首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G protein-coupled receptors (GPCRs) are the most numerous and diverse type of cell surface receptors, accounting for about 1% of the entire human genome and relaying signals from a variety of extracellular stimuli that range from lipid and peptide growth factors to ions and sensory inputs. Activated GPCRs regulate a multitude of target cell functions, including intermediary metabolism, growth and differentiation, and migration and invasion. The GPCRs contain a characteristic 7-transmembrane domain topology and their activation promotes complex formation with a variety of intracellular partner proteins, which form basis for initiation of distinct signaling networks as well as dictate fate of the receptor itself. Both termination of active GPCR signaling and removal from the plasma membrane are controlled by protein post-translational modifications of the receptor itself and its interacting partners. Phosphorylation, acylation and ubiquitination are the most studied post-translational modifications involved in GPCR signal transduction, subcellular trafficking and overall expression. Emerging evidence demonstrates that protein S-nitrosylation, the covalent attachment of a nitric oxide moiety to specified cysteine thiol groups, of GPCRs and/or their associated effectors also participates in the fine-tuning of receptor signaling and expression. This newly appreciated mode of GPCR system modification adds another set of controls to more precisely regulate the many cellular functions elicited by this large group of receptors. This article is part of a Special Issue entitled: Regulation of cellular processes by S-nitrosylation.  相似文献   

2.
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane receptors and are responsible for transducing extracellular signals into intracellular responses that involve complex intracellular-signaling networks. This review highlights recent research advances in fungal GPCRs, including classification, extracellular sensing, and G protein-signaling regulation. The involvement of GPCRs in pheromone and nutrient sensing has been studied extensively over the past decade. Following recent advances in fungal genome sequencing projects, a panoply of GPCR candidates has been revealed and some have been documented to play key roles sensing diverse extracellular signals, such as pheromones, sugars, amino acids, nitrogen sources, and even photons. Identification and deorphanization of additional putative GPCRs may require the development of new research tools. Here, we compare research on GPCRs in fungi with information derived from mammalian systems to provide a useful road map on how to better understand ligand-GPCR-G protein interactions in general. We also emphasize the utility of yeast as a discovery tool for systemic studies of GPCRs from other organisms.  相似文献   

3.
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane signaling proteins and are the target of approximately half of all therapeutic agents. Agonist ligands bind their cognate GPCRs stabilizing the active conformation that is competent to bind G proteins, thus initiating a cascade of intracellular signaling events leading to modification of the cell activity. Despite their biomedical importance, the only known GPCR crystal structures are those of inactive rhodopsin forms. In order to understand how GPCRs are able to transduce extracellular signals across the plasma membrane, it is critical to determine the structure of these receptors in their ligand-bound, active state. Here, we report a novel combination of purification procedures that allowed the crystallization of rhodopsin in two new crystal forms and can be applicable to the purification and crystallization of other membrane proteins. Importantly, these new crystals are stable upon photoactivation and the preliminary X-ray diffraction analysis of both photoactivated and ground state rhodopsin crystals are also reported.  相似文献   

4.
G蛋白偶联受体(G protein-coupled receptors,GPCRs)是一类重要的细胞膜表面跨膜蛋白受体超家族,具有7个跨膜螺旋结构。GPCRs的细胞内信号由G蛋白介导,可将激素、神经递质、药物、趋化因子等多种物理和化学的细胞外刺激穿过细胞膜转导到细胞内不同的效应分子,激活相应的信号级联系统进而影响恶性肿瘤的生长迁移过程。虽然目前药物市场上有很多治疗癌症的小分子药物属于G蛋白受体相关药物,但所作用的靶点集中于少数特定G蛋白偶联受体。因此,新的具有成药性的G蛋白偶联受体的开发具有很大的研究价值和市场潜力。本文主要以在癌症发生、发展中起重要作用的溶血磷脂酸(LPA),G蛋白偶联受体30(GPR30)、内皮素A受体(ETAR)等不同G蛋白偶联受体为分类依据,综述其与相关的信号通路在癌症进程中的作用,并对相应的小分子药物的临床应用和研究进展进行展望。  相似文献   

5.
Primary cilia are specialized microtubule‐based signaling organelles that convey extracellular signals into a cellular response in most vertebrate cell types. The physiological significance of primary cilia is underscored by the fact that defects in assembly or function of these organelles lead to a range of severe diseases and developmental disorders. In most cell types of the human body, signaling by primary cilia involves different G protein‐coupled receptors (GPCRs), which transmit specific signals to the cell through G proteins to regulate diverse cellular and physiological events. Here, we provide an overview of GPCR signaling in primary cilia, with main focus on the rhodopsin‐like (class A) and the smoothened/frizzled (class F) GPCRs. We describe how such receptors dynamically traffic into and out of the ciliary compartment and how they interact with other classes of ciliary GPCRs, such as class B receptors, to control ciliary function and various physiological and behavioral processes. Finally, we discuss future avenues for developing GPCR‐targeted drug strategies for the treatment of ciliopathies.  相似文献   

6.
Transmembrane signaling through G protein-coupled receptors (GPCRs) controls a diverse array of cellular processes including metabolism, growth, motility, adhesion, neuronal signaling and blood coagulation. The numerous GPCRs and their key roles in both normal physiology and disease have made them the target for more than 50% of all prescribed drugs. GPCR agonists and antagonists act on the extracellular side of the receptors, whereas the intracellular surface has not yet been exploited for development of new therapeutic agents. Here, we demonstrate the utility of novel cell-penetrating peptides, termed 'pepducins', that act as intracellular inhibitors of signal transference from receptors to G proteins. Attachment of a palmitate lipid to peptides based on the third intracellular loop of protease-activated receptor 1 (PAR1) or PAR4 (refs. 3-5) yielded potent inhibitors of thrombin-mediated aggregation of human platelets. Infusion of the anti-PAR4 pepducin into mice extended bleeding time and protected against systemic platelet activation, consistent with the phenotype of PAR4-deficient mice. We show that pepducins might be used to ascertain the physiological roles of GPCRs and rapidly determine the potential therapeutic value of blockade of a particular signaling pathway.  相似文献   

7.
A family of fatty acid binding receptors   总被引:4,自引:0,他引:4  
The family of G protein-coupled receptors (GPCRs) serves as the target for almost a third of currently marketed drugs, and provides the predominant mechanism through which extracellular factors transmit signals to the cell. The discovery of GPCRs with no known ligand has initiated a frenzy of research, with the aim of elucidating the physiological ligands for these "orphan" receptors and revealing new drug targets. The GPR40 family of receptors, tandemly located on chromosome 19q13.1, exhibit 30-40% homology to one another and diverse tissue distribution, yet all are activated by fatty acids. Since agonists of GPR40 are medium to longchain fatty acids and those for GPR41 and 43 are short-chain fatty acids, the family clearly provides an intriguing example of how the ligand specificity, patterns of expression, and function of GPCRs can diverge through evolution. Here we summarize the identification, structure, and pharmacology of the receptors and speculate on the respective physiological roles that the GPR40 family members may play.  相似文献   

8.
Cells use signalling networks to translate with high fidelity extracellular signals into specific cellular functions. Signalling networks are often composed of multiple signalling pathways that act in concert to regulate a particular cellular function. In the centre of the networks are the receptors that receive and transduce the signals. A versatile family of receptors that detect a remarkable variety of signals are the G protein-coupled receptors (GPCRs). Virtually all cells express several GPCRs that use the same biochemical machinery to transduce their signals. Considering the specificity and fidelity of signal transduction, a central question in cell signalling is how signalling specificity is achieved, in particular among GPCRs that use the same biochemical machinery. Ca(2+) signalling is particularly suitable to address such questions, since [Ca(2+)](i) can be recorded with excellent spatial and temporal resolutions in living cells and tissues and now in living animals. Ca(2+) is a unique second messenger in that both biochemical and biophysical components form the Ca(2+) signalling complex to regulate its concentration. Both components act in concert to generate repetitive [Ca(2+)](i) oscillations that can be either localized or in the form of global, propagating Ca(2+) waves. Most of the key proteins that form Ca(2+) signalling complexes are known and their activities are reasonably well understood on the biochemical and biophysical levels. We review here the information gained from studying Ca(2+) signalling by GPCRs to gain further understanding of the mechanisms used to generate cellular signalling specificity.  相似文献   

9.
Prossnitz ER 《Life sciences》2004,75(8):893-899
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane signaling molecules in the human genome. As such, they interact with numerous intracellular molecules, which can act either to propagate or curtail signaling from the receptor. Their primary mode of cellular activation occurs through heterotrimeric G proteins, which in turn can activate a wide spectrum of effector molecules, including phosphodiesterases, phospholipases, adenylyl cyclases and ion channels. Active GPCRs are also the target of G protein-coupled receptor kinases, which phosphorylate the receptors culminating in the binding of the protein arrestin. This results in rapid desensitization through inhibition of G protein binding, as well as novel mechanisms of cellular activation that involve the scaffolding of cellular kinases to GPCR-arrestin complexes. Arrestins can also serve to mediate the internalization of certain GPCRs, a process which plays an important role in regulating cellular activity both by mediating long-term desensitization through down regulation (degradation) of receptors and by recycling desensitized receptors back to the cell surface to initiate additional rounds of signaling. The mechanisms that regulate the subsequent intracellular trafficking of GPCRs following internalization are largely unknown. Recently however, it has become clear that the pattern of receptor phosphorylation and subsequent binding of arrestin play a critical role in the intracellular trafficking of internalized receptors, thereby dictating the ultimate fate of the receptor. In addition, arrestins have now been shown to be required for the recycling of GPCRs that are capable of internalizing through arrestin-independent mechanisms. This review will summarize recent advances in our understanding of the roles of arrestins in post-endocytic GPCR trafficking.  相似文献   

10.
The majority of G protein-coupled receptors (GPCRs) self-assemble in the form dimeric/oligomeric complexes along the plasma membrane. Due to the molecular interactions they participate, GPCRs can potentially provide the framework for discriminating a wide variety of intercellular signals, as based on some kind of combinatorial receptor codes. GPCRs can in fact transduce signals from the external milieu by modifying the activity of such intracellular proteins as adenylyl cyclases, phospholipases and ion channels via interactions with specific G-proteins. However, in spite of the number of cell functions they can actually control, both GPCRs and their associated signal transduction pathways are extremely well conserved, for only a few alleles with null or minor functional alterations have so far been found. This would seem to suggest that, beside a mechanism for DNA repairing, there must be another level of quality control that may help maintaining GPCRs rather stable throughout evolution. We propose here receptor oligomerization to be a basic molecular mechanism controlling GPCRs redundancy in many different cell types, and the plasma membrane as the first hierarchical cell structure at which selective categorical sensing may occur. Categorical sensing can be seen as the cellular capacity for identifying and ordering complex patterns of mixed signals out of a contextual matrix, i.e., the recognition of meaningful patterns out of ubiquitous signals. In this context, redundancy and degeneracy may appear as the required feature to integrate the cell system into functional units of progressively higher hierarchical levels.  相似文献   

11.
G protein-coupled receptors (GPCRs) are integral membrane proteins that, in response to activation by extracellular stimuli, regulate intracellular second messenger levels via their coupling to heterotrimeric G proteins. GPCR activation also initiates a series of molecular events that leads to G protein-coupled receptor kinase-mediated receptor phosphorylation and the binding of beta-arrestin proteins to the intracellular face of the receptor. beta-Arrestin binding not only contributes to the G protein-uncoupling of GPCRs, but also mediates the targeting of many GPCRs for endocytosis in clathrin-coated pits. Several GPCRs internalize as a stable complex with beta-arrestin and the stability of this complex appears to regulate, at least in part, whether the receptors are dephosphorylated in early endosomes and recycled back to the cell surface as fully functional receptors, retained in early endosomes or targeted for degradation in lysosomes. More recently, it has become appreciated that the movement of GPCRs through functionally distinct intracellular membrane compartments is regulated by a variety of Rab GTPases and that the activity of these Rab GTPases may influence GPCR function. Moreover, it appears that GPCRs are not simply passive cargo molecules, but that GPCR activation may directly influence Rab GTPase activity and as such, GPCRs may directly control their own targeting between intracellular compartments. This review provides a synopsis of the current knowledge regarding the role of beta-arrestins and Rab GTPases in regulating the intracellular trafficking and function of GPCRs.  相似文献   

12.
Abundant evidence has indicated that protein tyrosine kinases (PTKs) convey signals from G protein-coupled receptors (GPCRs) to regulate cell proliferation, migration, adhesion, and potentialy cellular transformation. Molecular mechanisms by which PTKs regulate such diverse effects in GPCR signaling are not well understood. Recently, an unifying theme has emerged where both growth factors and GPCRs utilize protein tyrosine kinase activity and the highly conserved Ras/MAP kinase pathway to control mitogenic signals. Additionally, PTKs are also involved in the regulation of signal transmission from GPCRs to activation of the JNK/SAPK kinase pathway. Furthermore novel insights in chemokine receptor-activated PTKs and their role in mediating cell functions are discussed in this review.  相似文献   

13.
Clathrin-dependent mechanisms of G protein-coupled receptor endocytosis   总被引:3,自引:1,他引:2  
The heptahelical G protein-coupled receptor (GPCR) family includes approximately 900 members and is the largest family of signaling receptors encoded in the mammalian genome. G protein-coupled receptors elicit cellular responses to diverse extracellular stimuli at the plasma membrane and some internalized receptors continue to signal from intracellular compartments. In addition to rapid desensitization, receptor trafficking is critical for regulation of the temporal and spatial aspects of GPCR signaling. Indeed, GPCR internalization functions to control signal termination and propagation as well as receptor resensitization. Our knowledge of the mechanisms that regulate mammalian GPCR endocytosis is based predominantly on arrestin regulation of receptors through a clathrin- and dynamin-dependent pathway. However, multiple clathrin adaptors, which recognize distinct endocytic signals, are now known to function in clathrin-mediated endocytosis of diverse cargo. Given the vast number and diversity of GPCRs, the complexity of clathrin-mediated endocytosis and the discovery of multiple clathrin adaptors, a single universal mechanism controlling endocytosis of all mammalian GPCRs is unlikely. Indeed, several recent studies now suggest that endocytosis of different GPCRs is regulated by distinct mechanisms and clathrin adaptors. In this review, we discuss the diverse mechanisms that regulate clathrin-dependent GPCR endocytosis.  相似文献   

14.
Integrins are adhesion receptors that exchange signals between the extracellular and intracellular compartments. From their cell surface transmembrane location, they interact with extracellular matrix ligands or cellular counter-receptors, translating external cues into signals that affect cytoskeletal organization, cell shape and motility. Conversely, intracellular events may modify the affinities of integrins for external ligands. Inside the cell, integrins connect with cytoskeletal structures that, until recently, were thought to be exclusively actin microfilaments. We comment on the case of the epithelial integrin, alpha(6)beta(4), which may instead interact with intermediate filaments. This integrin was recently shown by several laboratories to be part of the hemidesmosome complex, an epithelial adhesive structure that is the plasma membrane anchoring site for keratin-containing intermediate filaments.  相似文献   

15.
Kuliopulos A  Covic L 《Life sciences》2003,74(2-3):255-262
Transmembrane signaling through G-protein coupled receptors (GPCRs) controls a remarkably diverse array of cellular processes including metabolism, growth, motility, adhesion, neuronal signaling, and blood coagulation. The large number of GPCRs and their important roles in normal physiology and in disease have made them the target for more than 50% of prescribed drugs. GPCR agonists and antagonists invariably act on the extracellular surface of the receptors, whereas the intracellular surface has not yet been exploited for development of new therapeutic agents. Here, we demonstrate the utility of novel cell-penetrating peptides, termed pepducins, that act as intracellular inhibitors and/or agonists of signal transference from receptor to G protein. The pepducins require the presence of their cognate receptor for activity and are highly selective for receptor type. Mutational analysis of both intact receptor and pepducins demonstrates that the cell-penetrating agonists do not activate G proteins by the same mechanism as the intact receptor i3 loop, but instead require the C-tail of the receptor. Attachment of a palmitate lipid to shorter i3 loop peptides derived from protease-activated receptors PAR1 and PAR4 created potent inhibitors of thrombin-mediated aggregation of human platelets. Infusion of the anti-PAR4 pepducin into mice extended bleeding time and protected against systemic platelet activation, consistent with the phenotype of a mouse with genetic deficiency of PAR4. These data show that pepducins may be used to ascertain the physiological roles of GPCRs and rapidly determine the potential therapeutic value of blockade of a particular signaling pathway.  相似文献   

16.
G protein-coupled receptors (GPCRs) are involved in all humanphysiological systems where they are responsible for transducing extracellular signals into cells. GPCRs signal in response to a diverse array of stimuli including light, hormones, and lipids, where these signals affect downstream cascades to impact both health and disease states. Yet, despite their importance as therapeutic targets, detailed molecular structures of only 30 GPCRs have been determined to date. A key challenge to their structure determination is adequate protein expression. Here we report the quantification of protein expression in an insect cell expression system for all 826humanGPCRs using two different fusion constructs. Expression characteristics are analyzed in aggregate and among each of the five distinct subfamilies. These data can be used to identify trends related to GPCR expression between different fusion constructs and between different GPCR families, and to prioritize lead candidates for future structure determination feasibility.  相似文献   

17.
Heterotrimeric G proteins (Gα, Gβ/Gγ subunits) constitute one of the most important components of cell signaling cascade. G Protein Coupled Receptors (GPCRs) perceive many extracellular signals and transduce them to heterotrimeric G proteins, which further transduce these signals intracellular to appropriate downstream effectors and thereby play an important role in various signaling pathways. GPCRs exist as a superfamily of integral membrane protein receptors that contain seven transmembrane α-helical regions, which bind to a wide range of ligands. Upon activation by a ligand, the GPCR undergoes a conformational change and then activate the G proteins by promoting the exchange of GDP/GTP associated with the Gα subunit. This leads to the dissociation of Gβ/Gγ dimer from Gα. Both these moieties then become free to act upon their downstream effectors and thereby initiate unique intracellular signaling responses. After the signal propagation, the GTP of Gα-GTP is hydrolyzed to GDP and Gα becomes inactive (Gα-GDP), which leads to its re-association with the Gβ/Gγ dimer to form the inactive heterotrimeric complex. The GPCR can also transduce the signal through G protein independent pathway. GPCRs also regulate cell cycle progression. Till to date thousands of GPCRs are known from animal kingdom with little homology among them, but only single GPCR has been identified in plant system. The Arabidopsis GPCR was reported to be cell cycle regulated and also involved in ABA and in stress signaling. Here I have described a general mechanism of signal transduction through GPCR/G proteins, structure of GPCRs, family of GPCRs and plant GPCR and its role.Key words: heterotrimeric G proteins, GPCRs, seven-transmembrane receptors, signal transduction, stress signaling  相似文献   

18.
G protein-coupled receptors (GPCRs) are involved in cell recognition and signaling and their function has been experimentally determined by ligand activation and site-directed mutagenesis. Structurally, GPCRs consist of an extracellular N-terminus and an intracellular C-terminus separated by seven helical transmembrane domains (TM7). The extracellular region is highly glycosylated. The intracellular region binds to G proteins. An epididymal GPCR, designated HE6 (for human epididymis-specific protein 6), is present in the stereocilia projecting from the apical domain of principal cells into the epididymal lumen. In conceptual terms, HE6 wears two hats: an unusually long extracellular region characteristic of cell adhesion proteins, and an intracellular region with binding affinity to G protein. The binding partner to the long extracellular region has not been identified. HE6 has another remarkable feature comparable to the GPCR calcium-independent receptor of alpha-latrotoxin, designated CIRL. Both HE6 and CIRL are endogenously cleaved into two pieces at the GPCR proteolytic site (GPS) located adjacent to TM1, the first of the seven transmembrane helices. One fragment of the heterodimer wears the cell adhesion hat; the other retains the typical characteristics of GPCRs. This proteolytic processing may be regarded as a mechanism of molecular compartmentalization of cell adhesion and G protein activation functions. The latter may engage a beta-arrestin-driven endocytic trafficking mechanism independent from the adhesive properties of the mucin extracellular domain. It is also conceivable that events taking place in the epididymal lumen can be surveyed by the long adhesive rod and subsequently coupled inside principal cells to a signaling cascade.  相似文献   

19.

Background  

G protein-coupled receptors (GPCRs) transduce signals from extracellular space into the cell, through their interaction with G proteins, which act as switches forming hetero-trimers composed of different subunits (α,β,γ). The α subunit of the G protein is responsible for the recognition of a given GPCR. Whereas specialised resources for GPCRs, and other groups of receptors, are already available, currently, there is no publicly available database focusing on G Proteins and containing information about their coupling specificity with their respective receptors.  相似文献   

20.
G protein-coupled receptors (GPCRs) play critical roles in transmitting a variety of extracellular signals into the cells and regulate diverse physiological functions. Naturally occurring mutations that result in dysfunctions of GPCRs have been known as the causes of numerous diseases. Significant progresses have been made in elucidating the pathophysiology of diseases caused by mutations. The multiple intracellular signaling pathways, such as G protein-dependent and β-arrestin-dependent signaling, in conjunction with recent advances on biased agonism, have broadened the view on the molecular mechanism of disease pathogenesis. This review aims to briefly discuss biased agonism of GPCRs (biased ligands and biased receptors), summarize the naturally occurring GPCR mutations that cause biased signaling, and propose the potential pathophysiological relevance of biased mutant GPCRs associated with various endocrine diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号