首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 837 毫秒
1.
We compared some processes characteristic for both apoptosis and terminal differentiation of epidermal keratinocytes. It can be proposed that nonapoptotic programmed cell death takes place during differentiation of keratinocytes. Apoptosis and terminal differentiation of keratinocytes appear to be different events but some similar molecular mechanisms are involved in both processes.__________Translated from Ontogenez, Vol. 36, No. 2, 2005, pp. 85–89.Original Russian Text Copyright © 2005 by Terskikh, Vasilev.  相似文献   

2.
3.
The epidermis comprises multiple layers of specialized epithelial cells called keratinocytes. As cells are lost from the outermost epidermal layers, they are replaced through terminal differentiation, in which keratinocytes of the basal layer cease proliferating, migrate upwards, and eventually reach the outermost cornified layers. Normal homeostasis of the epidermis requires that the balance between proliferation and differentiation be tightly regulated. The GTP binding protein RhoA plays a fundamental role in the regulation of the actin cytoskeleton and in the adhesion events that are critically important to normal tissue homeostasis. Two central mediators of the signals from RhoA are the ROCK serine/threonine kinases ROCK-I and ROCK-II. We have analyzed ROCK's role in the regulation of epidermal keratinocyte function by using a pharmacological inhibitor and expressing conditionally active or inactive forms of ROCK-II in primary human keratinocytes. We report that blocking ROCK function results in inhibition of keratinocyte terminal differentiation and an increase in cell proliferation. In contrast, activation of ROCK-II in keratinocytes results in cell cycle arrest and an increase in the expression of a number of genes associated with terminal differentiation. Thus, these results indicate that ROCK plays a critical role in regulating the balance between proliferation and differentiation in human keratinocytes.  相似文献   

4.
We have characterized an unusual cell phenotype in third passage cultures of a human keratinocyte strain derived from newborn foreskin epidermis. The cells had the same DNA fingerprint pattern as the second passage, morphologically normal, keratinocytes; they formed desmosomes and expressed the keratin profile characteristic of normal keratinocytes in culture. However, unlike normal keratinocytes, the cells did not grow as compact colonies and did not stratify or undergo terminal differentiation, even after TPA treatment or suspension culture. For these reasons we named them ndk for "nondifferentiating keratinocytes." The ndk cells also differed from normal keratinocytes in that they did not require a feeder layer and were not stimulated by cholera toxin to proliferate. The ndk cells had an absolute requirement for hydrocortisone and their growth rate was increased when epidermal growth factor was added to the medium. Although ndk failed to undergo terminal differentiation in culture, they were not transformed, since they were still sensitive to contact inhibition of growth, did not proliferate in soft agar, and had a limited lifespan in culture. The appearance of the ndk phenotype was correlated with a doubling of chromosome number and the presence of a lp marker chromosome. We suggest that these cells are a useful experimental adjunct to cultures of normal keratinocytes, in which proliferation and terminal differentiation are tightly coordinated, because in ndk cells there appears to be a block in terminal differentiation.  相似文献   

5.
6.
Cathepsin E (CatE) is predominantly expressed in the rapidly regenerating gastric mucosal cells and epidermal keratinocytes, in addition to the immune system cells. However, the role of CatE in these cells remains unclear. Here we report a crucial role of CatE in keratinocyte terminal differentiation. CatE deficiency in mice induces abnormal keratinocyte differentiation in the epidermis and hair follicle, characterized by the significant expansion of corium and the reduction of subcutaneous tissue and hair follicle. In a model of skin papillomas formed in three different genotypes of syngeneic mice, CatE deficiency results in significantly reduced expression and altered localization of the keratinocyte differentiation induced proteins, keratin 1 and loricrin. Involvement of CatE in the regulation of the expression of epidermal differentiation specific proteins was corroborated by in vitro studies with primary cultures of keratinocytes from the three different genotypes of mice. In wild-type keratinocytes after differentiation inducing stimuli, the CatE expression profile was compatible to those of the terminal differentiation marker genes tested. Overexpression of CatE in mice enhances the keratinocyte terminal differentiation process, whereas CatE deficiency results in delayed differentiation accompanying the reduced expression or the ectopic localization of the differentiation markers. Our findings suggest that in keratinocytes CatE is functionally linked to the expression of terminal differentiation markers, thereby regulating epidermis formation and homeostasis.  相似文献   

7.
Abstract Terminal differentiation of keratinocytes in the epidermis and in epidermal appendages results in specialized forms of cell death. Keratinocytes of the nail matrix differentiate into nail corneocytes, the building blocks of the nail plate. Here, we show that, in contrast to the abrupt breakdown of the nucleus during corneocyte formation of epidermal keratinocytes, chromatin undergoes progressive condensation over several nail matrix cell layers below the transition zone to the nail plate, where nuclear DNA disappears. Virtually all keratinocytes in the cell layer immediately beneath the nail plate contained terminal deoxynucleotidyl transferase-mediated fluorescein-dUTP nick end labeling-positive DNA fragments. Nail matrix keratinocytes lacked processed caspase-3, a marker of apoptosis, and did not express caspase-14, a protease up-regulated during terminal differentiation of epidermal keratinocytes. By contrast, DNase1L2, which is also up-regulated during the differentiation of epidermal keratinocytes and plays an essential role in differentiation-associated degradation of nuclear DNA in epidermal keratinocytes, was strongly expressed in the nail matrix–nail plate transition layer. Our results show that caspase-14 is not strictly, if at all, required for differentiation-associated keratinocyte cell death and implicates DNase1L2 in terminal differentiation of nail matrix keratinocytes.  相似文献   

8.
We have investigated the earliest events in commitment of human epidermal keratinocytes to terminal differentiation. Phosphorylated Akt and caspase activation were detected in cells exiting the basal layer of the epidermis. Activation of Akt by retroviral transduction of primary cultures of human keratinocytes resulted in an increase in abortive clones founded by transit amplifying cells, while inhibition of the upstream kinase, PI3-kinase, inhibited suspension-induced terminal differentiation. Caspase inhibition also blocked differentiation, the primary mediator being caspase 8. Caspase activation was initiated by 2 h in suspension, preceding the onset of expression of the terminal differentiation marker involucrin by several hours. Incubation of suspended cells with fibronectin or inhibition of PI3-kinase prevented caspase induction. At 2 h in suspension, keratinocytes that had become committed to terminal differentiation had increased side scatter, were 7-aminoactinomycin D (7-AAD) positive and annexin V negative; they exhibited loss of mitochondrial membrane potential and increased cardiolipin oxidation, but with no increase in reactive oxygen species. These properties indicate that the onset of terminal differentiation, while regulated by PI3-kinase and caspases, is not a classical apoptotic process.  相似文献   

9.
10.
Studies were conducted using normal and human papillomavirus Type 18 (HPV-18) immortalized human keratinocytes to assess possible alterations in the differentiation process as a consequence of increased intracellular calcium concentration. Normal keratinocytes exposed to increased extracellular calcium or the phorbol ester TPA, exhibited terminal differentiation characteristics. However, late passage HPV-18 immortalized keratinocytes (designated FEP-1811) were resistant to such terminal differentiation signals. Flow cytometric analyses of 1811 cells at various stages of passage in culture revealed progressively higher levels of intracellular calcium in the immortalized cells with passage in culture when compared to normal, primary keratinocytes. Furthermore, 1811 cells isolated from tumors which developed in irradiated nude mice contained the highest level of intracellular calcium of all the cells examined. These results suggest that an increase in the concentration of intracellular calcium is associated with progression of HPV-18 immortalized keratinocytes to tumorigenicity.  相似文献   

11.
During keratinocyte stratification and wound healing, keratinocytes undergo a switch between differentiation and motility. However, limited knowledge exists on the mechanisms of the switch. We have previously demonstrated that the expression of CD9 was changed in different wound stages and involved in the regulation of keratinocyte migration. In this study, we showed that CD9 expression was increased in both human and mouse keratinocytes undergoing differentiation. CD9 overexpression in keratinocytes stimulated terminal differentiation and reduced cell motility. CD9 silencing inhibited calcium-induced keratinocyte differentiation and increased cell motility. Furthermore, CD9 overexpression recruited E-cadherin to the plasma membrane and subsequently activated PI3K/Akt signaling, while CD9 knockdown inhibited the recruitment of E-cadherin to the plasma membrane and PI3K/Akt activation. Importantly, silencing E-cadherin expression or inhibiting PI3K/Akt signaling reversed CD9 overexpression-induced differentiation and -reduced motility. These results demonstrate that CD9 acts as an important node that regulates keratinocyte differentiation and motility. The recruitment of E-cadherin to the plasma membrane and activation of the PI3K/Akt signaling pathway mediated by CD9 play an important role in these processes.  相似文献   

12.

Background

The human epidermis is comprised of several layers of specialized epithelial cells called keratinocytes. Normal homoeostasis of the epidermis requires that the balance between keratinocyte proliferation and terminal differentiation be tightly regulated. The mammalian serine/threonine kinases (ROCK1 and ROCK2) are well-characterised downstream effectors of the small GTPase RhoA. We have previously demonstrated that the RhoA/ROCK signalling pathway plays an important role in regulation of human keratinocyte proliferation and terminal differentiation. In this paper we addressed the question of which ROCK isoform was involved in regulation of keratinocyte differentiation.

Methodology and Principal Findings

We used RNAi to specifically knockdown ROCK1 or ROCK2 expression in cultured human keratinocytes. ROCK1 depletion results in decreased keratinocyte adhesion to fibronectin and an increase in terminal differentiation. Conversely, ROCK2 depletion results in increased keratinocyte adhesion to fibronectin and inhibits terminal differentiation.

Conclusion

These data suggest that ROCK1 and ROCK2 play distinct roles in regulating keratinocyte adhesion and terminal differentiation.  相似文献   

13.
The biological effects of epidermal growth factor receptor (EGFR) activation may differ between epidermal suprabasal and basal keratinocytes, since growth factors are mitogenic in adherent cells only in the presence of cell-extracellular matrix (ECM) interaction. To investigate biological effects of EGFR activation on keratinocytes without cell-ECM interaction, we cultured normal human keratinocytes on polyhydroxyethylmethacrylate-coated plates, which disrupt cell-ECM but not cell-cell interaction. The cells initially expressed keratin 10 (K10) and then profilaggrin, mimicking sequential differentiation of epidermal suprabasal keratinocytes. The addition of EGF or transforming growth factor-alpha promoted late terminal differentiation (profilaggrin expression, type 1 transglutaminase expression and activity, and cornified envelope formation) of the suspended keratinocytes, while suppressing K10 expression, an early differentiation marker. These effects were attenuated by EGFR tyrosine kinase inhibitor PD153035 or an anti-EGFR monoclonal antibody, whereas protein kinase C inhibitors H7 and bisindolylmaleimide I or mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor PD98059 abolished profilaggrin up-regulation but not K10 suppression. Since the antidifferentiative role of EGFR on cell-ECM interaction-conserved keratinocytes has been well documented, our results indicate that the biological effects of EGFR on keratinocytes are influenced by cell-ECM interaction and suggest that EGFR activation promotes rather than inhibits the terminal differentiation of suprabasal epidermal keratinocytes.  相似文献   

14.
15.
J J Reiners  T J Slaga 《Cell》1983,32(1):247-255
The effects of skin-tumor-promoting and -nonpromoting agents on the kinetics of terminal differentiation of subpopulations of keratinocytes differing in buoyant density isolated from mice (SENCAR) that are very sensitive to 12-O-tetradecanoylphorbol-13-acetate (TPA) promotion were investigated. Topical pretreatment of dorsal skin with complete (TPA), first-stage (calcium ionophore A23187) and second-stage (mezerein) tumor promoters, but not the hyperplastic agent ethylphenylpropiolate, accelerated the rate of terminal differentiation of keratinocytes with densities less than 1.074 g/cm3, but had little effect on cells with a greater density. Within 8.5 hr of TPA treatment, a period preceding mitosis, a large percentage of the most dense basal-cell keratinocytes (greater than or equal to 1.074 g/cm3) were converted to cells with a lower density, with a reduced plating efficiency and with an increased rate of differentiation, suggesting that TPA induces a subpopulation of basal cells to commit to terminal differentiation, and accelerates the rate of differentiation of committed cells.  相似文献   

16.
Trivalent cation lanthanum (La) binds to calcium binding sites of cells and either mimics the properties of calcium or inhibits the effects of calcium by displacing calcium from its binding sites. Extracellular calcium induces differentiation of human epidermal keratinocytes in culture, in part by increasing the intracellular calcium levels (Cai). Therefore, in this study we determined the effect of La on differentiation and intracellular calcium levels of keratinocytes. We observed that La inhibited the production of cornified envelopes, a marker for terminal differentiation of keratinocytes. La inhibited the calcium requiring envelope cross-linking enzyme, transglutaminase, in a direct manner, presumably, by displacing calcium from its binding site on the enzyme. La inhibited the influx and the efflux of 45Ca from keratinocytes. Paradoxically, extracellular La appeared to increase the Cai levels of keratinocytes as measured by the fluorescent probe indo-1. However, subsequent experiments revealed that indo-1 bound La with a higher affinity than Ca and emitted fluorescence in the same wavelength as the Ca bound form. Using this probe, we observed that La enters keratinocytes in a dose-dependent fashion and achieves concentrations exceeding 80 nM when the external La concentration is raised to 300 microM. This fully accounted for the apparent increase in Cai when La was added to the cells. Treatment of cells with ionomycin increased indo-1 fluorescence maximally in the presence of La indicating influx of La via this Ca specific ionophore. Our results indicate that La enters cells and inhibits calcium mediated keratinocyte differentiation both by blocking Ca influx and by blocking calcium regulated intracellular processes such as transglutaminase directed cornified envelope formation.  相似文献   

17.
In epidermis the onset of terminal differentiation normally coincides with inhibition of integrin function and expression, thereby ensuring that differentiating cells are selectively expelled from the basal layer. However, when stratification of cultured human epidermal keratinocytes is prevented by reducing the calcium concentration of the medium to 0.1 mM, keratinocytes initiate terminal differentiation while still attached to the culture substrate. We have examined the mechanism by which differentiating keratinocytes adhere to extracellular matrix proteins in low calcium medium and the consequences of inducing stratification by raising the calcium ion concentration to 1.8 mM (Standard Medium). In low calcium medium keratinocytes co-expressed integrins and terminal differentiation markers such as involucrin and peanut lectin-binding glycoproteins: differentiating cells contained integrin mRNA, synthesized integrin proteins de novo and expressed functional mature integrins. There were no differences in integrin synthesis, maturation or break down in low calcium or standard medium, although the level of beta 1 integrins on the surface of proliferating cells was higher in standard medium. Within 6 h of transfer from low calcium to standard medium integrin mRNA was no longer detectable in terminally differentiating cells, integrins were being lost from the cell surface, and selective migration out of the basal layer had begun. Antibodies to P- and E-cadherin, which block calcium-induced stratification, prevented the selective loss of integrin mRNA and protein from terminally differentiating cells. This suggests that cadherins may play a role in the down-regulation of integrin expression that is associated with terminal differentiation.  相似文献   

18.
Oh DH  Yeh K 《DNA Repair》2005,4(10):1149-1159
Terminally differentiating keratinocytes constitute the predominant cell type within the skin epidermis and play an important role in the overall photobiology of human skin following ultraviolet radiation. However, the DNA repair capacity of differentiating keratinocytes is unclear, and little is known regarding how such repair activity is regulated in these cells. We systematically compared the global genomic nucleotide excision repair response of cultured undifferentiated human keratinocytes to those that were allowed to differentiate in 1.2 mM Ca(2+), in some cases supplemented with phorbol ester or Vitamin C. Differentiated cells ceased replication and expressed typical markers of differentiation. Following ultraviolet radiation, keratinocytes that were differentiated up to 12 days removed cyclobutane pyrimidine dimers and pyrimidine(6,4)pyrimidone photoproducts from the global genome as efficiently as undifferentiated cells. However, following the onset of calcium-induced differentiation, basal levels of p53 were nearly undetectable by 12 days of differentiation when global repair activity was unaffected. Following ultraviolet radiation, induction of p53 following ultraviolet radiation was abrogated by 6 days of calcium-induced differentiation. Basal levels of mRNA encoding the DNA damage recognition proteins, XPC and DDB2, were relatively insensitive to differentiation and p53 levels. However, following ultraviolet radiation, inductions of mRNA encoding the DNA damage recognition proteins, DDB2 and XPC, were differentially affected by differentiation. Rapid loss of DDB2 mRNA induction was associated with differentiation, while XPC mRNA induction diminished more slowly with differentiation. These results indicate that human keratinocytes preserve global nucleotide excision repair as well as expression of genes encoding key DNA damage recognition proteins well into the terminal differentiation process, perhaps using mechanisms other than p53.  相似文献   

19.
In keratinocytes, the beta1 integrins mediate adhesion to the extracellular matrix and also regulate the initiation of terminal differentiation. To explore the relationship between these functions, we stably infected primary human epidermal keratinocytes and an undifferentiated squamous cell carcinoma line, SCC4, with retroviruses encoding wild-type and mutant chick beta1 integrin subunits. We examined the ability of adhesion-blocking chick beta1-specific antibodies to inhibit suspension-induced terminal differentiation of primary human keratinocytes and the ability of the chick beta1 subunit to promote spontaneous differentiation of SCC4. A D154A point mutant clustered in focal adhesions but was inactive in the differentiation assays, showing that differentiation regulation required a functional ligand-binding domain. The signal transduced by beta1 integrins in normal keratinocytes was "do not differentiate" (transduced by ligand-occupied receptors) as opposed to "do differentiate" (transduced by unoccupied receptors), and the signal depended on the absolute number, rather than on the proportion, of occupied receptors. Single and double point mutations in cyto-2 and -3, the NPXY motifs, prevented focal adhesion targeting without inhibiting differentiation control. However, deletions in the proximal part of the cytoplasmic domain, affecting cyto-1, abolished the differentiation-regulatory ability of the beta1 subunit. We conclude that distinct signaling pathways are involved in beta1 integrin-mediated adhesion and differentiation control in keratinocytes.  相似文献   

20.
BALB-/MK-2 mouse epidermal keratinocytes required epidermal growth factor for proliferation and terminally differentiated in response to high Ca2+ concentration. Infection with retroviruses containing transforming genes of the src and ras oncogene families led to rapid loss of epidermal growth factor dependence, in some cases, accompanied by alterations in cellular morphology. The virus-altered cells continued to proliferate in the presence of high levels of extracellular calcium but exhibited alterations in normal keratinocyte terminal differentiation that appear to be specific to the particular oncogene. These alterations bore similarities to abnormalities in differentiation observed in naturally occurring squamous epithelial malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号