首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was made of the effect of different radiation doses on the brain enzymes degrading enkephalins. Enkephalin aminopeptidase activity decreased during the first 60 min following irradiation with a dose of 774 X 10(-4) C/kg and increased after a dose of 3096 X X 10(-4) C/kg; enkephalinase A exhibited opposite changes. 48 hr after irradiation, enkephalin aminopeptidase activity exceeded the normal level, and no significant changes occurred in encephaliase A activity irrespective of the radiation dose.  相似文献   

2.
The possible role of nitric oxide (*NO) in brain mitochondrial maturation was studied. Within the first 5 min after birth, a sharp increase in ATP concentrations was observed, coinciding with an increase in mitochondrial complex II-III (succinate-cytochrome c reductase) activity, while complex I (NADH-CoQ1 reductase) and complex IV (cytochrome c oxidase) activities remained unchanged. Under the same circumstances, cGMP concentrations were increased by 5 min after birth, correlating significantly with ATP concentrations. Since ATP concentrations also correlated significantly with mitochondrial complex II-III activity, these three parameters may be associated. Inhibition of *NO synthase activity brought about by the administration of N(omega)-nitro-L-arginine monomethyl ester to mothers prevented the postnatal increase in cGMP and ATP levels and complex II-III activity. These results suggest that early postnatal mitochondrial maturation in the brain is a *NO-mediated process.  相似文献   

3.
In order to understand the mechanisms of intestinal injuries due to ionizing radiation, various groups of rats have been whole-body irradiated by gamma-rays at two dose rates (1 Gy/min and 1 Gy/hr), three doses (1, 2 and 4 Gy) and two post-irradiation times (24 and 48 hr). Duodenum samples of the animals were prepared for light microscopy, according to classical methods for histology and TUNEL reaction. A small number of morphological differences were observed within the mucosa between the two dose rates used. The extent and the number of lesions were more important at the slower dose rate (1 Gy/hr) and increased with the total dose. Clear cavities were seen inside the lamina propria which appeared like capillaries free of blood cells. The mitotic index calculated from crypt cells showed a regular decrease with the dose, which was exacerbated at 48 hr post-irradiation. On the other hand, the apoptotic index increased with the dose and the postirradiation time. Our results lead to hypothesize another mechanism of intestinal mucosa renewal allowing to explain mucosa denudations observed after radiotherapy. Thus we propose a new concept in which the duodenal mucosa renewal may occur by whole villi shedding into the duodenal lumen.  相似文献   

4.
5.
V P Fedorov 《Radiobiologiia》1990,30(3):378-384
Neurohistological, histochemical, electron-microscopic and biometric techniques were used to study the response of rat brain to irradiation within a wide range of doses. Nerve cells were shown to be highly radioresistant. At the same time, synapses and blood-brain barrier structures were highly radiosensitive. The pathomorphologic changes in different brain areas followed a dose-time function.  相似文献   

6.
7.
Rapid inactivation of enzymes prior to the assay of rat brain catecholamines was evaluated. Regional levels of norepinephrine and dopamine were measured by high performance liquid chromatography with electrochemical detection after enzyme inactivation by microwave irradiation at levels of 1.3 kw and 5 kw, and compared with decapitation. The differences found in regional levels of catecholamines between the two methods of euthanasia indicate that rapid inactivation of brain enzymes is necessary for accurate analysis of catecholamines in rat brain.  相似文献   

8.
In experiments with Wistar rats, a study was made of the content of antibody-forming cells and cytotoxic activity of normal killers after long-term administration of tritium oxide (3HOH) (370 kBq.g-1 of body mass daily, cumulative dose, 8.1 Gy, and dose rate, 8.5 cGy/day), and after gamma irradiation with corresponding doses. The long-term radiation effect caused a decrease in the immunity indices: the impairment of the immune reactions was more pronounced after the effect of 3HOH than after gamma irradiation. Damages to the immune system of mice and rats after irradiation with similar doses were compared.  相似文献   

9.
We have studied the effect of nitric oxide (NO) on the production of arachidonic acid ([14C]-AA) metabolites in the rat oviduct. The basal synthesis of eicosanoids was measured by the conversion of ([14C]-AA) to the different radiolabeled products of cyclooxygenase (COX). The oviducts incubated for 1 h with the labeled substrate of COX were able to convert 3.3 +/- 0.3% of ([14C]-AA) to 6-ceto-PGF1alpha, 10.7 +/- 1.0% to PGF2alpha, 13.5 +/- 1.2% to PGE2 and 6.3 +/- 0.5% to TXB2. The tissues were incubated with different doses of two NO donors: SIN-1 and Spermine NONOate. The results indicated that SIN-1 produces a significant decrease (50%; P < 0.05) in all prostanoids evaluated in a dose-response fashion. The inhibitory effect was completely reversed by addition of 20 microg/ml of hemoglobin (Hb), a NO scavenger. The addition of Spermine NONOate to the incubation medium diminished significantly (65%) the synthesis of COX metabolites suggesting that NO acts by inhibiting COX activity in the rat oviduct. However, NOS inhibitors, N(G)-L-arginine-methyl-ester (L-NAME) nd N(G)-L-monomethyl-arginine (L-NMMA) had no effect on basal production of the prostanoids. These results indicate that in the rat oviduct the synthesis of COX metabolites is negatively regulated by nitric oxide.  相似文献   

10.
In order to examine if differences in activity and inducibility of antioxidative enzymes in rat cerebral cortex and hippocampus are underlying their different sensitivity to radiation, we exposed four-day-old female Wistar rats to cranial radiation of 3 Gy of gamma-rays. After isolation of hippocampus and cortex 1 h or 24 h following exposure, activities of copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD) and catalase (CAT) were measured and compared to unirradiated controls. MnSOD protein levels were determined by SDS-PAGE electrophoresis and Western blot analysis. Our results showed that CuZnSOD activity in hippocampus and cortex was significantly decreased 1 h and 24 h after irradiation with 3 Gy of gamma-rays. MnSOD activity in both brain regions was also decreased 1 h after irradiation. 24 h following exposure, manganese SOD activity in hippocampus almost achieved control values, while in cortex it significantly exceeded the activity of the relevant controls. CAT activity in hippocampus and cortex remained stable 1 h, as well as 24 h after irradiation with 3 Gy of gamma-rays. MnSOD protein level in hippocampus and cortex decreased 1 h after irradiation with 3 Gy of gamma-rays. 24 h after exposure, MnSOD protein level in cortex was similar to control values, while in hippocampus it was still significantly decreased. We have concluded that regional differences in MnSOD radioinducibility are regulated at the level of protein synthesis, and that they represent one of the main reasons for region-specific radiosensitivity of the brain.  相似文献   

11.
12.
Yi Wang  Emad Tajkhorshid 《Proteins》2010,78(3):661-670
Involvement of aquaporins in gas conduction across the membrane and the physiological significance of this process have attracted marked attention from both experimental and theoretical studies. Previous work demonstrated that AQP1 is permeable to both CO2 and O2. Here we employ various simulation techniques to examine the permeability of the brain aquaporin AQP4 to NO and O2 and to describe energetics and pathways associated with these phenomena. The energy barrier to NO and O2 permeation through AQP4 central pore is found to be only ~3 kcal mol?1. The results suggest that the central pore of AQP4, similar to that of AQP1, can indeed conduct gas molecules. Interestingly, despite a longer and narrower central pore, AQP4 appears to provide an energetically more favorable permeation pathway for gas molecules than AQP1, mainly due to the different orientation of its charged residues near the pore entrance. Although the low barrier against gas permeation through AQP4 indicates that it can participate in gas conduction across the cellular membrane, physiological relevance of the phenomenon remains to be established experimentally, particularly since pure lipid bilayers appear to present a more favorable pathway for gas conduction across the membrane. With an energy well of ?1.8 kcal mol?1, the central pore of AQP4 may also act as a reservoir for NO molecules to accumulate in the membrane. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
During the development of the brain, nitric oxide and synapsins, the latter being phosphoproteins associated to presynaptic membrane vesicles, are abundant in presynaptic terminals and play important and similar roles in neurotransmitter release, morphogenesis, synaptogenesis, and synaptic plasticity. These mechanisms are fundamental for neuronal development and plasticity and constitute important factors for the formation of neuroanatomical structures. Neural nitric oxide synthase (nNOS), synapsin I, and nNOS adapter protein (CAPON) constitute a ternary complex necessary for specific NO and synapsin functions at a presynaptic level. It is not known whether NO absence may affect the presence and/or activity of synapsins during brain development. To understand the role of NO in synaptogenesis, we studied the effects of NOS inhibition on synapsin I expression at a postnatal stage. Rat pups were treated with a competitive NOS antagonist, N-nitro-L-arginine methyl ester, from postnatal days 3 to 23. Control pups received exclusively an equivalent volume of saline solution. Histochemical and immunochemical techniques for NADPH-d and synapsin I, respectively, were carried out. NOS inhibition elicited a significant reduction in synapsin I immunoreactive density and NADPH-d activity in the brain in the analyzed areas-prefrontal cortex, hippocampus, and dorsal thalamus. These data show that the alterations originated by NO and synapsin deficiencies produce a diminution in synaptic density. Thus, functions that depend on the formation of synaptic connections such as learning and memory could be affected by NO deficiency.  相似文献   

14.
Quantitative and qualitative morphological changes in neurons and glia of rat brain were studied one month after exposure to accelerated carbon ions 4 GeV/nucleon (LET-76 MeV cm2.r-1) and gamma-radiation (137Cs, 0.25 to 4.0 Gy). There were certain peculiarities in the structural changes induced by the effect of carbon ions that possessed a higher relative biological effectiveness.  相似文献   

15.
Nitric oxide and its role in ischaemic brain injury   总被引:18,自引:0,他引:18  
The role of the neural messenger nitric oxide (NO) in cerebral ischaemia has been investigated extensively in the past decade. NO may play either a protective or destructive role in ischaemia and the literature is plagued with contradictory findings. Working with NO presents many unique difficulties and here we review the potential artifacts that may have contributed to discrepancies and cause future problems for the unwary investigator. Recent evidence challenges the idea that NO from neurones builds up to levels (micromolar) sufficient to directly elicit cell death during the post-ischaemic period. Concomitantly, the case is strengthened for a role of NO in delayed death mediated post-ischaemia by the inducible NO synthase. Mechanistically it seems unlikely that NO is released in high enough quantities to inhibit respiration in vivo; the formation of reactive nitrogen species, such as peroxynitrite, represents the more likely pathway to cell death. The protective and restorative properties of NO have become of increasing interest. NO from endothelial cells may, via stimulating cGMP production, protect the ischaemic brain by acutely augmenting blood flow, and by helping to form new blood vessels in the longer term (angiogenesis). Elevated cGMP production may also stop cells dying by inhibiting apoptosis and help repair damage by stimulating neurogenesis. In addition NO may act as a direct antioxidant and participate in the triggering of protective gene expression programmes that underlie cerebral ischaemic preconditioning. Better understanding of the molecular mechanisms by which NO is protective may ultimately identify new potential therapeutic targets.  相似文献   

16.
The purpose of this study is to determine whether inducible nitric oxide synthase (iNOS) is involved in the pathogenesis of testicular ischemia-reperfusion (I/R) injury in association with germ cell death, through either necrosis or apoptosis. Western blot analysis showed that iNOS expression was markedly increased 1 h after ischemia, and was accompanied by a huge nitric oxide (NO) production, as measured by the Griess method, with a peak at 48 h of reperfusion. Immunohistochemistry showed that iNOS was expressed predominantly in the macrophage-like cells infiltrated in the interstitial tissues of the testis. Intraperitoneal injection of aminoguanidine (AMG) (400 mg/day), the inhibitor of iNOS, reduced NO production by 57.7% at 96 h of reperfusion. Calpain activation and proteolysis of alpha-fodrin induced by I/R were inhibited by AMG. Germ cell apoptosis was demonstrated by in situ TUNEL and DNA fragmentation on agarose gel electrophoresis. Germ cell apoptosis was maximally induced at 24 h of reperfusion, and was not inhibited by AMG. NO produced by iNOS in the delayed phase of reperfusion promoted alpha-fodrin proteolysis, which is closely associated with necrosis. Inducible NOS inhibition combined with calpain inhibition may improve impaired spermatogenesis after testicular torsion.  相似文献   

17.
Microbiological analysis of rock exposed to gamma-radiation doses between 0 and 9.34 kGy indicated that some microorganisms became viable but nonculturable (VBNC) and lost metabolic capacity as measured by BIOLOG microtiter plates. To investigate this phenomenon, portions of irradiated rock were placed at 4 degrees C for 2 months in an attempt to resuscitate the microbes to a culturable state. Culturable heterotrophs were enumerated and BIOLOG plates were used to determine the metabolic capability of the microbial community. Culturable bacteria that had previously been nonculturable were found at all doses. The number of colony types decreased from 26 in the nonirradiated control rock to between 9 and 10 in rock irradiated at doses ranging from 2.34 to 9.34 kGy. BIOLOG plates indicated partial recovery of metabolic capacity in all the samples tested. Fatty acid methyl ester analysis of the recovered isolates using the MIDI system (Microbial ID, Inc.) yielded three distinct groups of related bacteria. All resuscitated isolates clustered with the original nonirradiated isolates at the genus level, and 92% of them clustered at the species level. These results indicate that microbes were likely resuscitated from a VBNC state.  相似文献   

18.
Nitric oxide (NO) has been implicated in the process of cerebral ischemia/reperfusion injury. We have examined the production of NO, as reflected by nitrite (NO2 )+nitrate (NO3 ) accumulation, from synaptosomes isolated from neonatal or adult rat brain and subjected to a period of glucose and oxygen deprivation. There was a significant increase in the amount of NO2 +NO3 production from adult synaptosomes under these conditions, whereas there was no difference compared to control in the production of NO2 +NO3 from the neonatal synaptosomes. The total antioxidant status of the synaptosomes at these different stages of brain development was found to be the same. These data suggest that the vulnerability of the adult brain to ischemia/reperfusion injury may be associated with the production of NO from nerve terminals. The ratios of antioxidant capacity to NO production under such conditions have been shown here to be different between the neonatal and adult nerve terminals. Thus the well documented resistance of neonatal brain to ischemia/reperfusion injury may involve the neonatal nerve terminal being under less oxidative stress than the adult.  相似文献   

19.
Cricket brains were incubated in a saline containing nitric oxide (NO)-donor and phosphodiesterase inhibitor IBMX, which could activate soluble guanylate cyclase (sGC) to increase cGMP levels in the targets of NO. The increase of cGMP was detected by immunohistochemistry and enzyme linked immunosorbent assay. NO-induced cGMP immunohistochemistry revealed that many cell bodies of cricket brain showed cGMP immunoreactivity when preparations were treated with a saline containing 10 mM NO-donor SNP and phosphodiesterase inhibitor IBMX, but only a few cell bodies showed immunoreactivity when preparations were incubated without NO-donor. The concentration of cGMP in cricket brains were then measured by using cGMP-specific enzyme linked immunosorbent assay. Cricket brains were treated with a saline containing 1 microM of NO-donor NOR3 and 1 mM IBMX. The cGMP levels in the brain were increased about 75% compared to control preparations that was treated with a cricket saline containing IBMX. The level of cGMP decreased about 40% when preparations were incubated NOR3 saline containing sGC inhibitor ODQ. These results indicate that NO activates sGC and increases the levels of cGMP in particular neurons of the cricket brain and that the level of cGMP would be kept a particular level, which might regulate synaptic efficacy in the neurotransmission.  相似文献   

20.
EPR research with use a trap NO--complex DTC-Fe has shown that NO synthesis increased 6 hours after vaccination and was maximal 10 days. The level of NO has decreased up to the initial significance 20 days after vaccination. Dynamics of EPR signals magnitudes in liver and blood for this period was investigated. We offer use BCG vaccination as a model for study of different factors and chemical substances effects on NO synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号