首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Hyaluronan oligosaccharides (molecular weight: approximately 2.5 x 10(3)) inhibit growth of several types of tumors in vivo. In vitro, the oligomers inhibit anchorage-independent growth of several tumor cell types. In accordance with this finding, the oligomers also induce apoptosis and stimulate caspase-3 activity under anchorage-independent conditions. Since inhibitors of phosphoinositide 3-kinase (PI 3-kinase) mimic the action of hyaluronan oligomers and since the PI 3-kinase/Akt (protein kinase B) cell survival pathway has previously been implicated in anchorage-independent growth of tumor cells, we examined the effect of oligomers on PI 3-kinase and its downstream activities in TA3/St murine mammary carcinoma and HCT 116 human colon carcinoma cells. We observed that 50-150 microg/ml hyaluronan oligomers inhibit PI 3-kinase activity and phosphorylation of Akt to approximately the same extent as optimal doses of wortmannin and LY294002, known inhibitors of PI 3-kinase. Similar inhibition of downstream events, i.e. phosphorylation of BAD and FKHR, was also observed. These effects were not observed on treatment with similar concentrations of chitin oligomers, chondroitin sulfate, or hyaluronan polymer. High molecular weight (approximately 2 x 10(6)) and low molecular weight (approximately 8 x 10(4)) preparations of hyaluronan polymer were equally ineffective. The effects of hyaluronan oligomers on these parameters were similar in magnitude to the effect of treatment with activity-blocking antibody against CD44. We interpret these results to indicate that the oligomers competitively block binding of endogenous hyaluronan polymer to CD44, consequently giving rise to attenuated signaling. Finally, we observed that hyaluronan oligomers, but not chitin oligomers, chondroitin sulfate, or hyaluronan polymer, stimulate expression of PTEN, a phosphatase that degrades the major signaling product of PI 3-kinase action, phosphoinositide 3,4,5-trisphosphate. We conclude that perturbation of hyaluronan-CD44 binding leads to suppression of the PI 3-kinase/Akt cell survival pathway and consequently to inhibition of anchorage-independent growth in culture and tumor growth in vivo.  相似文献   

2.
The receptor for hepatocyte growth factor, also known as scatter factor (HGF/SF), has recently been identified as the 190-kDa heterodimeric tyrosine kinase encoded by the MET proto-oncogene (p190MET). The signaling pathway(s) triggered by HGF/SF are unknown. In A549 cells, a lung epithelial cell line, nanomolar concentrations of HGF/SF induced tyrosine phosphorylation of the p190MET receptor. The autophosphorylated receptor coprecipitated with phosphatidylinositol 3-kinase (PI 3-kinase) activity. In GTL16 cells, a cell line derived from a gastric carcinoma, the p190MET receptor, overexpressed and constitutively phosphorylated on tyrosine, coprecipitated with PI 3-kinase activity and with the 85-kDa PI 3-kinase subunit. In these cells activation of protein kinase C or the increase of intracellular [Ca2+] inhibits tyrosine phosphorylation of the p190MET receptor as well as the association with both PI 3-kinase activity and the 85-kDa subunit of the enzyme. In an in vitro assay, tyrosine phosphorylation of the immobilized p190MET receptor was required for binding of PI 3-kinase from cell lysates. These data strongly suggest that the signaling pathway activated by the HGF/SF receptor includes generation of D-3-phosphorylated inositol phospholipids.  相似文献   

3.
4.
Adipose tissue is a source of hepatocyte growth factor (HGF), and circulating HGF levels have been associated with elevated body mass index in human. However, the effects of HGF on adipocyte functions have not yet been investigated. We show here that in 3T3-L1 adipocytes HGF stimulates the phosphatidylinositol (PI) 3-kinase-dependent protein kinase B (PKB) activity, AS160 phosphorylation, Glut4 translocation, and consequently, glucose uptake. The initial steps involved in HGF- and insulin-induced glucose uptake are different. HGF enhanced the tyrosine phosphorylation of Gab1, leading to the recruitment of the p85-regulated subunit of PI 3-kinase, whereas p85 was exclusively recruited by IRS1 in response to insulin. In adipocytes rendered insulin-resistant by a long-lasting tumor necrosis factor alpha treatment, the protein level of Gab1 was strongly decreased, and HGF-stimulated PKB activation and glucose uptake were also altered. Moreover, treatment of 3T3-L1 adipocytes with thiazolidinedione, an anti-diabetic drug, enhanced the expression of both HGF and its receptor. These data provide the first evidence that in vitro HGF promotes glucose uptake through a Gab1/PI 3-kinase/PKB/AS160 pathway which was altered in tumor necrosis factor alpha-treated adipocytes.  相似文献   

5.
Stromal cells are important regulators of mammary carcinoma growth and metastasis. We have previously shown that a 3T3-L1 adipocyte cell line secretes hepatocyte growth factor (HGF), which stimulates proliferation of a murine mammary carcinoma (SP1) in monolayer cultures (DNA Cell Biol.13, 1189–1897, 1994). We now examine the role of growth factors and the extracellular matrix protein fibronectin in stimulation of anchorage-independent growth of SP1 cells. Purified transforming growth factor-β (TGF-β) stimulated significant colony growth in soft agar cultures, whereas HGF had a lesser effect. Analysis by confocal microscopy revealed that carcinoma cell colonies contained extracellular microfibrils composed of fibronectin. Partial depletion of fibronectin from 7% FBS/agar cultures reduced the number of colonies; colony growth could be recovered by adding back exogenous fibronectin. Addition of the 70-kDa N-terminal fragment of fibronectin, which inhibits fibronectin fibril formation, reduced growth of SP1 cell colonies, but an 85-kDa fragment containing the cell binding domain did not inhibit colony growth. These findings indicate that deposition of extracellular fibronectin fibrils is necessary, but not sufficient, for anchorage-independent growth of SP1 mammary carcinoma cells; growth factors are also required. SP1 cells had less fibronectin mRNA and secreted less fibronectin protein under anchorage-independent conditions than under anchorage-dependent conditions, as determined by Northern blotting and immunoprecipitation analysis. Thus, both growth factors (HGF and TGF-β) and fibronectin may be important regulators of paracrine stimulation by stromal cells of anchorage-independent growth of mammary carcinoma cells.  相似文献   

6.
Nicotine treatment triggers calcium influx into neuronal cells, which promotes cell survival in a number of neuronal cells. Phosphoinositide (PI) 3-kinase and downstream PI3-kinase target Akt have been reported to be important in the calcium-mediated promotion of survival in a wide variety of cells. We investigated the mechanisms of nicotine-induced phosphorylation of Akt in PC12h cells, in comparison with nicotine-induced ERK phosphorylation. Nicotine induced Akt phosphorylation in a dose-dependent manner. A nicotinic acetylcholine receptor (nAChR) alpha7 subunit-selective inhibitor had no significant effect on nicotine-induced Akt phosphorylation, while a non-selective nAChR antagonist inhibited the phosphorylation. L-type voltage-sensitive calcium channel (VSCC) antagonists, calmodulin antagonist, and Ca2+/calmudulin-dependent protein kinase (CaM kinase) inhibitor prevented the nicotine-induced Akt phosphorylation. Three epidermal growth factor receptor (EGFR) inhibitors prevented the nicotine-induced phosphorylation of both extracellular signal-regulated protein kinase (p42/44 MAP kinase, ERK) and Akt. In contrast, an inhibitor of the Src family tyrosine kinase prevented the nicotine-induced Akt phosphorylation but not ERK phosphorylation. These results suggested that nicotine induces the activation of both PI3-kinase/Akt and ERK pathways via common pathways including non-alpha7-nAChRs, L-type VSCC, CaM kinase II and EGFR in PC12h cells, but Src family tyrosine kinases only participate in the pathway to activate Akt.  相似文献   

7.
8.
E-cadherins are surface adhesion molecules localized at the level of adherens junctions, which play a major role in cell adhesiveness by mediating calcium-dependent homophylic interactions at sites of cell-cell contacts. Recently, E-cadherins have been also implicated in a number of biological processes, including cell growth and differentiation, cell recognition, and sorting during developmental morphogenesis, as well as in aggregation-dependent cell survival. As phosphatidylinositol (PI) 3-kinase and Akt play a critical role in survival pathways in response to both growth factors and extracellular stimuli, these observations prompted us to explore whether E-cadherins could affect intracellular molecules regulating the activity of the PI 3-kinase/Akt signaling cascade. Using Madin-Darby canine kidney cells as a model system, we show here that engagement of E-cadherins in homophylic calcium-dependent cell-cell interactions results in a rapid PI 3-kinase-dependent activation of Akt and the subsequent translocation of Akt to the nucleus. Moreover, we demonstrate that the activation of PI 3-kinase in response to cell-cell contact formation involves the phosphorylation of PI 3-kinase in tyrosine residues, and the concomitant recruitment of PI 3-kinase to E-cadherin-containing protein complexes. These findings indicate that E-cadherins can initiate outside-in signal transducing pathways that regulate the activity of PI 3-kinase and Akt, thus providing a novel molecular mechanism whereby the interaction among neighboring cells and their adhesion status may ultimately control the fate of epithelial cells.  相似文献   

9.
蛋白质酪氨酸磷酸化在抗失巢凋亡的癌细胞中的失调变化   总被引:2,自引:0,他引:2  
失巢凋亡是细胞与细胞外基质脱离发生的一种特定的凋亡方式 . 癌细胞抗失巢凋亡或失巢生存能力可以使之在转移过程中生存 . 业已发现癌细胞失巢生存与 PI3K-PKB/Akt 、 MAPK 这两条重要信号途径有关,但是 PI3K-PKB/Akt 、 MAPK 通路的上游酪氨酸激酶途径还不甚清楚 . 为此设计了一种基于 SH2-pTyr 特异性结合特性的功能性筛选方法,以期发现癌细胞失巢生存相关的酪氨酸磷酸化蛋白质,为最终明确酪氨酸激酶途径提供有力的实验依据 . 实验发现, MDCK 细胞悬浮培养后失巢凋亡,但癌细胞可以失巢生存 . 与这一现象相一致的是,悬浮培养后, MDCK 细胞中一系列 SH2 结合的酪氨酸磷酸化蛋白质水平急剧下降,而癌细胞中蛋白质酪氨酸磷酸化水平并不呈锚着依赖性 . 细胞悬浮培养后,随着培养时间的延长, MDCK 细胞中 Abl S SH2 结合的靶蛋白酪氨酸磷酸化水平逐渐降低,在 H460 肺癌细胞中经过短暂下降后升高, H1792 肺癌细胞随着培养时间的延长, Abl SH2 结合的靶蛋白酪氨酸磷酸化水平逐渐增加 . Fyn SH2 和 Crk SH2 结合的蛋白质分别为 FAK 和 p130Cas ,后者是重要的失巢生存信号 . 这些结果提示,酪氨酸磷酸化蛋白质可能赋予肺癌细胞失巢生存能力 . 结果也表明,功能性 SH2 筛查方法可以有效地发现肿瘤细胞中失巢生存相关的酪氨酸磷酸化蛋白质 .  相似文献   

10.
Zhou HY  Wan KF  Ip CK  Wong CK  Mak NK  Lo KW  Wong AS 《FEBS letters》2008,582(23-24):3415-3422
The hepatocyte growth factor (HGF) receptor, Met, is frequently overexpressed in nasopharyngeal cancer (NPC). Here, we showed for the first time that human NPC cells with high Met expression were more sensitive to the cell motility and invasion effect of HGF. The downregulation of Met by small interfering RNA decreased tumor cell invasion/migration. HGF significantly increased matrix metalloproteinase-9 production. This was inhibited by blocking phosphatidylinositide 3-kinase (PI3K) and c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase signaling pathways. We also demonstrated that PI3K induced activation of JNK, with Akt as a potential point of this cross-talk. These results provide new insights into the molecular mechanism responsible for NPC progression and metastasis.  相似文献   

11.
Vascular endothelial growth factor (VEGF) utilizes a phosphoinositide 3-kinase (PI 3-kinase)/Akt signaling pathway to protect endothelial cells from apoptotic death. Here we show that PI 3-kinase/Akt signaling promotes endothelial cell survival by inhibiting p38 mitogen-activated protein kinase (MAPK)-dependent apoptosis. Blockade of the PI 3-kinase or Akt pathways in conjunction with serum withdrawal stimulates p38-dependent apoptosis. Blockade of PI 3-kinase/Akt also led to enhanced VEGF activation of p38 and apoptosis. In this context, the pro-apoptotic effect of VEGF is attenuated by the p38 MAPK inhibitor SB203580. VEGF stimulation of endothelial cells or infection with an adenovirus expressing constitutively active Akt causes MEKK3 phosphorylation, which is associated with decreased MEKK3 kinase activity and down-regulation of MKK3/6 and p38 MAPK activation. Conversely, activation-deficient Akt decreases VEGF-stimulated MEKK3 phosphorylation and increases MKK/p38 activation. Activation of MKK3/6 is not dependent on Rac activation since dominant negative Rac does not decrease p38 activation triggered by inhibition of PI 3-kinase. Thus, cross-talk between the Akt and p38 MAPK pathways may regulate the level of cytoprotection versus apoptosis and is a new mechanism to explain the cytoprotective actions of Akt.  相似文献   

12.
Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) is widely expressed in EBV-infected cells within the infected human host and EBV-associated malignancies, suggesting that LMP2A is important for EBV latency, persistence, and EBV-associated tumorigenesis. Previously, we demonstrated that LMP2A provides an antiapoptotic signal through the activation of phosphatidylinositol 3-kinase (PI3-K)/Akt pathway in vitro. However, the exact function of LMP2A in tumor progression is not well understood. In this study, we found that LMP2A did not induce anchorage-independent cell growth in a human keratinocyte cell line, HaCaT, but did in a human gastric carcinoma cell line, HSC-39. In addition, LMP2A activated the PI3-K/Akt pathway in both HaCaT and HSC-39 cells; however, LMP2A did not activate Ras in HaCaT cells but did in HSC-39 cells. Furthermore, the Ras inhibitors manumycin A and a dominant-negative form of Ras (RasN17) and the PI3-K inhibitor LY294002 blocked LMP2A-mediated Akt phosphorylation and anchorage-independent cell growth in HSC-39 cells. These results suggest that constitutive activation of the Ras/PI3-K/Akt pathway by LMP2A is a key factor for LMP2A-mediated transformation.  相似文献   

13.
Lung cancer is currently the most frequent cause of cancer death in North America. Hepatocyte growth factor (HGF) and its receptor Met are frequently over-expressed in non-small-cell lung carcinomas (NSCLC), but their potential role in tumor progression is not clearly known. To assess the role of HGF/Met signaling in lung carcinomas, we have examined the expression, activation status, and function of Met in NSCLC cell lines (n = 7), established from primary tumors or pleural fluids of cancer patients. We observed Met expression in three NSCLC cell lines, two of which exhibited constitutive tyrosine-phosphorylation of Met, and Met kinase activity. In addition, the observed constitutive activation of Met was sustained under anchorage-independent conditions, and correlated with phosphatidyl inositol 3-kinase-dependent cell survival. Immunoreactive HGF-like protein was secreted by two Met-positive and two Met-negative NSCLC cell lines. However HGF activity, as determined by the ability to induce cell scattering and tyrosine-phosphorylation of Met in reporter cell lines, was detected in conditioned medium from only one Met-negative NSCLC cell line: none of the conditioned media from Met-expressing NSCLC cell lines showed detectable HGF activity. Thus, constitutive activation of Met in NSCLC cell lines may occur at least in part through intracrine, or HGF-independent mechanisms. Interestingly, additional paracrine stimulation with exogenous recombinant HGF was required for DNA synthesis and correlated with increased activation of ERK1/2 in all Met-positive NSCLC cell lines, regardless of the basal activation status of Met. These findings indicate that a medium level of constitutive activation of Met occurs in some NSCLC cell lines, and correlates with survival of detached carcinoma cells; whereas additional paracrine stimulation by recombinant HGF is required for DNA synthesis. Thus constitutive and paracrine activation of Met may provide complementary signals that promote survival and proliferation, respectively, during tumor progression of NSCLC.  相似文献   

14.
The regulation of intercellular adhesion by hepatocyte growth factor (HGF) was examined on a novel nontumorigenic gastric epithelial cell line (IMGE-5) derived from H-2Kb-tsA58 transgenic mice. IMGE-5 cells constitutively expressed cytokeratin 18 and HGF receptors. Under permissive conditions (33 degrees C + interferon-gamma), IMGE-5 cells proliferated rapidly but did not display membrane expression of adherens and tight junction proteins. Under nonpermissive conditions, their proliferation was decreased and they displayed a strong, localized membrane expression of E-cadherin/beta-catenin and occludin/ZO-1. HGF treatment largely prevented the targeting of ZO-1 to the tight junction and induced a significant decrease of the transepithelial resistance measured across a confluent IMGE-5 cell monolayer. HGF rapidly increased the tyrosine phosphorylation of ZO-1 and decreased its association with occludin in a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent manner. PI 3-kinase was also involved in HGF-induced migration of IMGE-5 cells. Our results demonstrate that 1) HGF prevents the appearance of ZO-1 in the membrane during epithelial cell differentiation; 2) HGF causes partial relocalization of ZO-1 to the cytoplasm and nucleus and concomitantly stimulates cell dissociation and migration; and 3) IMGE-5 cells offer a useful model for the study of gastric epithelial cell differentiation.  相似文献   

15.
Huang S  Ouyang N  Lin L  Chen L  Wu W  Su F  Yao Y  Yao H 《PloS one》2012,7(1):e29124
The chemokine receptor CXCR4 and its ligand CXCL12 have been shown to mediate the metastasis of many malignant tumors including breast carcinoma. Interaction between hepatocyte growth factor (HGF) and the Met receptor tyrosine kinase mediates development and progression of cancers. HGF is able to induce CXCR4 expression and contributes to tumor cell invasiveness in breast carcinoma. However, the mechanism of the CXCR4 expression modulated by c-Met-HGF axis to enhance the metastatic behavior of breast cancer cells is still unclear. In this study, we found that HGF induced functional CXCR4 receptor expression in breast cancer cells. The effect of HGF was specifically mediated by PKCζ activity. After transfection with PKCζ-siRNA, the phosphorylation of PKCζ and CXCR4 was abrogated in breast cancer cells. Interference with the activation of Rac1, a downstream target of HGF, prevented the HGF-induced increase in PKCζ activity and CXCR4 levels. The HGF-induced, LY294002-sensitive translocation of PKCζ from cytosol to plasma membrane indicated that HGF was capable of activating PKCζ, probably via phosphoinositide (PI) 3-kinases. HGF treatment also increased MT1-MMP secretion. Inhibition of PKCζ, Rac-1 and phosphatidylinositol 3-kinase may attenuate MT1-MMP expression in cells exposed to HGF. Functional manifestation of the effects of HGF revealed an increased ability for migration, chemotaxis and metastasis in MDA-MB-436 cells in vitro and in vivo. Our findings thus provided evidence that the process of HGF-induced functional CXCR4 expression may involve PI 3-kinase and atypical PKCζ. Moreover, HGF may promote the invasiveness and metastasis of breast tumor xenografts in BALB/c-nu mice via the PKCζ-mediated pathway, while suppression of PKCζ by RNA interference may abrogate cancer cell spreading.  相似文献   

16.
Protein phosphorylation in a human glioblastoma cell line, T98G, was examined after exposure to oxidative stress in vitro. Hydrogen peroxide (1 mM) markedly induced tyrosine phosphorylation of focal adhesion kinase (FAK) and serine phosphorylation of Akt at 1 h after stimulation. Concommitantly, the association of FAK with phosphatidylinositide 3'-OH-kinase (PI 3-kinase) was also observed by the hydrogen peroxide stimulation. When T98G cells were incubated with wortmannin, a PI 3-kinase inhibitor, both PI 3-kinase activity and phosphorylation of Akt were inhibited, whereas apoptosis by oxidative stress was accelerated. Concomitant with apoptosis, elevated level of CPP32 protease activity (caspase-3) was observed, with decreases in Bcl-2 protein and increases in Bax protein. These results suggested that in the signal transduction pathway from FAK to PI 3-kinase, Akt promotes survival. Thus, it became apparent that FAK is the upstream signal protein of the PI 3-kinase-Akt survival pathway in hydrogen peroxide-induced apoptosis in T98G cells.  相似文献   

17.
18.
The enteric nervous system (ENS) develops from neural crest cells that enter the gut, migrate, proliferate, and differentiate into neurons and glia. The growth factor glial-derived neurotrophic factor (GDNF) stimulates the proliferation and survival of enteric crest-derived cells. We investigated the intracellular signaling pathways activated by GDNF and their involvement in proliferation. We found that GDNF stimulates the phosphorylation of both the PI 3-kinase downstream substrate Akt and the MAP kinase substrate ERK in cultures of immunoaffinity-purified embryonic avian enteric crest-derived cells. The selective PI 3-kinase inhibitor LY-294002 blocked GDNF-stimulated Akt phosphorylation in purified crest cells, and reduced proliferation in cultures of dissociated quail gut. The ERK kinase (MEK) inhibitors PD 98059 and UO126 did not reduce GDNF-stimulated proliferation, although PD 98059 blocked GDNF-stimulated phosphorylation of ERK. We conclude that the PI 3-kinase pathway is necessary for the GDNF-stimulated proliferation of enteric neuroblasts.  相似文献   

19.
Sphingosine 1-phosphate (SPP) binds to members of the endothelial differentiation gene family (EDG) of receptors and leads to diverse signaling events including cell survival, growth, migration and differentiation. However, the mechanisms of how SPP activates these proangiogenic pathways are poorly understood. Here we show that SPP signals through the EDG-1 receptor to the heterotrimeric G protein G(i), leading to activation of the serine/threonine kinase Akt and phosphorylation of the Akt substrate, endothelial nitric-oxide synthase (eNOS). Inhibition of G(i) signaling, and phosphoinositide 3-kinase (PI 3-kinase) activity resulted in a decrease in SPP-induced endothelial cell chemotaxis. SPP also stimulates eNOS phosphorylation and NO release and these effects are also attenuated by inhibition of G(i) signaling, PI 3-kinase, and Akt. However, inhibition of NO production did not influence SPP-induced chemotaxis but effectively blocked the chemotactic actions of vascular endothelial growth factor. Thus, SPP signals through G(i) and PI 3-kinase leading to Akt activation and eNOS phosphorylation.  相似文献   

20.
Recent studies indicate that secondary bile acids promote colon cancer cell proliferation but their role in maintaining cell survival has not been explored. We found that deoxycholyltaurine (DCT) markedly attenuated both unstimulated and TNF-alpha-stimulated programmed cell death in colon cancer cells by a phosphatidylinositol 3-kinase (PI3K)-dependent mechanism. To examine the role of bile acids and PI3K signaling in maintaining colon cancer cell survival, we explored the role of signaling downstream of bile acid-induced activation of the epidermal growth factor receptor (EGFR) in regulating both apoptosis and proliferation of HT-29 and H508 human colon cancer cells. DCT caused dose- and time-dependent Akt (Ser(473)) phosphorylation, a commonly used marker of activated PI3K/Akt signaling. Both EGFR kinase and PI3K inhibitors attenuated DCT-induced Akt phosphorylation and Akt activation, as demonstrated by reduced phosphorylation of a GSK-3-paramyosin substrate. Transfection of HT-29 cells with kinase-dead EGFR (K721M) reduced DCT-induced Akt phosphorylation. In HT-29 cells, EGFR and PI3K inhibitors as well as transfection with dominant negative AKT attenuated DCT-induced cell proliferation. DCT-induced PI3K/Akt activation resulted in downstream phosphorylation of GSK-3 (Ser(21/9)) and BAD (Ser(136)), and nuclear translocation (activation) of NF-kappaB, thereby confirming that DCT-induced activation of PI3K/Akt signaling regulates both proproliferative and prosurvival signals. Collectively, these results indicate that DCT-induced activation of post-EGFR PI3K/Akt signaling stimulates both colon cancer cell survival and proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号