme was in the free form. The release of bound limit dextrinase in vitro occurred by proteolytic modification through the action of cysteine proteinases that were kept active or activated by the presence of reduced thiols in the extraction medium. The presence of cysteine proteinases was confirmed by inhibition studies using the inhibitors iodoacetamide, N-ethylmaleimide, antipain, and leupeptin. In addition, most of the bound form of limit dextrinase was soluble in 0.2 M sodium acetate buffer (pH 5.0) following extraction at 30[deg]C for 16 h and centrifugation at 3000g.  相似文献   

7.
8.
转trxS基因大麦发芽种子水解酶活性的变化   总被引:1,自引:1,他引:0  
卫丽  孔维威  尹钧 《生物工程学报》2008,24(9):1526-1530
利用转基因技术是改良大麦品种品质的有效途径.研究了转trxS基因对大麦种子发芽过程中水解酶活性的影响,结果表明转基因种子中α-淀粉酶、自由态β-淀粉酶和极限糊精酶的活性比未转基因种子高;转基因种子醇溶蛋白和谷蛋白中巯基的含量提高,说明该基因能够表达,为大麦育种和品质改良提供新的途径.  相似文献   

9.
A DNA fragment containing the exons 16, 17 and intron 16 of the limit dextrinase gene was cloned using a 654 bp cDNA as probe. Intron 16 contained a simple sequence repeat (microsatellite). PCR primers were designed to amplify that microsatellite. Using these primers, the limit dextrinase gene was mapped to the short arm of chromosome 1 (7H) using 150 DH lines from the Steptoe × Morex mapping population. This gene co-segregated with the RFLP marker ABC154A. QTLs for malt extract, -amylase activity, diastatic power and fine-coarse difference previously mapped in the North American Barley Genome Mapping Project have been located in this chromosome region. Five limit dextrinase alleles were detected in 31 barley cultivars with a PIC of 0.75. Ten different alleles/genes were identified in 23 uncultivated Hordeum species or subspecies using these microsatellite primers. The primers also amplified one fragment from wheat and two from oat. This microsatellite should be useful for marker-assisted selection for malting quality.  相似文献   

10.
TJ March  D Richter  T Colby  A Harzen  J Schmidt  K Pillen 《Proteomics》2012,12(18):2843-2851
Malted barley is an important ingredient used in the brewing and distilling industry worldwide. In this study, we used a proteomics approach to investigate the biochemical function of previously identified quantitative trait loci (QTLs) on barley chromosomes 1H and 4H that influence malting quality. Using a subset of barley introgression lines containing wild barley (Hordeum vulgare ssp. spontaneum) alleles at these QTLs, we validated that wild barley alleles at the chromosome 1H QTL reduced overall malting quality, whereas wild barley alleles at the chromosome 4H QTL improved the malting quality parameters α-amylase activity, VZ45, and Kolbach index compared to the control genotype Scarlett. 2DE was used to detect changes in protein expression during the first 72 h of micromalting associated with these QTLs. In total, 16 protein spots showed a significant change in expression between the introgression lines and Scarlett, of which 14 were successfully identified with MS. Notably, the wild barley alleles in the line containing the chromosome 4H QTL showed a sixfold increased expression of a limit dextrinase inhibitor. The possible role of the identified proteins in malting quality is discussed. The knowledge gained will assist ongoing research toward cloning the genes underlying these important QTL.  相似文献   

11.
McDougall GJ  Ross HA  Swanston JS  Davies HV 《Planta》2004,218(4):542-551
Limit dextrinase (EC 3.2.1.41) from germinating barley (Hordeum vulgare L) can be activated by millimolar concentrations of linear maltodextrins with a degree of polymerisation 2. The activation was assay-dependent; it was detected using assays based on the solubilisation of cross-linked dyed pullulan but not in assays that directly measured cleavage events such as the formation of new reducing termini. This strongly suggested that maltodextrins did not increase the catalytic rate of limit dextrinase i.e. this is not a true activation. On the other hand, considerable activation was noted in assays that measured pullulan degradation by reduction in viscosity. Taken together, this suggested that maltodextrins altered the mode of action of limit dextrinase, causing more rapid decreases in viscosity or greater solubilisation of dye-linked pullulan fragments per cleavage event. The proposed mechanism of activation by alteration in action pattern was reminiscent of initial work in the discovery of xyloglucan endotransglycosylase. Therefore, the ability of limit dextrinase to catalyse transglycosylation reactions into pullulan was tested and confirmed by an assay based on the incorporation of a fluorescently labelled maltotriose derivative into higher-molecular-weight products. The transglycosylation reaction was dependent on limit dextrinase activity and was enhanced in more highly purified preparations of limit dextrinase. Transglycosylation was inhibited by unlabelled maltotriose. How transglycosylation accounts for the apparent activation of limit dextrinase by maltodextrins and the physiological relevance of this novel reaction are discussed.Abbreviations APTS 8-Amino-1,3,6-pyrene trisulphonic acid - DP Degree of polymerisation - G Glucose - G2 Maltose - G3–G7 Linear maltodextrins of DP 3–7, i.e. maltotriose to maltoheptaose - G3–APTS Maltotriose APTS derivative - LD Limit dextrinase - PAHBAH p-Hydroxybenzoic acid hydrazide - UPW Ultra-pure water  相似文献   

12.
A limit dextrinase has been purified 2,700-fold from ungerminated peas by affinity chromatography. The enzyme hydrolyses (1→6)-α-D-glucosidic linkages in alpha-limit dextrins containing at least one α-(1→4)-linked D-glucose residue on either side of the susceptible linkage. The limit dextrinase also hydrolyses the polysaccharides amylopectin, amylopectin beta-limit dextrin, glycogen beta-limit dextrin, and pullulan, but has no activity towards glycogen.  相似文献   

13.
Molecular details underlying regulation of starch mobilization in cereal seed endosperm remain unknown despite the paramount role of this process in plant growth. The structure of the complex between the starch debranching enzyme barley limit dextrinase (LD), hydrolyzing α-1,6-glucosidic linkages, and its endogenous inhibitor (LDI) was solved at 2.7 Å. The structure reveals an entirely new and unexpected binding mode of LDI as compared with previously solved complex structures of related cereal type family inhibitors (CTIs) bound to glycoside hydrolases but is structurally analogous to binding of dual specificity CTIs to proteases. Site-directed mutagenesis establishes that a hydrophobic cluster flanked by ionic interactions in the protein-protein interface is vital for the picomolar affinity of LDI to LD as assessed by analysis of binding by using surface plasmon resonance and also supported by LDI inhibition of the enzyme activity. A phylogenetic analysis identified four LDI-like proteins in cereals among the 45 sequences from monocot databases that could be classified as unique CTI sequences. The unprecedented binding mechanism shown here for LDI has likely evolved in cereals from a need for effective inhibition of debranching enzymes having characteristic open active site architecture. The findings give a mechanistic rationale for the potency of LD activity regulation and provide a molecular understanding of the debranching events associated with optimal starch mobilization and utilization during germination. This study unveils a hitherto not recognized structural basis for the features endowing diversity to CTIs.  相似文献   

14.
Cysteine proteinases play a major role in invasion and intracellular survival of a number of pathogenic parasites. We cloned a single copy gene, tgcp1, from Toxoplasma gondii and refolded recombinant enzyme to yield active proteinase. Substrate specificity of the enzyme and homology modeling identified the proteinase as a cathepsin B. Specific cysteine proteinase inhibitors interrupted invasion by tachyzoites. The T. gondii cathepsin B localized to rhoptries, secretory organelles required for parasite invasion into cells. Processing of the pro-rhoptry protein 2 to mature rhoptry proteins was delayed by incubation of extracellular parasites with a cathepsin B inhibitor prior to pulse-chase immunoprecipitation. Delivery of cathepsin B to mature rhoptries was impaired in organisms with disruptions in rhoptry formation by expression of a dominant negative micro1-adaptin. Similar disruption of rhoptry formation was observed when infected fibroblasts were treated with a specific inhibitor of cathepsin B, generating small and poorly developed rhoptries. This first evidence for localization of a cysteine proteinase to the unusual rhoptry secretory organelle of an apicomplexan parasite suggests that the rhoptries may be a prototype of a lysosome-related organelle and provides a critical link between cysteine proteinases and parasite invasion for this class of organism.  相似文献   

15.
Erythrocytic malaria parasites utilize proteases for a number of cellular processes, including hydrolysis of hemoglobin, rupture of erythrocytes by mature schizonts, and subsequent invasion of erythrocytes by free merozoites. However, mechanisms used by malaria parasites to control protease activity have not been established. We report here the identification of an endogenous cysteine protease inhibitor of Plasmodium falciparum, falstatin, based on modest homology with the Trypanosoma cruzi cysteine protease inhibitor chagasin. Falstatin, expressed in Escherichia coli, was a potent reversible inhibitor of the P. falciparum cysteine proteases falcipain-2 and falcipain-3, as well as other parasite- and nonparasite-derived cysteine proteases, but it was a relatively weak inhibitor of the P. falciparum cysteine proteases falcipain-1 and dipeptidyl aminopeptidase 1. Falstatin is present in schizonts, merozoites, and rings, but not in trophozoites, the stage at which the cysteine protease activity of P. falciparum is maximal. Falstatin localizes to the periphery of rings and early schizonts, is diffusely expressed in late schizonts and merozoites, and is released upon the rupture of mature schizonts. Treatment of late schizionts with antibodies that blocked the inhibitory activity of falstatin against native and recombinant falcipain-2 and falcipain-3 dose-dependently decreased the subsequent invasion of erythrocytes by merozoites. These results suggest that P. falciparum requires expression of falstatin to limit proteolysis by certain host or parasite cysteine proteases during erythrocyte invasion. This mechanism of regulation of proteolysis suggests new strategies for the development of antimalarial agents that specifically disrupt erythrocyte invasion.  相似文献   

16.
We have identified the major endo-beta-1,4-xylanase (XYN-1) in the aleurone of germinating barley grain, and show that it is expressed as a precursor of Mr 61 500 with both N- and C-terminal propeptides. XYN-1 is synthesized as an inactive enzyme in the cytoplasm, and only becomes active at a late stage of germination when the aleurone ceases to secrete hydrolases. A series of processing steps, mediated in part by aleurone cysteine endoproteases, yields a mature active enzyme of Mr 34 000. Processing and extracellular release of the mature enzyme coincide with the programmed cell death (PCD)-regulated disintegration of aleurone cells. We discuss the significance of delayed aleurone cell-wall degradation by endoxylanases in relation to the secretory capacity of the aleurone, and propose a novel role for aleurone PCD in facilitating the export of hydrolases.  相似文献   

17.
The cysteine proteinase EhCP112 and the adhesin EhADH112 assemble to form the EhCPADH complex involved in Entamoeba histolytica virulence. To further characterize this cysteine proteinase, the recombinant full-length EhCP112 enzyme was expressed and purified under denaturing conditions. After a refolding step under reductive conditions, the inactive precursor (ppEhCP112) was processed to a 35.5 kDa mature and active enzyme (EhCP112). The thiol specific inhibitor E-64, but not serine or aspartic proteinase inhibitors arrested this activation process. The activation step of the proenzyme followed by the mature enzyme suggests an autocatalytic process during EhCP112 maturation. The experimentally determined processing sites observed during EhCP112 activation lie close to processing sites of other cysteine proteinases from parasites. The kinetic parameters of the mature EhCP112 were determined using hemoglobin and azocasein as substrates. The proteinase activity of EhCP112 was completely inhibited by thiol inhibitors, E-64, TLCK, and chymostatin, but not by general proteinase inhibitors. Since EhCP112 is a proteinase involved in the virulence of E. histolytica, a reliable source of active EhCP112 is a key step for its biochemical characterization and to carry out future protein structure-function studies.  相似文献   

18.
19.
Expression of rat procathepsin B in yeast led to the secretion of both the latent and mature forms of the enzyme. Culture in the presence of a cysteine proteinase inhibitor prevented this processing. We have expressed and purified a mutant form of rat procathepsin B whose active-site cysteine residue has been changed to a serine, and which also lacks the glycosylation site in the mature region of the protein. This non-active mutant protein was secreted essentially in an unprocessed form. The purified protein has been incubated with a variety of proteinases, and results indicate that cathepsins D and L, as well as mature cathepsin B itself, can produce a processed (single-chain) form of cathepsin B from this precursor. Amino-terminal sequencing of these processed forms has revealed that they are all elongated by a few residues with respect to the mature form found in vivo. The action of a combination of cathepsin B with dipeptidylpeptidase I produced a single-chain form of cathepsin B with the correct amino terminus. This work has also shown that the processing of procathepsin B to a single-chain form can be an autocatalytic process, in at least an intermolecular manner.  相似文献   

20.
The mammalian legumain is a recently identified lysosomal cysteine proteinase belonging to the clan CD and homologous to plant legumain. This enzyme has the characteristic of specifically hydrolyzing peptide bonds after asparagine residues. As in the case of papain-type cysteine proteinases, legumain is synthesized as an inactive zymogen, and processed into a mature form localized in lysosomes. However, the mechanism of its activation remains unclear. In this study, we analyze which types of proteinases may participate in the processing of legumain in rat primary cultured macrophages using various proteinase inhibitors after 24 h treatment with Bafilomycin A1, a vacuolar ATPase inhibitor. The processing of legumain in macrophages was accomplished by papain-type cysteine proteinases other than cathepsin B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号