首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Carbohydrate uptake and catabolism by the gut microbiota of two species of temperate marine herbivorous fish were investigated using enzyme extracts prepared from microbial pellets. The fish studied were the herring cale Odax cyanomelas (Family Odacidae), which feeds on Ecklonia radiata, and the sea carp Crinodus lophodon (Family Aplodactylidae), which feeds primarily on red and green algae. Constitutive phosphoenolpyruvate phosphotransferase systems for glucose, galactose, fructose and mannitol were present in the microbiota of both fish. Hexokinase, fructokinase and mannitol dehydrogenase activities indicated that transport of the corresponding substrates may be coupled to permeases. Galactokinase activity was only detected in C. lophodon, as expected from its diet. Phosphofructokinase and pyruvate kinase activities were taken to indicate that carbohydrate metabolism proceeded via the fructose bisphosphate pathway. Differences in the transport and metabolism of the different monomers by the microbiota of O. cyanomelas and C. lophodon correlated strongly with predicted monomer availability in the gut of each species, suggesting that the microbiota are an integral component of digestion in these fish. The rates of production in adult fish of acetate, the major short-chain fatty acid, were estimated as 136 mol·h-1 in O. cyanomelas and 166 mol·h-1 in C. lophodon. These rates indicate that microbial fermentation is a potentially important source of energy for the host fish.Abbreviations AK acetate kinase - CTAB cetyl trimethylammonium bromide - FK fructokinase - F1P fructose 1-phosphate - F1PK fructose 1-phosphate kinase - F1-6BP Fructose 1,6-bisphosphate - F6P fructose 6-phosphate - GK galactokinase - Gal1P galactose 1-phosphate - G6P glucose 6-phosphate - HK hexokinase - MDH mannitol dehydrogenase - M1P mannitol 1-phosphate - M1-PDH mannitol 1-phosphate dehydrogenase - PEP phosphoenolpyruvate - PFK phosphofructokinase - PK pyruvate kinase - PTS phosphotransferase system - SCFA short-chain fatty acid(s) - TFA trifluoroacetic acid  相似文献   

2.
J. J. MacCarthy  P. K. Stumpf 《Planta》1980,150(5):412-418
A cell-free extract containing the enzymes for de-novo synthesis, elongation and desaturation of fatty acids was prepared from cultured cells of Catharanthus roseus G. Don. 14C-Fatty acids synthesized by the extract from [2-14C]malonyl CoA substrate were palmitic (16:0), stearic (18:0) and oleic (18:1). Dialyzed extract was active and stable at room temperature and at 4° C, but was inactivated on boiling. There was an absolute requirement for NADPH for incorporation of [2-14C]malonyl CoA into total fatty acids. Escherichia coli acyl carrier protein stimulated total fatty-acid synthesis without affecting the relative ratio of individual fatty acids. Total fatty-acid synthesis at a rate of 45 nmol·mg-1 protein·h-1 occurred at a substrate level of 73 M malonyl CoA, cofactor levels of 500 M NADPH, 30 g·ml-1 E. coli ACP, and 1.0 mg·ml-1 extract protein. Total fatty acid synthesis was also sensitive to cerulenin and CoA levels. Variations in the relative abundance of individual 14C-fatty acids were regulated by concentrations of [14C]malonyl CoA. NADPH and ferredoxin, as well as by pH, temperature and length of incubation. Fatty-acid synthetase enzymes responsible for [14C]palmitic acid were rapidly saturated at a low substrate level (0.3 M malonyl CoA). Increasing the level of [2-14C]malonyl CoA permitted further synthesis of [14C]stearate and [14C]oleate. Desaturation of [14C]stearate to [14C]oleate was stimulated by increasing the levels of NADPH and ferredoxin. The desaturase and elongase enzymes were sensitive to acidic pH. The desaturase was also unstable at 41° C, although fatty acid synthetase and elongase were unaffected by this temperature.Abbreviation ACP Acyl carrier protein  相似文献   

3.
Rainbow trout were used to characterize the direct influence of growth hormone on hepatic lipid mobilization in vitro. Liver was removed from fish fasted 72 h, sliced into 1-mm3 pieces and incubated in Hanks' medium containing ovine or salmon growth hormone (0.28 ng·ml-1–28 g·ml-1). Lipid mobilization, resulting from triacylglycerol hydrolysis, was evaluated by fatty acid and glycerol release into culture medium. Control rates of fatty acid release and glycerol release were 0.95±0.16 (mean ± SE) and 0.88±0.28 mol·l-1·mg fresh weight, respectively. Both ovine growth hormone (28 ng·ml-1) and salmon growth hormone (28 ng·ml-1) stimulated fatty acid release into culture medium, increasing rates by 112% and 97%, respectively, during the course of a 24-h incubation. Glycerol release was similarly augmented by growth hormone treatment. Growth hormone-stimulated metabolite release became evident within 12 h and persisted for up to 72 h. The presence of amino acids in the culture medium potentiated the lipolytic action of growth hormone. Ovine growth hormone (28 ng·ml-1) in the presence of amino acids stimulated a 53% increase in fatty acid, and a 108% increase in glycerol, release over rates observed in the absence of amino acids. Salmon growth hormone (28 ng·ml-1) in the presence of amino acids stimulated a 53% increase in fatty acid, and a 44% increase in glycerol, release over rates observed in the absence of amino acids. Ovine growth hormone (28 ng·ml-1) also stimulated gluconeogenesis, as indicated by a 75% increase in phosphoenolpyruvate carboxykinase activity in liver pieces incubated in the presence of amino acids. These results indicate that growth hormone directly stimulates lipid breakdown in the liver of trout and that amino acids potentiate growth hormone-stimulated lipolysis.Abbreviations AA amino acid(s) - dGDP deoxy-guanosine diphosphate - ED 50 50% effective dose - FA fatty acid(s) - fw fesh weight - GH growth hormone - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid - MS-222 tricaine methanesulfonate - MEM minimum essential medium - oGH ovine growth hormone - PEPCK phosphoenolpyruvate carboxykinase - PKc protein kinase C - rpm revolutions per minute - sGH salmon growth hormone - TG triacylglycerol - w/v weight per volume This paper was presented in abstract form at the Annual Meeting of the American Society of Zoologists, Dec. 26–30, 1991, Atlanta, GA  相似文献   

4.
Urine production and N output were monitored in northern elephant seal (Mirounga angustirostris) pups progressing through 10 weeks of a natural postweaning fast. Urine output declind by 84% (to 69±12 ml·day–1) at 10 weeks (P<0.05). Glomerular filtration rate at 10 weeks was 51% of the 67±3 ml serum·min–1 observed during week 1 (P<0.05). Urine N excretion fell by 69% to 1.2±0.17 g·day–1, while urinary concentration increased (P<0.05). Serum urea declined from an initial 11 mmol·1–1 to 5–7 mmol·1–1 by 5 weeks. The fall in urinary N loss (and thus amino acid oxidation) was concomitant with depressed metabolic rate. Therefore, protein contributed little toward meeting energy demands (i.e., <4% of average metabolic rate) throughout fasting. These data indicate that fasting pups improve water conservation and minimize protein catabolism during prolonged natural fasts without an exogenous source of water.Abbreviations AA amino acid(s) - AMR average metabolic rate - ANOVA one-way analysis of variance - BMR basal metabolic rate - BUN blood urea nitrogen - EP end product - EWL evaporative water loss - [Gr]s serum creatinine concentration - GFR glomerular filtration rate - LBM lean body mass - LML Long Marine Laboratory - MR metabolic rate - NEFA non-esterified fatty acids - RMR resting metabolic rate - TCA tricarboxylic acid - U:C ulinary urea: creatinine concentration ratio  相似文献   

5.
B. Liedvogel  R. Bäuerle 《Planta》1986,169(4):481-489
Chloroplasts from the cotyledons of mustard (Sinapis alba L.) seedlings were isolated on Percoll gradients, and showed a high degree of intactness (92%) and purity as judged by electron microscopy and marker-enzyme analysis (cytoplasmic contamination lower than 0.4% on a protein basis). The chloroplasts synthesized longchain fatty acids from both precursors [1-14C] acetate and [2-14C]pyruvate; maximum incorporation rates were 96 nmol·(mg Chl)-1·h-1 for acetate and 213 nmol·(mg Chl)-1·h-1 for pyruvate. Acetyl-CoA-producing enzymatic activities, namely acetyl-CoA synthetase (EC 6.2.1.1.) and a pyruvate dehydrogenase complex, showed specific activities of 14.8 nmol·(mg protein)-1·min-1 and 18.2 nmol·(mg protein)-1·min-1, respectively. The glycolytic enzymes phosphoglyceromutase (EC 2.7.5.3) phosphopyruvate hydratase (EC 4.2.1.11) and pyruvate kinase (EC 2.7.1.40) were all found to be components of these chloroplasts, thus indicating a possible pathway for intraplastid acetyl-CoA formation.Abbreviations ACS acetyl coenzyme A synthetase - Chl chlorophyll - DTE 1,4-dithioerythritol - PDHC pyruvate dehydrogenase complex - 3-PGA 3-phosphoglyceric acid  相似文献   

6.
C. M. Willmer  R. Don  W. Parker 《Planta》1978,139(3):281-287
Straight-chain saturated fatty acids (C6-C11) and abscisic acid (ABA) accumulate in the leaves of Phaseolus vulgaris L. and Hordeum vulgare L. under water stress. ABA and certain of the fatty acids, particularly decanoic and undecanoic acid, can inhibit stomatal opening and cause stomatal closure in epidermal strips of Commelina communis L. depending on the incubating medium used. 10-4 M (±)-ABA inhibits opening in media containing either high or relatively low concentrations of KCl but causes closure only in the latter medium. The fatty acids (at 10-4 M) prevent opening in both media while significant closure of open stomata was caused only by undecanoic acid in both media and, additionally, by decanoic acid in the low-KCl medium. 10-4 M formic acid also caused stomatal closure and prevented opening to significant extents in the low-KCl medium (it was not tested in the high-KCl medium). The efficacy of undecanoic acid in causing 50% inhibition of opening is about three orders of magnitude lower than that of ABA. At a concentration of 10-3 M, nonanoic, decanoic and particularly undecanoic acid and all-trans-farnesol cause increased cell leakage in Beta vulgaris L. root tissue. Undecanoic acid (10-4 M) also causes some loss of guard cell integrity in C. communis within 1.5 h of treatment. ABA (10-4 M) reduces transpiration rates in barley and C. communis leaves when applied via the transpiration stream but decanoic and undecanoic acids did not have this effect. Transpiration was not affected when ABA or the fatty acids were applied to the leaf surfaces.Abbreviations ABA abscisic acid - RWC relative water content - SCFA short-chain fatty acids Deceased May 1977  相似文献   

7.
The pathway of autotrophic CO2 fixation in Methanobacterium thermoautotrophicum has been investigated by long term labelling of the organism with isotopic acetate and pyruvate while exponentially growing on H2 plus CO2. Maximally 2% of the cell carbon were derived from exogeneous tracer, 98% were synthesized from CO2. Since growth was obviously autotrophic the labelled compounds functioned as tracers of the cellular acetyl CoA and pyruvate pool during cell carbon synthesis from CO2. M. thermoautotrophicum growing in presence of U-14C acetate incorporated 14C into cell compounds derived from acetyl CoA (N-acetyl groups) as well as into compounds derived from pyruvate (alanine), oxaloacetate (aspartate), -ketoglutarate (glutamate), hexosephosphates (galactosamine), and pentosephosphates (ribose). The specific radioactities of N-acetylgroups and of the three amino acids were identical. The hexosamine exhibited a two times higher specific radioactivity, and the pentose a 1.6 times higher specific radioactivity than e.g. alanine. M. thermoautotrophicum growing in presence of 3-14C pyruvate, however, did not incorporate 14C into cell compounds directly derived from acetyl CoA. Those compounds derived from pyruvate, dicarboxylic acids and hexosephosphates became labelled. The specific radioactivities of alanine, aspartate and glutamate were identical; the hexosamine had a specific radioactivity twice as high as e.g. alanine.The finding that pyruvate was not incorporated into compounds derived from acetyl CoA, whereas acetate was incorporated into derivatives of acetyl CoA and pyruvate in a 1:1 ratio demonstrates that pyruvate is synthesized by reductive carboxylation of acetyl CoA. The data further provide evidence that in this autotrophic CO2 fixation pathway hexosephosphates and pentosephosphates are synthesized from CO2 via acetyl CoA and pyruvate.  相似文献   

8.
Acetyl coenzyme A (CoA) biosynthesis in spinach chloroplasts has been investigated by following the incorporation of bicarbonate and acetate into fatty acids under a variety of conditions. Both substrates were readily incorporated into fatty acids in a light-dependent manner by intact photosynthesising chloroplasts, but when the concentrations of these substrates were adjusted to those found in vivo, i.e. 200 M acetate, 10 M bicarbonate, then acetate was found to supply carbon atoms for fatty acids biosynthesis via acetyl CoA at forty times the rate of bicarbonate. It is proposed that extra-chloroplastic free acetate is the pricipal substrate for chloroplasts acetyl CoA biosynthesis in spinach.Abbreviations ACP acyl carrierprotein - CoASH coenzyme A  相似文献   

9.
The Gram positive anaerobeAcetobacterium woodii is able to grow autotrophically with a mixture of H2 and CO2 as the energy and carbon source. The question, by which pathway CO2 is assimilated, was studied using long term isotope labeling.Autotrophically growing cultures produced acetate parallel to cell proliferation, and, when U-[14C]acetate was present as tracer, incorporated radioactivity into all cell fractions. The specific radioactivity and the label positions were determined for those representative cell compounds which biosynthetically originated directly from acetyl CoA (N-acetyl groups), pyruvate (alanine), oxaloacetate (aspartate), -ketoglutarate (glutamate), and hexosephosphates (glucosamine). Per mol compound the same amount of labeled acetate was incorporated into N-acetyl groups, alanine (C-2, C-3), aspartate (C-2, C-3), and twice the amount into glutamate (C-2, C-3, C-4, C-5) and into glucosamine. Consequently, the unlabeled carbon atoms of the C3–C6 compounds must have been derived from CO2 by carboxylation subsequent to acetyl CoA synthesis. When 0.2 mM 2-[14C]pyruvate was added to autotrophically growing cultures, also a substantial amount of radioactivity was incorporated. Two important differences in comparison to the acetate experiment were observed: The N-acetyl groups were almost unlabeled and glutamate contained the same specific radioactivity as alanine or aspartate.These data showed that acetyl CoA is the central intermediate for biosynthesis and excluded the operation of the Calvin cycle inA. woodii. The results were consistent with the operation of a different autotrophic CO2 fixation pathway in which CO2 is converted into acetyl CoA by total synthesis via methyltetrahydrofolate; acetyl CoA is then further reductively carboxylated to pyruvate.  相似文献   

10.
Summary Unidirectional 22Na+ and 36Cl fluxes were determined in short-circuited, stripped rumen mucosa from sheep by using the Ussing chamber technique. In both CO2/HCO 3 -containing and CO2/HCO 3 -free solutions, replacement of gluconate by short-chain fatty acids (SCFA, 39 mM) significantly enhanced mucosal-toserosal Na+ absorption without affecting the Cl transport in the same direction. Short-chain fatty acid stimulation of Na+ transport was at least partly independent of Cl and could almost completely be abolished by 1 mM mucosal amiloride, while stimulation of Na+ transport was enhanced by lowering the mucosal pH from 7.3 to 6.5. Similar to the SCFA action, raising the PCO2 in the mucosal bathing solution led to an increase in the amiloride-sensitive mucosal-to-serosal Na+ flux. Along with its effect on sodium transport, raising the PCO2 also stimulated chloride transport. The results are best explained by a model in which undissociated SCFA and/or CO2 permeate the cell membrane and produce a raise in intracellular H+ concentration. This stimulates an apical Na+/H+ exchange, leading to increased Na+ transport. The stimulatory effect of CO2 on Cl transport is probably mediated by a Cl/HCO 3 exchange mechanism in the apical membrane. Binding of SCFA anions to that exchange as described for the rat distal colon (Binder and Mehta 1989) probably does not play a major role in the rumen.Abbreviations DIDS 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid - G t transepithelial conductance (mS·cm-2) - HSCFA undissociated short-chain fatty acids - J ms mucosal-to-serosal flux (Eq · cm-2 · h-1) - J net net flux (Eq · cm-2 · h-1) - J sm serosal-to-mucosal flux (Eq · cm-2 · h-1) - PD transepithelial potential difference (mV) - SCFA dissociated short-chain fatty acids - SCFA short-chain fatty acids  相似文献   

11.
In this study we document growth, milk intake and energy consumption in nursing pups of icebreeding grey seals (Halichoerus grypus). Change in body composition of the pups, change in milk composition as lactation progresses, and mass transfer efficiency between nursing mothers and pups are also measured. Mass transfer efficiency between mother-pup pairs (n=8) was 42.5±8.4%. Pups were gaining a daily average of 2.0±0.7 kg (n=12), of which 75% was fat, 3% protein and 22% water. The total water influx was measured to be 43.23±8.07 ml·kg-1·day-1. Average CO2 production was 0.85±0.20 ml·g-1·h-1, which corresponds to a field metabolic rate of 0.55±0.13 MJ·kg-1·day-1, or 4.5±0.9 times the predicted basal metabolic rate based on body size (Kleiber 1975). Water and fat content in the milk changed dramatically as lacation progressed. At day 2 of nursing, fat and water content were 39.5±1.9% and 47.3±1.5%, respectively, while the corresponding figures for day 15 were 59.6±3.6% fat and 28.4±2.6% water. Protein content of the milk remained relatively stable during the lactation period with a value of 11.0±0.8% at day 2 and 10.4±0.3% at day 15. Pups drank an average of 3.5±0.9 kg of milk daily, corresponding to a milk intake of 1.75 kg per kg body mass gained. The average daily energy intake of pups was 82.58±19.80 MJ, while the energy built up daily in the tissue averaged 61.72±22.22 MJ. Thus, pups assimilated 74.7% of the energy they received via milk into body tissue. The lactation energetics of ice-breeding grey seals is very similar to that of their land-breeding counterparts.Abbreviations bm body mass - BMR basal metabolic rate - FMR field metabolic rate - IU international unit - RQ respiration quotient - HTO tritiated water - HT18O doubly labeled water - TBW total body water - VHF very high frequency  相似文献   

12.
J. Browse  C. R. Slack 《Planta》1985,166(1):74-80
Plastids isolated from maturing, nongreen safflower (Carthamus tinctorius L.) cotyledons yielded unesterified fatty acids as the predominant product of fatty-acid synthesis from [1-14C]acetate. Exogenous reduced pyridine nucleotides were not required for this synthesis, but [1-14C]acetate incorporation was absolutely dependent on addition of ATP. Linseed (Linum usitatissimum L.) cotyledons are green during development and plastids isolated from them resembled leaf chloroplasts with developed grana. In contrast to the safflower plastids, those from linseed were able to carry out fatty-acid synthesis at low irradiances without the addition of either pyridine nucleotides or ATP. Intact linseed cotyledons were capable of net photosynthesis at rates up to 95 mol·mg-1 chlorophyll·h-1. However, the low-light environment inside the linseed capsule (approx. 15% of external) means that photosynthesis will not contribute appreciably to the carbon economy of the developing seed and its main role may be to supply cofactors for fatty-acid synthesis.Abbreviations ACP acyl carrier protein - DHAP dihydroxyacetone phosphate - PC phosphatidylcholine - PEP phosphoenolpyruvate - UFA unesterified fatty acids  相似文献   

13.
Diets rich in unsaturated and polyunsaturated fatty acids have a positive effect on mammalian torpor, whereas diets rich in saturated fatty acids have a negative effect. To determine whether the number of double bonds in dietary fatty acids are responsible for these alterations in torpor patterns, we investigated the effect of adding to the normal diet 5% pure fatty acids of identical chain length (C18) but a different number of double bonds (0, 1, or 2) on the pattern of hibernation of the yellow-pine chipmunk, Eutamias amoenus. The response of torpor bouts to a lowering of air temperature and the mean duration of torpor bouts at an air temperature of 0.5°C (stearic acid C18:0, 4.5±0.8 days, oleic acid C18:1, 8.6±0.5 days; linoleic acid C18:2, 8.5±0.7 days) differed among animals that were maintained on the three experimental diets. The mean minimum body temperatures (C18:0, +2.3±0.3°C; C18:1, +0.3±0.2°C; C18:2,-0.2±0.2°C), which torpid individuals defended by an increase in metabolic rate, and the metabolic rate of torpid animals also differed among diet groups. Moreover, diet-induced differences were observed in the composition of total lipid fatty acids from depot fat and the phospholipid fatty acids of cardiac mitochondria. For depot fat 7 of 13 and for heart mitochondria 7 of 14 of the identified fatty acids differed significantly among the three diet groups. Significant differences among diet groups were also observed for the sum of saturated, unsaturated and polyunsaturated fatty acids. These diet-induced alterations of body fatty acids were correlated with some of the diet-induced differences in variables of torpor. The results suggest that the degree of unsaturation of dietary fatty acids influences the composition of tissues and membranes which in turn may influence torpor patterns and thus survival of hibernation.Abbreviations bm body mass - T a air temperature - T b body temperature - FA fatty acid - MR metabolic rate - MUFA monounsaturated fatty acids - PUFA polyunsaturated fatty acids - VO2 rate of oxygen consumption - SFA saturated fatty acids - UFA unsaturated fatty acids - UI unsaturation index - SNK Student-Newman-Keuls test  相似文献   

14.
In order to investigate nutritional interactions in the symbiotic scleractinian coral-zooxanthella association, fatty acids of the coral Galaxea fascicularis were analysed in two groups of cultured microcolonies. The first group was fed with Artemia sp., while the second group was starved. After an initial 1-month period during which both groups were subjected to the same normal light conditions (constant irradiance of 125 E·cm-2·s-1 and 14:10 h light:dark), a light cap was used to cover the aquarium and keep all the microcolonies in permanent darkness for 20 days. During the light phase of the experiment it was shown that the nutritional status lead to large variations in the percentage of saturated, mono-unsaturated and polyunsaturated fatty acids. Palmitic acid (C16:0) was the most abundant fatty acid in both groups. Important differences between fed and starved microcolonies occurred during the dark phase of the experiment. In the fed group the dark phase was characterized by a significant increase in polyunsaturated fatty acids. Particularly arachidonic acid (C20:4 n-6) became the most important fatty acid followed by docosatrienoic acid (C22:3 n-3). A slight increase in these two fatty acids was also found in the starved group but the bulk of polyunsaturated fatty acids was significantly decreased. In this group, palmitic acid remained the most important fatty acid while an increased concentration of cis-vaccenic acid (C18:1 n-7) was found at the end of the experiment. The increased concentration of cis-vaccenic acid might indicate that bacteria serve as a source of energy. While the number of zooxanthellae per milligram of protein and the chlorophyll a to protein ratio strongly decreased in the starved microcolonies immediately after the beginning of the dark period, the decrease in fed microcolonies was delayed for about 10 days. Furthermore, after 20 days of dark incubation the chlorophyll a to protein ratio was the same as measured at the beginning of the dark period. This suggests that in the dark the metabolic requirements of the zooxanthellae are in part met from the animal host through a heterotrophic mode of nutrition.Abbreviations CZ cultured zooxanthellae - FAME fatty acid methylester(s) - FDM fed dark microcolonies - FLM fed light microcolonies - MUFA monounsaturated fatty acid(s) - PUFA polyunsaturated fatty acid(s) - SDM starved dark microcolonies - SFA saturated fatty acids - SLM starved-light microcolonies - SW sea water - TFA total fatty acids  相似文献   

15.
The active a and inactive b forms of glycogen phosphorylase from cold-hardy larvae of the gall moth, Epiblema scudderiana, were purified using DEAE+ ion exchange and 3-5-AMP-agarose affinity chromatography. Maximum activities for glycogen phosphorylases a and b were 6.3±0.74 and 2.7±0.87 mol glucose-1-P·min-1·g wet weight-1, respectively, in -4°C-acclimated larvae. Final specific activities of the purified enzymes were 396 and 82 units·mg protein-1, respectively. Both enzymes were dimers with native molecular weights of 215000±18000 for glycogen phosphorylase a and 209000±15000 for glycogen phosphorylase b; the subunit molecular weight of both forms was 87000±2000. Both enzymes showed pH optima of 7.5 at 22°C and a break in the Arrhenius relationship with a two- to four-fold increase in activation energy below 10°C. Michaelis constant values for glycogen at 22°C were 0.12±0.004 mg·ml-1 for glycogen phosphorylase a and 0.87±0.034 mg·ml-1 for glycogen phosphorylase b; the Michaelis constant for inorganic phosphate was 6.5±0.07 mmol·l-1 for glycogen phosphorylase a and 23.6 mmol·l-1 for glycogen phosphorylase b. Glycogen phosphorylase b was activated by adenosine monophosphate with a K a of 0.176±0.004 mmol·l-1. Michaelis constant and K a values decreased by two- to fivefold at 5°C compared with 22°C. Glycerol had a positive effect on the Michaelis constant for glycogen for glycogen phosphorylase a at intermediate concentrations (0.5 mol·l-1) but was inhibitory to both enzyme forms at high concentrations (2 mol·l-1). Glycerol production as a cryoprotectant in E. scudderiana larvae is facilitated by the low temperature-simulated glycogen phosphorylase b to glycogen phosphorylase a conversion and by positive effects of low temperature on the kinetic properties of glycogen phosphorylase a. Enzyme shut-down when polyol synthesis is complete appears to be aided by strong inhibitory effects of glycerol and KCl on glycogen phosphorylase b.Abbreviations E a activation energy - GPa glycogen phosphorylase a - GPb glycogen phosphorylase b - h Hill coefficient - I 50 concentration of inhibitor that reduces enzymes velocity by 50% - K a concentration of activator that produces half-maximal activation of enzyme activity - K m Michaelis-Menten substrate affinity constant - MW molecular weight - PEG polyethylene glycol - Pi morganic phosphate - SDS PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - V max enzyme maximal velocity  相似文献   

16.
Acetylcarnitine was rapidly oxidised by pea mitochondria. (-)-carnitine was an essential addition for the oxidation of acetate or acetyl CoA. When acetate was sole substrate, ATP and Mg2+ were also essential additives for maximum oxidation. CoASH additions inhibited the oxidation of acetate, acetyl CoA and acetylcarnitine. It was shown that CoASH was acting as a competitive inhibitor of the carnitine stimulated O2 uptake. It is suggested that acetylcarnitine and carnitine passed through the mitochondrial membrane barrier with ease but acetyl CoA and CoA did not. Carnitine may also buffer the extra- and intra-mitochondrial pools of CoA. The presence of carnitine acetyltransferase (EC 2.3.1.7) on the pea mitochondria is inferred.  相似文献   

17.
Physiological variables of torpor are strongly temperature dependent in placental hibernators. This study investigated how changes in air temperature affect the duration of torpor bouts, metabolic rate, body temperature and weight loss of the marsupial hibernator Burramys parvus (50 g) in comparison to a control group held at a constant air temperature of 2°C. The duration of torpor bouts was longest (14.0±1.0 days) and metabolic rate was lowest (0.033±0.001 ml O2·g-1·h-1) at2°C. At higher air temperatures torpor bouts were significantly shorter and the metabolic rate was higher. When air temperature was reduced to 0°C, torpor bouts also shortened to 6.4±2.9 days, metabolic rate increased to about eight-fold the values at 2°C, and body temperature was maintained at the regulated minimum of 2.1±0.2°C. Because air temperature had such a strong effect on hibernation, and in particular energy expenditure, a change in climate would most likely increase winter mortality of this endangered species.Abbreviationst STP standard temperature and pressure - T a air temperature - T b body temperature - VO2 rate of oxygen consumption  相似文献   

18.
Bolton  P.  Harwood  J. L. 《Planta》1978,138(3):223-228
Fatty acid synthesis was studied in successive leaf sections from the base to the tip of developing barley (Hordeum vulgare L.), maize (Zea mays L.), rye grass (Lolium perenne L.) and wheat (Triticum aestivium L.) leaves. The basal regions of the leaves had the lowest rates of fatty acid synthesis and accumulated small amounts of very long chain fatty acids. Fatty acid synthesis was highest in the middle leaf sections in all four plants. Linolenic acid synthesis from [1-14C]acetate was highest in the distal leaf sections of rye grass. The labelling of the fatty acids of individual lipids of rye grass was examined and it was found that [14C]linolenic acid was highest in the galactolipids. Synthesis of this acid in the galactolipids was most active in leaf segment C. Only traces of [14C]linolenic acid were ever found in phosphatidylcholine and it is concluded that this phospholipid cannot serve as a substrate for linoleic acid desaturation in rye grass. The synthesis of fatty acids was sensitive to arsenite, fluoride and the herbicide EPTC. The latter was only inhibitory towards those leaf segments which made very long chain fatty acids. Formation of fatty acids from [1-14C]acetate was also studied in chloroplasts prepared from successive leaf sections of rye grass. Chloroplasts isolated from the middle leaf sections had the highest activity. Palmitic and oleic acids were the main fatty acid products in all chloroplast preparations. Linolenic acid synthesis was highest in chlorplasts isolated from the distal leaf sections of rye grass.  相似文献   

19.
Desulfobacter postgatei is an acetate-oxidizing, sulfate-reducing bacterium that metabolizes acetate via the citric acid cycle. The organism has been reported to contain a si-citrate synthase (EC 4.1.3.7) which is activated by AMP and inorganic phosphate. It is show now, that the enzyme mediating citrate formation is an ATP-citrate lyase (EC 4.1.3.8) rather than a citrate synthase. Cell extracts (160,000xg supernatant) catalyzed the conversion of oxaloacetate (apparent K m=0.2 mM), acetyl-CoA (app. K m=0.1 mM), ADP (app. K m=0.06 mM) and phosphate (app. K m=0.7 mM) to citrate, CoA and ATP with a specific activity of 0.3 mol·min-1·mg-1 protein. Per mol citrate formed 1 mol of ATP was generated. Cleavage of citrate (app. K m=0.05 mM; V max=1.2 mol · min-1 · mg-1 protein) was dependent on ATP (app. K m=0.4 mM) and CoA (app. K m=0.05 mM) and yielded oxaloacetate, acetyl-CoA, ADP, and phosphate as products in a stoichiometry of citrate:CoA:oxaloacetate:ADP=1:1:1:1. The use of an ATP-citrate lyase in the citric acid cycle enables D. postgatei to couple the oxidation of acetate to 2 CO2 with the net synthesis of ATP via substrate level phosphorylation.  相似文献   

20.
Measurements of growth, activity and energy consumption and estimates of milk intake were made in free-living, nursing ringed seal (Phoca hispida) pups. This was accomplished through the simultaneous use of time-depth recorders and the doubly labelled water technique. The pups spent an average of 52±7% of their time hauled out on the ice, 37±5% of the time in the water at the surface, and 11±5% of the time diving. Average daily mass gain of the pups (n=3) throughout the duration of the study period was 0.35±0.08 kg. The composition of the mass gain was 76% fat, 6% protein and 18% water. The total water flux was measured to be 52±10 ml·kg-1·day-1. Average CO2 production was 0.85±0.16 ml·g-1·h-1, corresponding to a field metabolic rate of 0.55±0.10 MJ·kg-1·day-1, or 3.8±0.6 times the predicted basal metabolic rate based on body size (Kleiber 1975). Average daily milk intake was estimated to be 1379±390 ml. The field metabolic rate for the different components of seal pup activity budgets were calculated to be FMRhaul out=1.34 BMR, FMRsurface=6.44 BMR, and FMRdiving=5.88 BMR.Abbreviations BMR basal metabolic rate - FMR field metabolic rate - HTO tritiated water - HT18O doubly labelled water - RQ respiration quotient - SDA specific dynamic action - TDR time-depth recorder  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号