首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterisation of receptor-mediated breakdown of inositol phospholipids in rat cortical slices has been performed using a direct assay which involves prelabelling with [3H]inositol. When slices were preincubated with [3H]inositol, lithium was found to greatly amplify the capacity of receptor agonists such as carbachol, noradrenaline, and 5-hydroxytryptamine to increase the amount of radioactivity appearing in the inositol phosphates. Using a large variety of agonists and antagonists it could be shown that cholinergic muscarinic, alpha 1-adrenoceptor, and histamine H1 receptors appear to be linked to inositol phospholipid breakdown in cortex. The large responses produced by receptor agonists allowed a clear discrimination between full and partial agonists as well as quantitative analysis of competitive antagonists for each receptor. Whereas carbachol and acetylcholine (in the presence of a cholinesterase inhibitor) were full agonists, oxotremorine and arecoline were only partial agonists. Very low concentrations of atropine shifted the carbachol dose-response curve to the right and allowed inhibition constants for the antagonist to be easily calculated. The nicotinic antagonist, mecamylamine, was ineffective. Noradrenaline adrenaline were full agonists at alpha 1-adrenoceptors, but phenylephrine and probably methoxamine were partial agonists. Prazosin, but not yohimbine, potently and competitively antagonised the noradrenaline inositol phospholipid response. Mepyramine but not cimetidine competitively antagonised the histamine response. These data provide strong confirmation for the potentiating effect of lithium on neurotransmitter inositol phospholipid breakdown and emphasise the ease with which functional responses at a number of cortical receptors can be characterised.  相似文献   

2.
Astrocyte-enriched cultures prepared from the newborn rat cortex incorporated [3H]myo-inositol into intracellular free inositol and inositol lipid pools. Noradrenaline and carbachol stimulated the turnover of these pools resulting in an increased accumulation of intracellular [3H]inositol phosphates. The effects of noradrenaline and carbachol were dose-dependent and blocked by specific alpha 1-adrenergic and muscarinic cholinergic receptor antagonists, respectively. The increase in [3H]inositol phosphate accumulation caused by these receptor antagonists was virtually unchanged when cultures were incubated in Ca2+-free medium, but was abolished when EGTA was also present in the Ca2+-free medium. Cultures of meningeal fibroblasts, the major cell type contaminating the astrocyte cultures, also accumulated [3H]myo-inositol, but no increased accumulation of [3H]inositol phosphates was found in response to either noradrenaline or carbachol.  相似文献   

3.
W Mundy  P Tandon  S Ali  H Tilson 《Life sciences》1991,49(14):PL97-P102
The effects of age on cholinergic markers and receptor-stimulated phosphoinositide hydrolysis was examined in the frontal cortex and striatum of male Fischer-344 rats. Choline acetyltransferase activity was decreased 27% in the striatum of aged (24 month) rats compared to young (3 month) controls. Muscarinic receptor density as measured by [3H]-quinuclidinyl benzilate binding showed a similar 26% decrease in the striatum of aged rats. Phosphoinositide hydrolysis was measured by the release of inositol phosphate (IP) from tissue slices prelabeled with [3H]myoinositol in response to carbachol, norepinephrine, and quisqualate. In the cortex, stimulated IP release was significantly greater in slices from aged rats compared to young rats for all three agonists. In contrast, stimulated IP release was significantly decreased in striatal slices from aged rats compared to young for all three agonists. These data indicate a differential effect of age on agonist-stimulated phosphoinositide hydrolysis in the cortex and striatum. The decreased responsiveness in the latter area may result from the age-related loss of postsynaptic receptors.  相似文献   

4.
Agents that increase the intracellular Ca2+ concentration have been examined for their ability to stimulate 3H-inositol polyphosphate accumulation in rat cerebral cortex slices. Elevated extracellular K+ levels, the alkaloid sodium channel activator veratrine, the calcium ionophore ionomycin, and the marine toxin maitotoxin were all able to stimulate phosphoinositide metabolism. Certain features appear common to the agents studied. Thus, although [3H]inositol monophosphate, [3H]inositol bisphosphate ([3H]InsP2), and [3H]inositol trisphosphate were all stimulated, a proportionally greater effect was observed on [3H]InsP2 in comparison to stimulation by the muscarinic receptor agonist carbachol. However, only an elevated K+ level stimulated [3H]inositol tetrakisphosphate ([3H]InsP4) accumulation alone or produced marked synergy with carbachol on the formation of this polyphosphate. The results suggest that agents that elevate the cytoplasmic Ca2+ concentration in cerebral cells can increase the hydrolysis of membrane polyphosphoinositides. The pattern of the response differs from that produced by muscarinic receptor agonists and indicate that Ca2(+)-dependent hydrolysis may involve different pools of lipids, phosphoinositidase C enzymes, or both. However, clear differences in the ability of these agents to stimulate InsP4, alone or in the presence of muscarinic agonist, suggest that factors other than a simple elevated intracellular Ca2+ concentration are implicated.  相似文献   

5.
Cyclic GMP formation and inositol phospholipid hydrolysis were studied in rat brain slices to determine if the two processes have common origins. Muscarinic cholinergic stimulation enhanced [3H]inositol phosphate ([ 3H]IP) accumulation from slices prelabelled with [3H]inositol but did not affect cyclic GMP formation in the cortex, striatum, or cerebellum. An elevated level of extracellular K+ stimulated accumulation of both cyclic GMP and [3H]IP in cortex slices. The former, but not the latter, was reduced by lipoxygenase and phospholipase A2 inhibition. Calcium channel activation enhanced and blockade reduced K+-stimulated [3H]IP formation without affecting the cyclic GMP level, and there were differences in the Ca2+ requirements for the two responses. Thus, there is no support for the concept that guanylate cyclase activation inevitably accompanies inositol phospholipid breakdown, and the evidence presented demonstrates that K+ stimulation promotes cyclic GMP and [3H]IP accumulation by different transducing pathways.  相似文献   

6.
Accumulation of inositol-1-phosphate after labeling with [3H]inositol and stimulation with noradrenaline, carbachol, and serotonin was measured in rat cortical, caudate nucleus, and hippocampal slices. The response to noradrenaline was significantly increased in cortical slices from animals that had received either a single electroconvulsive shock (ECS) or a series of 10 daily ECS but was unchanged in caudate nucleus or hippocampal slices. The response to carbachol, a muscarinic cholinergic agonist, was unchanged in cortical or caudate nucleus slices but was significantly reduced in hippocampal slices from animals that had received chronic ECS. The response to serotonin in cortical slices was not affected by the treatment. The results are correlated with changes in receptor number, which have been demonstrated to occur after administration of ECS.  相似文献   

7.
Carbachol and norepinephrine were used as agonists to compare and contrast cholinergic and adrenergic stimulation of inositide breakdown in rat brain slices. Carbachol acts through a muscarinic (possibly M1) receptor and norepinephrine acts through an alpha 1 adrenoceptor. Studies in cerebral cortical slices indicated that both agonists stimulated the production of inositol-1-phosphate and glycerophosphoinositol. Although the initial rates for the stimulation of inositol phosphate release were similar for the two ligands, the response to norepinephrine continued for 60 min and was larger compared with carbachol which plateaued at 30 min. The presence of carbachol did not affect the ED50 for norepinephrine. Concentrations of carbachol near the ED50 in combination with norepinephrine resulted in an additive response whereas maximal concentrations of carbachol and norepinephrine resulted in a less than additive response in the cortex. This negative interaction was also seen in the hippocampus and hypothalamus but not in the striatum, brainstem, spinal cord, olfactory bulb, or cerebellum. Norepinephrine had a larger response than carbachol in the hippocampus, striatum, and spinal cord, but the reverse was true in the olfactory bulb. Manganese (1 mM) stimulated the incorporation of [3H]inositol into phosphatidylinositol (PtdIns) four- to fivefold but not into polyphosphoinositides. The stimulation by manganese of PtdIns labelling increased the nonstimulated release of inositol phosphates but did not affect the stimulated release of inositol phosphates by carbachol or norepinephrine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The cholinergic modulation of histamine release and synthesis was studied in rat brain slices or synaptosomes labeled with L-[3H]histidine. Carbachol in increasing concentrations progressively reduced the K+-induced [3H]histamine release from cortical slices. Pirenzepine, a preferential M1-receptor antagonist, reversed the carbachol effect in an apparently competitive manner and with Ki values of 1-6 X 10(-8) M. 11-[(2-[(Diethylamino)methyl]-1-piperidinyl)acetyl]-5,11-dihydro-6H- pyrido[2,3-b][1,4]benzodiazepine-6-one (AF-DX 116), considered a preferential M2-receptor antagonist, reversed the carbachol effect with a mean Ki of approximately 2 X 10(-7) M. Oxotremorine behaved as a partial agonist in the modulation of histamine release. Neostigmine, an acetylcholinesterase inhibitor, inhibited the K+-induced release of [3H]histamine from cortical slices, and the effect was largely reversed by pirenzepine, an observation suggesting a modulation by endogenous acetylcholine. The effects of carbachol and pirenzepine were observed with slices of other brain regions known to contain histaminergic nerve terminals or perikarya, as well as with cortical synaptosomes. The two drugs also modified, in opposite directions, [3H]histamine formation in depolarized cortical slices. In vivo oxotremorine inhibited [3H]histamine formation in cerebral cortex, and this effect was reversed by scopolamine. When administered alone, scopolamine failed to enhance significantly the 3H- labeled amine formation, a finding suggesting that muscarinic receptors are not activated by endogenous acetylcholine released under basal conditions. It is concluded that muscarinic heteroreceptors, directly located on histaminergic nerve terminals, control release and synthesis of histamine in the brain. These receptors apparently belong to the broad M1-receptor category and may correspond to a receptor subclass displaying a rather high affinity for AF-DX 116.  相似文献   

9.
Lesions produced by intradentate hippocampal administration of colchicine have been reported to produce several time-dependent behavioral and neurochemical changes, including a possible change in the signal transduction process for the cholinergic muscarinic receptor. To characterize further the effects of colchicine on receptor-coupled hydrolysis of phosphoinositides, colchicine was injected stereotaxically into the dentate gyrus of rats at a dose of 2.5 micrograms/site. The animals were killed 1, 3, or 12 weeks after injection and the hippocampi removed and sliced. [3H]Inositol was incorporated into slices, and various receptor agonists known to stimulate inositol phosphate (IP) metabolism were studied. Colchicine administration altered agonist-stimulated turnover in the hippocampus in a time-dependent manner. This hyperstimulation was receptor-mediated, because it was blocked by pirenzepine. The hyperstimulation of turnover was observed also with norepinephrine and serotonin. Colchicine had no effect on IP turnover in vitro. The effect of the colchicine lesion was observed only in the hippocampus, because no change in cholinergic muscarinic receptor-stimulated phosphatidylinositol turnover was observed in the cortex. These studies indicate that intradentate administration of colchicine produces a compensatory change in the signal transduction process in the hippocampus detectable 12 weeks after the lesion.  相似文献   

10.
We have investigated the effects of in vivo lithium treatment on cerebral inositol phospholipid metabolism. Twice-daily treatment of rats with LiCl (3 mEq/kg) for 3 or 16 days resulted in a 25-40% reduction in agonist-stimulated inositol phosphate production, compared with NaCl-treated controls, in cortical slices prelabelled with [3H]inositol. A small effect was also seen with 5-hydroxytryptamine (5-HT) 24 h after a single dose of LiCl (10 mEq/kg). Dose-response curves to carbachol and 5-HT showed that lithium treatment reduced the maximal agonist response without altering the EC50 value. This inhibition was not affected by the concentration of LiCl in the assay buffer. Stimulation of inositol phosphate formation by 10 mM NaF in membranes prepared from cortex of 3-day lithium-treated rats was also inhibited, by 35% compared with NaCl-treated controls. Lithium treatment did not alter the kinetic profile of inositol polyphosphate formation in cortical slices stimulated with carbachol. Muscarinic cholinergic and 5-HT2 bindings were unaltered by lithium, as was cortical phospholipase C activity and isoproterenol-stimulated cyclic AMP formation. [3H]Inositol labelling of phosphatidylinositol 4,5-bisphosphate was significantly enhanced by 3-day lithium treatment. The results, therefore, indicate that subacute or chronic in vivo lithium treatment reduces agonist-stimulated inositol phospholipid metabolism in cerebral cortex; this persistent inhibition appears to be at the level of G-protein-phospholipase C coupling.  相似文献   

11.
We have examined some of the characteristics of phorbol ester- and agonist-induced down-regulation of astrocyte receptors coupled to phosphoinositide metabolism. Our results show that preincubation of [3H]inositol-labelled astrocyte cultures with phorbol 12-myristate 13-acetate (PMA) resulted in a time- (t 1/2, 1-2 min) and concentration-dependent (IC50, 1 nM) decrease in the accumulation of [3H]inositol phosphates (IP) evoked by muscarinic receptor stimulation. Much longer (30-40 min) preincubation periods with higher concentrations (IC50, 600 microM) were required to elicit the same effect with the receptor agonist carbachol. Following preincubation, agonist-stimulated [3H]IP accumulation recovered with time; in both cases pretreatment levels of inositol lipid metabolism were attained within 2 days. Both phorbol ester and agonist pretreatments were also effective in reversing the carbachol-evoked mobilisation of 45Ca2+ in these cells. However, their effects on phosphoinositide metabolism were found not to be additive. Although neither pretreatment affected the incorporation of [3H]inositol into phosphoinositides, both resulted in a loss of membrane muscarinic receptors as assessed by [3H]N-methylscopolamine binding. In washed membranes prepared from [3H]inositol-labelled cultures, the guanine nucleotide analogue, guanosine 5'-O-thiotriphosphate (GTP-gamma-S), caused a dose-dependent increase in [3H]IP formation. This response was enhanced when carbachol was also included in the incubation medium, although the agonist alone was without effect. Pretreatment with either PMA or carbachol had no effect on GTP-gamma-S-stimulated [3H]IP accumulation but did reduce the ability of carbachol to augment this response. Similar findings were obtained when membranes were exposed directly to PMA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The effect of long-term treatment with atropine, a muscarinic antagonist, known to cause up-regulation of receptor numbers, was examined on the muscarinic-receptor-mediated stimulation of phosphoinositide breakdown in the rat cerebral cortex and hippocampus. Although the numbers of both M1 muscarinic receptors, as measured by [3H]pirenzepine binding, and M1 and M2 receptors increased in both brain regions, the maximal breakdown of myo-[3H]inositol-labelled phosphoinositides was unaltered in the presence of carbachol at a saturating concentration (10(-2) M). In fact the efficacy of carbachol was decreased in slices from atropine-treated cerebral cortex [EC50 (concentration producing half-maximal effect) = 93 microM] as compared with the saline-treated control (EC50 = 23 microM)(P less than 0.005). Similarly the EC50 value (23 microM) in hippocampal slices from saline-treated rats increased in atropine-treated rats to 126 microM (P less than 0.005). This lowered efficacy of muscarinic stimulation could not be explained in terms of residual atropine in the tissue from treated rats. The noradrenaline- or serotonin (5-hydroxytryptamine)-stimulated breakdown or the K+ potentiation of the muscarinic-receptor-stimulated breakdown of [3H]phosphoinositides was not affected by the atropine treatment. Chromatography of the released [3H]inositol phosphates shows that atropine treatment did not cause any qualitative change in the pattern of [3H]inositol phosphates released by carbachol stimulation.  相似文献   

13.
The effects of the muscarinic agonist carbachol, histamine and bradykinin on incorporation of [3H]inositol into the phosphoinositides and the formation of [3H]InsPs were examined in bovine tracheal smooth-muscle (BTSM) slices labelled with [3H]inositol. These agonists result in substantial and dose-related increases in the incorporation of [3H]inositol into the phospholipids. Carbachol and histamine stimulated the incorporation of [3H]inositol into the phospholipids to the same degree, despite histamine being only 35% as effective as carbachol on [3H]InsP accumulation. Histamine and carbachol, at maximal concentrations, were non-additive with respect to both the stimulated incorporation of [3H]inositol and [3H]InsP formation. For carbachol this effect on incorporation was found to occur to a similar extent in PtdInsP and PtdInsP2 as well as PtdIns. The initial effect of carbachol on [3H]inositol incorporation was rapid (maximal by 10 min); however, with prolonged stimulation large secondary declines in PtdInsP and PtdInsP2 labelling were observed, with depletion of the much larger PtdIns pool only evident in the presence of Li+. Lowering buffer [Ca2+] increased the incorporation of [3H]inositol under basal conditions, but did not attenuate the subsequent agonist-stimulated incorporation effect. The large changes in specific radioactivity of the phosphoinositides, and consequently the [3H]InsP products, after carbachol stimulation resulted in the apparent failure of atropine to reverse the [3H]InsP response completely. Labelling muscle slices with [3H]inositol in the presence of carbachol or labelling for longer periods (greater than 6 h) prevented subsequent carbachol-stimulated effects on incorporation without significantly altering the dose-response relationship for carbachol-stimulated [3H]InsP formation and resulted in steady-state labelling conditions confirmed by the ability of atropine to reverse fully the [3H]InsP response to carbachol. This study demonstrates the profound effects of a number of agonists on [3H]inositol incorporation into the phospho- and polyphosphoinositides in BTSM with important consequent changes in the specific radioactivity of these lipids and the resulting [3H]InsP products. In addition, a selective depletion of PtdInsP and PtdInsP2 over PtdIns has been demonstrated with prolonged muscarinic-receptor stimulation.  相似文献   

14.
Fractional [3H]acetylcholine (ACh) release and regulation of release process by muscarinic receptors were studied in corpus striatum of young and aged rat brains. [3H] Quinuclidinyl benzilate (QNB) binding and carbachol stimulated phosphoinositide turnover, on the other hand, were compared in striatal, hippocampal and cortical tissues. High potassium (10 mM)-induced fractional [3H]ACh release from striatal slices was reduced by aging. Although inhibition of acetylcholinesterase with eserine (20 M) significantly decreased stimulation-induced fractional [3H]ACh release in two groups of rats, this inhibition slightly lessened with aging. Incubation of striatal slices with muscarinic antagonists reversed eserine-induced inhibition in fractional [3H]ACh release with a similar order of potency (atropine = 4-DAMP > AF-DX 116 > pirenzepine) in young and aged rat striatum, but age-induced difference in stimulated ACh release was not abolish by muscarinic antagonists. These results suggested that fractional [3H]ACh release from striatum of both age groups is modulated mainly by M3 muscarinic receptor subtype. Although both muscarinic receptor density and labeling of inositol lipids with [myo-3H]inositol decreased with aging, carbachol-stimulated [3H]myo inositol-1-fosfat (IP1) accumulation was found similar in striatal, cortical and hippocampal slices.  相似文献   

15.
Few receptor-mediated phenomena have been detected in peripheral nerve. In this study, the ability of the muscarinic cholinergic receptor agonist carbamylcholine to enhance phosphoinositide (PPI) breakdown in sciatic nerve was investigated by measuring the accumulation of inositol phosphates. Rat sciatic nerve segments were prelabeled with myo-[3H]inositol and then incubated either with or without carbamylcholine in the presence of Li+. [3H]Inositol monophosphate ([3H]IP) accumulation contained most of the radioactivity in inositol phosphates, with [3H]inositol bisphosphate ([3H]IP2) and [3H]inositol trisphosphate ([3H]IP3) accounting for 7-8% and 1-2% of the total, respectively. In the presence of 100 microM carbamylcholine, [3H]IP accumulation increased by up to 150% after 60 min. The 50% effective concentration for the response was determined to be 20 microM carbamylcholine and stimulated IP generation was abolished by 1 microM atropine. Enhanced accumulation of IP2 and IP3 was also observed. Determination of the pA2 values for the muscarinic receptor antagonists atropine (8.9), pirenzepine (6.5), AF-DX 116 (11-[[2-[(diethylamino)methyl]-1-piperidinyl] acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one) (5.7), and 4-diphenylacetoxy-N-methylpiperidinemethiodide (4-DAMP) (8.6) strongly suggested that the M3 muscarinic receptor subtype was predominantly involved in mediating enhanced PPI degradation. Following treatment of nerve homogenates and myelin-rich fractions with pertussis toxin and [32P]NAD+, the presence of an ADP-ribosylated approximately 40-kDa protein could be demonstrated. The results indicate that peripheral nerve contains key elements of the molecular machinery needed for muscarinic receptor-mediated signal transduction via the phosphoinositide cycle.  相似文献   

16.
The molecular mechanisms underlying the ability of muscarinic agonists to enhance the metabolism of inositol phospholipids were studied using rat parotid gland slices prelabelled with tracer quantities of [3H]inositol and then washed with 10 mM unlabelled inositol. Carbachol treatment caused rapid and marked increases in the levels of radioactive inositol 1-phosphate, inositol 1,4-bisphosphate, inositol 1,4,5-trisphosphate and an accumulation of label in the free inositol pool. There were much less marked changes in the levels of [3H]phosphatidylinositol, [3H]phosphatidylinositol 4-phosphate and [3H]phosphatidylinositol 4,5-bisphosphate. At 5 s after stimulation with carbachol there were large increases in [3H]inositol 1,4-bisphosphate and [3H]inositol 1,4,5-trisphosphate, but not in [3H]inositol 1-phosphate. After stimulation with carbachol for 10 min the levels of radioactive inositol 1,4-bisphosphate and inositol 1,4,5-trisphosphate greatly exceeded the starting level of radioactivity in phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate respectively. When carbachol treatment was followed by addition of sufficient atropine to block all the muscarinic receptors the radioactive inositol phosphates rapidly returned towards control levels. The carbachol-evoked changes in radioactive inositol phosphate and phospholipid levels were blocked in the presence of 2,4-dinitrophenol (an uncoupler of oxidative phosphorylation). The results suggest that muscarinic agonists stimulate a polyphosphoinositide-specific phospholipase C and that these lipids are continuously replenished from the labelled phosphatidylinositol pool. [3H]Inositol 1-phosphate in the stimulated glands probably arises via hydrolysis of inositol 1,4-bisphosphate and not directly from phosphatidylinositol.  相似文献   

17.
Three days after systemic administration of kainic acid (15 mg/kg, s.c.), selected cholinergic markers (choline acetyltransferase, acetylcholinesterase, muscarinic acetylcholine receptor, and high-affinity choline uptake) and GABAergic parameters [benzodiazepine and gamma-aminobutyric acid (GABA) receptors] were studied in the frontal and piriform cortex, dorsal hippocampus, amygdaloid complex, and nucleus basalis. Kainic acid treatment resulted in a significant reduction of choline acetyltransferase activity in the piriform cortex (by 20%), amygdala (by 19%), and nucleus basalis (by 31%) in comparison with vehicle-injected control rats. A lower activity of acetylcholinesterase was also determined in the piriform cortex following parenteral kainic acid administration. [3H]Quinuclidinyl benzilate binding to muscarinic acetylcholine receptors was significantly decreased in the piriform cortex (by 33%), amygdala (by 39%), and nucleus basalis (by 33%) in the group treated with kainic acid, whereas such binding in the hippocampus and frontal cortex was not affected by kainic acid. Sodium-dependent high-affinity choline uptake into cholinergic nerve terminals was decreased in the piriform cortex (by 25%) and amygdala (by 24%) after kainic acid treatment. In contrast, [3H]flunitrazepam binding to benzodiazepine receptors and [3H]muscimol binding to GABA receptors were not affected 3 days after parenteral kainic acid application in any of the brain regions studied. The data indicate that kainic acid-induced limbic seizures result in a loss of cholinergic cells in the nucleus basalis that is paralleled by degeneration of cholinergic fibers and cholinoceptive structures in the piriform cortex and amygdala, a finding emphasizing the important role of cholinergic mechanisms in generating and/or maintaining seizure activity.  相似文献   

18.
The in vitro and ex vivo effects of lithium on muscarinic cholinergic inositol phospholipid hydrolysis and muscarinic cholinergic inhibition of dopamine D1-receptor-stimulated cyclic AMP formation were examined in rat brain slices. Following chronic lithium feeding, carbachol-stimulated inositol phosphate accumulation was reduced ex vivo in slices of cerebral cortex but not in striatal slices. Lithium (1 mM) in vitro had no direct effect on dopamine D1-receptor-stimulated cyclic AMP formation, but enhanced the inhibitory effect of carbachol on the D1 response, in striatal slices, and this was not significantly altered by prior lithium feeding. Lithium therefore has effects on two discrete muscarinic responses in rat brain which are apparently maintained after chronic exposure to the ion and might be relevant to its antimanic actions.  相似文献   

19.
Selected cholinergic markers (choline acetyltransferase, acetylcholinesterase, muscarinic acetylcholine receptor, high-affinity choline uptake) were studied in the hindlimb representation areas of the rat somatosensory cortex and within the visual cortex 1 to 63 days after unilateral transection of the sciatic nerve. In the contralateral somatosensory cortex, peripheral deafferentation resulted in a significant reduction of choline acetyltransferase activity (by 15%) 3 days after sciatic nerve injury, and in a significant reduction of high-affinity choline uptake (by 30%) 1 day after nerve transection, in comparison to untreated control rats. Investigations in individual cortical layers revealed that the decrease of both choline acetyltransferase activity and high-affinity choline uptake sites was mainly due to reductions in cortical layer V. Acetylcholinesterase activity and [3H]quinuclidinyl benzilate binding to muscarinic acetylcholine receptors were not affected by unilateral transection of the sciatic nerve. In the ipsilateral somatosensory cortex, as well as in the visual cortex at both cortical hemispheres, no significant changes in the cholinergic parameters studied could be detected. The data indicate that peripheral deafferentation of the somatosensory cortex results in a transient change of presynaptic cholinergic parameters within the affected somatosensory area as early as 1 to 3 days after the lesion; thus, they emphasize the involvement of cholinergic mechanisms in cortical reorganizational events.  相似文献   

20.
Selected cholinergic markers (choline acetyltransferase, acetylcholinesterase, muscarinic acetylcholine receptor, high-affinity choline uptake) were studied in the hindlimb representation areas of the rat somatosensory cortex and within the visual cortex 1 to 63 days after unilateral transection of the sciatic nerve. In the contralateral somatosensory cortex, peripheral deafferentation resulted in a significant reduction of choline acetyltransferase activity (by 15%) 3 days after sciatic nerve injury, and in a significant reduction of high-affinity choline uptake (by 30%) 1 day after nerve transection, in comparison to untreated control rats. Investigations in individual cortical layers revealed that the decrease of both choline acetyltransferase activity and high-affinity choline uptake sites was mainly due to reductions in cortical layer V. Acetylcholinesterase activity and [3H]quinuclidinyl benzilate binding to muscarinic acetylcholine receptors were not affected by unilateral transection of the sciatic nerve. In the ipsilateral somatosensory cortex, as well as in the visual cortex at both cortical hemispheres, no significant changes in the cholinergic parameters studied could be detected. The data indicate that peripheral deafferentation of the somatosensory cortex results in a transient change of presynaptic cholinergic parameters within the affected somatosensory area as early as 1 to 3 days after the lesion; thus, they emphasize the involvement of cholinergic mechanisms in cortical reorganizational events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号