首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we produced monoclonal antibodies reacting specifically with the reticular meshwork (RM) of lymphoid tissues, and demonstrated that, in the splenic white pulp of normal mouse, the antigenic heterogeneity of RM was associated with the segregation of the T and B lymphocytes. In the present study, we attempted to visualize further the interaction between splenic RM and T and B lymphocytes transferred into severe combined immunodeficient (SCID) mice. The splenic white pulp of naive SCID mice, containing a few T and B cells, showed little tendency for T-B segregation and antigenic diversity of RM. Transfer of spleen or bone marrow cells from normal mice resulted in complete recovery of lymphocyte populations, showing not only a clear segregation of T and B lymphocytes but also a remarkable antigenic diversity of RM. The same results were obtained following the transfer of spleen or bone marrow cells from the nude mouse. Next, we transferred purified T lymphocytes to one group of SCID mice and B cells to another. In mice given T cells, a few B cells were observed in the white puop; T lymphocytes lodged not only in the inner periarterial lymphatic sheath (PALS) but also in the outer PALS and follicles. In the animals to which B cells were transferred, T cells were few and the homing of B cells occurred only into their proper compartments, such as the outer PALS, follicles and marginal zone, but not in the inner PALS. Thus, B cells can home into their proper compartments of the splenic white pulp independently of T lymphocytes.  相似文献   

2.
The histological organization of the periarterial lymphoid sheath (PALS) was studied during the postnatal life of the golden hamster Mesocricetus auratus with special interest in the cell components occurring in each of their regions. Our results suggest a role of the cell components defining the splenic microenvironment at each developmental stage in governing the developmental process. This process can be temporarily and histologically divide into three stages: 1. At birth, a few lymphocytes and lymphoblasts surrounding the central artery define primitive PALS. 2. A second period is determined on the 2nd day by the appearance of a marginal sinus which bounds the two splenic compartments, white and red pulp. The PALS increases circumferentially around the central artery defined by the pattern of reticular cells and fibres. 3. Between the 4th and 10th days, the PALS reaches its definitive organization, except for the absence of primary and secondary lymphoid follicles, defining an inner and outer region. The marginal zone appears on the 6th day.  相似文献   

3.
Summary The structural characteristics and cellular elements of the boundary zone between the white and red pulp of the human spleen were studied by SEM and TEM. The boundary zone consisted of both the perifollicular region and the region surrounding the periarterial lymphoid sheath. The perifollicular region was further subdivided into two, equally thick layers. The inner half layer of the perifollicular region outside the mantle zone of the lymph follicle was composed of tightly packed medium-sized lymphocytes, interspersed by a small number of reticular cells. The outer half layer was composed of a reticular cell meshwork containing blood cells in vessels, which communicated with the splenic cords of the red pulp. Intermittent rows of reticular cells distinguished the outer from the inner half layer. The region surrounding the periarterial lymphoid sheath revealed the same type of reticular cell meshwork as the outer half layer of the perifollicular region. Capillary ends opened into the reticular cell meshwork, which suggested the presence of an open circulation in the human spleen. A deep lymphatic vessel which communicated with the periarterial lymphoid sheath was noted.  相似文献   

4.
Dendritic cells in the splenic white pulp of mice were intensely immunoreactive for epidermal-type fatty acid binding protein (E-FABP). This specific immunostaining revealed a clear difference in morphology between the dendritic cells in the periarterial lymphoid sheath (PALS) and follicular dendritic cells in the follicles in terms of cell sizes and process branching. No immunoreactivity was detected in dendritic cells in the marginal zones and the red pulp, although endothelial cells of almost all capillaries in the red pulp were immunoreactive for E-FABP. After peritoneal injection of lipopolysaccharide, the immunoreactive cells in PALS progressively enlarged and became rounded in shape with a peak in size at 24 h postinjection and they eventually resumed the dendritic form at 48 h postinjection. Within each of the enlarged immunoreactive cell perikarya were included small immunonegative apoptotic cells, presumptive lymphocytes. Taken together, E-FABP is useful as a marker for dendritic cells in the splenic white pulp, and may be involved through combination with fatty acids in antigen presentation and retention as well as in cytokine production.  相似文献   

5.
A tentative model describing the passage of circulatory lymphocytes through the spleen is formulated in accord with known anatomical features. In order to preserve isomorphism between the model and the splenic system, the model is formulated in compartmental form and its design allows alternative routes and modes of lymphocyte transit to be considered. The simultaneous differential equations arising from the model are solved using an analogue computer which also provides the means whereby the performance of the model may be compared with suitable dynamic data drawn from literature. This not only allows the selection of a particular configuration of the model in preference to its alternatives, but also allows the numerical determination of certain unknown parameters. In the case of the rat spleen, best agreement between model and experimental data is obtained when between 10 and 25% of the total lymphocyte flux in the model spleen passes through the marginal zone where the average dwell time of the lymphocytes is about 50 min. The white pulp receives a lymphocyte flux from the marginal zone amounting to about 10% of the total splenic flux and the white pulp lymphocytes are sequestered for a period of 4-6 hr before release to the venous circulation. The red pulp receives 90% of the total splenic flux but the majority of lymphocytes find transit through the red pulp in less than 5 min. The remaining flux of lymphocytes, amounting to 10% of the splenic input, is delayed in transit through the red pulp by 2-3 hr before release to the venous circulation.  相似文献   

6.
The three-dimensional structure of human splenic white pulp compartments.   总被引:3,自引:0,他引:3  
The precise arrangement of B- and T-lymphocytes in the different compartments of the human splenic white pulp is still largely unknown. We therefore performed a 3D reconstruction of 150 serial sections of a representative adult human spleen alternately stained for CD3 and CD20. The results indicate that the T-cell regions of human spleens may be interrupted by B-cell follicles. Therefore, there is no continuous periarteriolar lymphatic T-cell sheath (PALS) around white pulp arterioles. An arteriole may be surrounded by T-lymphocytes at one level, then run across a follicle without any T-cells around, and finally re-enter a T-cell region. T- and B-cell compartments are intricately interdigitated in the human splenic white pulp. CD4(+) T-lymphocytes and the typical fibroblasts of the T-cell region may extend as a thin shell at the follicular surface within the marginal zone. On the other hand, IgD(++) B-cells continue from the follicular outer marginal zone along the surface of the T-cell region. Our findings indicate that the microanatomy of the splenic white pulp differs between humans and rodents. This may have consequences for the immigration of recirculating lymphocytes and for initial interactions among antigen-specific T- and B-lymphocytes.  相似文献   

7.
A tentative model describing the passage of circulatory lymphocytes through the spleen is formulated in accord with known anatomical features. In order to preserve isomorphism between the model and the splenic system, the model is formulated in compartmental form and its design allows alternative routes and modes of lymphocyte transit to be considered. The simultaneous differential equations arising from the model are solved using an analogue computer which also provides the means whereby the performance of the model may be compared with suitable dynamic data drawn from literature. This not only allows the selection of a particular configuration of the model in preference to its alternatives, but also allows the numerical determination of certain unknown parameters. In the case of the rat spleen, best agreement between model and experimental data is obtained when between 10 and 25% of the total lymphocyte flux in the model spleen passes through the marginal zone where the average dwell time of the lymphocytes is about 50 min. The white pulp receives a lymphocyte flux from the marginal zone amounting to about 10% of the total splenic flux and the white pulp lymphocytes are sequestered for a period of 4–6 hr before release to the venous circulation. The red pulp receives 90% of the total splenic flux but the majority of lymphocytes find transit through the red pulp in less than 5 min. The remaining flux of lymphocytes, amounting to 10% of the splenic input, is delayed in transit through the red pulp by 2–3 hr before release to the venous circulation.  相似文献   

8.
Migration pathways of B cell and CD4+ and CD8+ T cell subsets of murine thoracic duct lymphocytes (TDL) were mapped. Per weight, the spleen accumulated more TDL than any other organ, regardless of lymphocyte subset. Spleen autoradiographs showed early accumulations of TDL in marginal zone and red pulp. Many TDL exited the red pulp within 1 hr via splenic veins. The remaining TDL entered the white pulp, not directly from the adjacent marginal zone but via distal periarterial lymphatic sheaths (dPALS). From dPALS, T cells migrated proximally along the central artery into proximal sheaths (pPALS) and exited the white pulp via deep lymphatic vessels. B cells left dPALS to enter lymphatic nodules (NOD), then also exited via deep lymphatics. T cells homed to lymph nodes more efficiently than B cells. Lymphocytes entered nodes via high-endothelial venules (HEV). CD4+ TDL reached higher absolute concentrations in diffuse cortex than did CD8+ T cells. However, CD8+ TDL moved more quickly through diffuse cortex than did CD4+ TDL. B cells migrated from HEV into NOD. Both T and B TDL exited via cortical and medullary sinuses and efferent lymphatics. A migration pathway across medullary cords is described. All TDL subsets homed equally well to Peyer's patches. T TDL migrated from HEV into paranodular zones while B cells moved from HEV into NOD. All TDL exited via lymphatics. Few TDL entered zones beneath dome epithelium. All subsets were observed within indentations in presumptive M cells of the dome epithelium.  相似文献   

9.
In earlier studies we investigated the in vivo effects of lipopolysaccharide (LPS) on lymphoid and non-lymphoid cells in the mouse spleen. In order to find out whether LPS localizes in and/or on cells that are affected by this compound, the aim of the present study was to investigate the localization of intravenously injected LPS in the mouse spleen using an immunoperoxidase technique. At different time points after injection, the localization of LPS is demonstrated and LPS-containing cells are characterized. Most of the injected LPS has been taken up by marginal zone macrophages at 2 h after its administration whereas macrophages in the red pulp and at the periphery of the white pulp (marginal metallophils) have ingested less LPS. In the periarteriolar lymphocyte sheath, LPS is concentrated in a large number of acid phosphatase-negative, Ia-positive, large branched cells which were suggested to represent interdigitating cells. Moreover an extracellular dendritic localization pattern of LPS is demonstrated in the corona and central parts of the follicles at different time intervals after its injection. The significance of the localization pattern of LPS in the mouse spleen is discussed.  相似文献   

10.
M Kotani  K Matsuno  T Ezaki 《Acta anatomica》1986,126(3):193-198
The spleen of (PvG/c X DA)F1 rats, intravenously injected with carbon, was investigated. Large heavily carbon-laden (LHC) macrophages, which were found only in the red pulp at 30 min, appeared along marginal zone bridging channels (MZBC) from the red pulp towards the white pulp side successively during 1-6 h after carbon injection. After this time, they appeared in the periarterial lymphatic sheaths (PALS) near MZBC and then in the deeper PALS along the arteries by 5-10 days. Frequently, they were found in rows from MZBC into the white pulp. These findings suggest migration of LHC macrophages from the red towards the white pulp trough MZBC. Possible migration of LHC macrophages through MZBC was observed for a long period--at least 3 months examined. LHC macrophages came together preferentially in PALS and in and around the germinal centers consisting of large pyroninophilic lymphoblastoid cells. Occasionally, possible migration of LHC macrophages from regions around sinuses crossing the marginal zone vertically (vertical sinus) was also observed. Sinuses accompanied by LHC macrophages often ran parallel in close association with MZBC, particularly at sites of MZBC near the red pulp.  相似文献   

11.
Although a great deal is known about T cell entry into lymph nodes, much less is understood about how T lymphocytes access the splenic white pulp (WP). We show in this study that, as recently described for lymph nodes, fibroblastic reticular cells (FRCs) form a network in the T cell zone (periarteriolar lymphoid sheath, PALS) of the WP on which T lymphocytes migrate. This network connects the PALS to the marginal zone (MZ), which is the initial site of lymphocyte entry from the blood. T cells do not enter the WP at random locations but instead traffic to that site using the FRC-rich MZ bridging channels (MZBCs). These data reveal that FRCs form a substrate for T cells in the spleen, guiding these lymphocytes from their site of entry in the MZ into the PALS, within which they continue to move on the same network.  相似文献   

12.
Summary In the present study comparative aspects of the ultrastructure of the spleen were analyzed in non-immunized and T-dependent antigen-challenged natterjacks, Bufo calamita. Special attention is focused on the role of the non-lymphoid components in the splenic immunoreactivity. Ten days after primary immunization with sheep erythrocytes, splenic lymphoid follicles increase considerably in number and size. By that time, lymphoblasts, medium and large lymphocytes abound in the periphery of the white pulp near the marginal zone. Meanwhile, in the red pulp numerous monocytes migrating across the sinusoidal walls apparently transform into giant, dendritic-like cells. Twenty days after immunization the splenic lymphoid follicles decrease in number, although certain reactivity persists and numerous plasma cells occur in the cell cords and sinusoids of the red pulp. These results are discussed comparatively with those reported in other lower vertebrates.  相似文献   

13.
W M Steven 《Acta anatomica》1986,125(3):201-207
Although sheep erythrocytes (SRBCs) are extensively used as an antigen in immunological studies, their histological distribution in lymphoid tissues has received little attention. The objective of this study was to determine the histological distribution of injected SRBCs in rat spleen. SRBCs were labelled with fluorescein isothiocyanate (FITC) to facilitate their identification in spleen sections with fluorescence microscopy. Rats received intravenous injections of FITC-labelled SRBCs and were sacrificed at various periods after injection. At 15 min, SRBCs were distributed throughout the marginal zone and red pulp. After 4 h, intact SRBCs were located mainly in the red pulp, while the marginal zone contained fluorescent flocculent material. At later periods this material was present in the periarterial lymphatic sheath (PALS) and in the light and dark zones of the germinal centers. By 12 h, the most intensely labelled areas in the white pulp were the crescent-shaped light zones. In 12 and 24 h, the PALS contained numerous foci of labelled granules. Some of the dark zones also contained label. After 48 h, the only areas containing label were the light zones of the germinal centers.  相似文献   

14.
Summary These studies were designed to gain more detailed information on the sites of lymphocyte migration into the marginal zone, on lymphocyte segregation within this area and on subsequent migration of the cells in individual compartments of the rat spleen. A lymphocyte population enriched in T-lymphocytes was obtained from rat lymph nodes and was labeled with 5-(3H)uridine in vitro. Observations on localization of labeled lymphocytes at short time intervals following their intravenous transfusion into syngeneic recipients, indicate that the sites of emigration from the blood are the internal and external layers of the marginal zone. From here, the cells migrate towards the periarteriolar lymphoid sheath and the red pulp.Fellow of the Alexander-von-Humboldt-Stiftung. On leave from the Department of Histology and Embryology, Institute of Biostructure, Academy of Medicine, ul. Swiecickiego 6, PL-60-781 Pozna, Poland  相似文献   

15.
Corrosion casts of mouse spleen, examined by scanning electron microscopy, enabled vascular pathways of the arterial, intermediate, and venous circulations to be traced over considerable distances. The arterial tree is surrounded by white pulp immediately upon entering at the hilus, and relatively few arterioles extend into red pulp. A profusion of capillaries is present in both periarterial lymphatic sheaths and lymphatic nodules, arranged as bifurcating systems (rather than anastomosing networks) terminating in the marginal sinus (MS) and marginal zone (MZ). The MS, which is situated between white pulp and MZ, consists of a discontinuous layer of flattened anastomosing spaces which are up to six times as large as those in rat spleen. Extensive filling of the entire MZ took place before appreciable filling of surrounding red pulp occurred. Capillary terminations in red pulp are always continuous with reticular meshwork, i.e., no evidence for a “closed” circulation was found. Casts of the venous origins support the classification “pulp venules” rather than “venous sinuses” and show major morphological differences from the richly anastomosing system of sinuses in rat. In the subcapsular region of mouse spleen large anastomosing veins ramify over the surface, with reticular meshwork occupying extensive areas between adjacent veins. For in vivo microscopy this arrangement offers advantages over that found in rat spleen (accompanying paper), where almost the entire surface is densely covered with venous sinuses.  相似文献   

16.
Changes in the structure of the rat spleen and the distribution of immune proteasomes in it during early postnatal development have been studied using double immunofluorescent staining of tissue sections with antibodies to the LMP7 immune proteasome subunit and to specific markers of T and B lymphocytes. It has been shown that the white pulp on postnatal day 5 is not yet colonized by lymphocytes and contains a smaller amount of immune proteasomes than the red pulp. At this stage, T and B lymphocytes concentrate mainly in the red pulp. On day 8, B lymphocytes occupy the marginal zone, while T lymphocytes aggregate into dense strands close to the white pulp. By day 18, T lymphocytes form periarteriolar sheaths in the white pulp, and the contents of immune proteasomes in the red and white pulp become equally high. An increase in the total content of immune proteasomes in the spleen on the third postnatal week was revealed in our previous study by Western blotting. In addition to T and B lymphocytes, immune proteasomes have also been revealed in other spleen cell types, probably in macrophages and reticular cells of the white pulp. Thus, the postnatal development of the spleen is associated with an increase in the contents of immune proteasomes in it.  相似文献   

17.
Siberian hamsters (Photopus sungorus) were injected with 3H dihydroxycholecalciferol (vitamin D, soltriol). Autoradiograms of spleen, thymus, and lymph nodes revealed nuclear concentration of the hormone in a select population of cells in all of these organs. In the spleen, labeled cells were abundant in the red pulp, but sparse in the white pulp. In the periarterial lymphatic sheath (PALS) labeled cells were found predominantly at the outer rim, with a few scattered labeled cells in the inner PALS and in the marginal zone. Lymphocytes, including pyronin-positive plasma cells, did not display nuclear labeling. In the red pulp, some of the labeled cells contained pigmented inclusions in the cytoplasm, while most of the labeled cells did not appear phagocytic under the conditions of the experiment. In the thymus, labeled cells were most numerous in the medulla, but sparse in the cortex. Many of the thymic target cells were larger than the unlabeled lymphocytes, with a large and pale nucleus, sometimes containing a distinct nucleous, and with large and dendritic cytoplasm, having the appearance and distribution of epithelio-reticular cells. In lymph nodes, scattered labeled cells were conspicuous in or near the subcapsular sinus, while other cells did not concentrate radioactivity in their nuclei. The results indicate that nuclear receptors and direct genomic actions for soltriol exist in certain cell populations of lymphatic tissues that probably include reticular cells and a subpopulation of macrophages. These target cells may mediate effects of the steroid on lymphocytes that appear to have no or only very low numbers of nuclear receptors.  相似文献   

18.
Summary Sibirian hamsters (Photopus sungorus) were injected with3H dihydroxycholecalciferol (vitamin D, soltriol). Autoradiograms of spleen, thymus, and lymph nodes revealed nuclear concentration of the hormone in a select population of cells in all of these organs. In the spleen, labeled cells were abundant in the red pulp, but sparse in the white pulp. In the periarterial lymphatic sheath (PALS) labeled cells were found predominatly at the outer rim, with a few scattered labeled cells in the inner PALS and in the marginal zone. Lymphocytes, including pyronin-positive plasma cells, did not display nuclear labeling. In the red pulp, some of the labeled cells contained pigmented inclusions in the cytoplsm, while most of the labeled cells did not appear phagocytic under the conditions of the experiment. In the thymus, labeled cells were most numerous in the medulla, but sparse in the cortex. Many of the thymic target cells were larger than the unlabeled lymphocytes, with a large and pale nucleus, sometimes containing a distinct nucleolus, and with large and dendritic cytoplasm, having the appearance and distribution of epithelio-reticular cells. In lymph nodes, scattered labeled cells were conspicuous in or near the subcapsular sinus, while other cells did not concentrate radioactivity in their nuclei. The results indicate that nuclear receptors and direct genomic actions for soltriol exist in certain cell populations of lymphatic tissues that probably include reticular cells and a subpopulation of macrophages. These target cells may mediate effects of the steroid on lymphocytes that appear to have no or only very low numbers of nuclear receptors.  相似文献   

19.
Summary Male Wistar rats were injected intravenously with 5-(3H)uridine-labeled lymphocytes isolated from lymph nodes of syngeneic donors and enriched in T cells. After short periods of time (3 to 120 min after injection), labeled lymphocytes were localized in spleen compartments using autoradiography to identify routes of lymphocyte movement from blood into splenic parenchyma and to follow migration pathways of recirculating lymphocytes within the periarterial lymphoid sheath (PALS). Topographical analysis of labeled lymphocytes was performed in specific planes of PALS characterized by the diameter of the arterial vessel and termed PALS large, PALS medium, and PALS small (PALS L, PALS M, PALS S, respectively). Attention was also paid to accumulations of labeled lymphocytes close to the arterial vessel wall. Initially, labeled lymphocytes were localized in PALS S and PALS M near the terminal branching of arterial vessels and in the marginal zone (MZ). We conclude that lymphocytes emigrate from blood into splenic parenchyma within two white pulp compartments: in MZ, and directly within PALS through the wall of capillary vessels. The sequential accumulation of labeled cells near arterial vessels of increasing diameter suggests that the recirculating pool of lymphocytes migrates into the central part of PALS L by two routes: from MZ, and along arterial vessels from PALS S and PALS M.R.B. was a fellow of the Alexander von Humboldt-Stiftung, on leave from the Department of Histology and Embryology, Institut of Biostructure, Academy of Medicine, ul. Swiecickiego 6, PL-60-781 Pozna, Poland.  相似文献   

20.
The capacity of the equine spleen to store and rapidly release as much as half the circulating blood volume after adrenergic stimulation depends upon the size of the spleen, its muscular capsule, and the distinctive structure of its red pulp. The unit, or lobule, of red pulp is a cylinder of pulp spaces organized in a reticular meshwork, supplied by a peripheral ring of arterial capillaries, and drained by a central venule. Reticular cells, which make up the meshwork of the pulp, contain an extraordinarily large complement of microfilaments and intermediate filaments and are richly innervated by nerves containing both dense and lucent core vesicles typical of adrenergic nerves. The wall of the pulp venule contains large apertures. The capacious red pulp would thus appear capable both of large-scale blood storage and, by the contractile adrenergic innervated reticulum and open venous vasculature, of rapid expression of stored blood into the circulation. Antigen-presenting cells are present not only in B and T cell zones in white pulp but in the periarterial macrophage sheath of red pulp as well. The periarterial macrophage sheath is one of the first sites of antigen capture, and the presence of these cells confers on it an immunological role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号