首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.

Background

Bioactive cyclic peptides derived from natural sources are well studied, particularly those derived from non-ribosomal synthetases in fungi or bacteria. Ribosomally synthesised bioactive disulphide-bonded loops represent a large, naturally enriched library of potential bioactive compounds, worthy of systematic investigation.

Results

We examined the distribution of short cyclic loops on the surface of a large number of proteins, especially membrane or extracellular proteins. Available three-dimensional structures highlighted a number of disulphide-bonded loops responsible for the majority of the likely binding interactions in a variety of protein complexes, due to their location at protein-protein interfaces. We find that disulphide-bonded loops at protein-protein interfaces may, but do not necessarily, show biological activity independent of their parent protein. Examining the conservation of short disulphide bonded loops in proteins, we find a small but significant increase in conservation inside these loops compared to surrounding residues. We identify a subset of these loops that exhibit a high relative conservation, particularly among peptide hormones.

Conclusions

We conclude that short disulphide-bonded loops are found in a wide variety of biological interactions. They may retain biological activity outside their parent proteins. Such structurally independent peptides may be useful as biologically active templates for the development of novel modulators of protein-protein interactions.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-305) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background

The physical interactions between proteins constitute the basis of protein quaternary structures. They dominate many biological processes in living cells. Deciphering the structural features of interacting proteins is essential to understand their cellular functions. Similar to the space of protein tertiary structures in which discrete patterns are clearly observed on fold or sub-fold motif levels, it has been found that the space of protein quaternary structures is highly degenerate due to the packing of compact secondary structure elements at interfaces. Therefore, it is necessary to further decompose the protein quaternary structural space into a more local representation.

Results

Here we constructed an interface fragment pair library from the current structure database of protein complexes. After structural-based clustering, we found that more than 90% of these interface fragment pairs can be represented by a limited number of highly abundant motifs. These motifs were further used to guide complex assembly. A large-scale benchmark test shows that the native-like binding is highly likely in the structural ensemble of modeled protein complexes that were built through the library.

Conclusions

Our study therefore presents supportive evidences that the space of protein quaternary structures can be represented by the combination of a small set of secondary-structure-based packing at binding interfaces. Finally, after future improvements such as adding sequence profiles, we expect this new library will be useful to predict structures of unknown protein-protein interactions.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0437-4) contains supplementary material, which is available to authorized users.  相似文献   

3.

Background

Various methods have been developed to computationally predict hotspot residues at novel protein-protein interfaces. However, there are various challenges in obtaining accurate prediction. We have developed a novel method which uses different aspects of protein structure and sequence space at residue level to highlight interface residues crucial for the protein-protein complex formation.

Results

ECMIS (Energetic Conservation Mass Index and Spatial Clustering) algorithm was able to outperform existing hotspot identification methods. It was able to achieve around 80% accuracy with incredible increase in sensitivity and outperforms other existing methods. This method is even sensitive towards the hotspot residues contributing only small-scale hydrophobic interactions.

Conclusion

Combination of diverse features of the protein viz. energy contribution, extent of conservation, location and surrounding environment, along with optimized weightage for each feature, was the key for the success of the algorithm. The academic version of the algorithm is available at http://caps.ncbs.res.in/download/ECMIS/ECMIS.zip.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-303) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.

Background

3D domain swapping is an oligomerization process in which structural elements get exchanged between subunits. This mechanism grasped interest of many researchers due to its association with neurodegenerative diseases like Alzheimer''s disease, spongiform encephalopathy etc. Despite the biomedical relevance, very little is known about understanding this mechanism. The quest for ruling principles behind this curious phenomenon that could enable early prediction provided an impetus for our bioinformatics studies.

Methodology

A novel method, HIDE, has been developed to find non-domain-swapped homologues and to identify hinge from domain-swapped oligomers. Non-domain-swapped homologues were identified from the protein structural databank for majority of the domain-swapped entries and hinge boundaries could be recognised automatically by means of successive superposition techniques. Different sequence and structural features in domain-swapped proteins and related proteins have also been analysed.

Conclusions

The HIDE algorithm was able to identify hinge region in 83% cases. Sequence and structural analyses of hinge and interfaces reveal amino acid preferences and specific conformations of residues at hinge regions, while comparing the domain-swapped and non-domain-swapped states. Interactions differ significantly between regular dimeric interfaces and interface formed at the site of domain-swapped examples. Such preferences of residues, conformations and interactions could be of predictive value.  相似文献   

6.
Lewis SM  Kuhlman BA 《PloS one》2011,6(6):e20872

Background

Few existing protein-protein interface design methods allow for extensive backbone rearrangements during the design process. There is also a dichotomy between redesign methods, which take advantage of the native interface, and de novo methods, which produce novel binders.

Methodology

Here, we propose a new method for designing novel protein reagents that combines advantages of redesign and de novo methods and allows for extensive backbone motion. This method requires a bound structure of a target and one of its natural binding partners. A key interaction in this interface, the anchor, is computationally grafted out of the partner and into a surface loop on the design scaffold. The design scaffold''s surface is then redesigned with backbone flexibility to create a new binding partner for the target. Careful choice of a scaffold will bring experimentally desirable characteristics into the new complex. The use of an anchor both expedites the design process and ensures that binding proceeds against a known location on the target. The use of surface loops on the scaffold allows for flexible-backbone redesign to properly search conformational space.

Conclusions and Significance

This protocol was implemented within the Rosetta3 software suite. To demonstrate and evaluate this protocol, we have developed a benchmarking set of structures from the PDB with loop-mediated interfaces. This protocol can recover the correct loop-mediated interface in 15 out of 16 tested structures, using only a single residue as an anchor.  相似文献   

7.
8.

Background

Proteins are composed of domains, protein segments that fold independently from the rest of the protein and have a specific function. During evolution the arrangement of domains can change: domains are gained, lost or their order is rearranged. To facilitate the analysis of these changes we propose the use of multiple domain alignments.

Results

We developed an alignment program, called MDAT, which aligns multiple domain arrangements. MDAT extends earlier programs which perform pairwise alignments of domain arrangements. MDAT uses a domain similarity matrix to score domain pairs and aligns the domain arrangements using a consistency supported progressive alignment method.

Conclusion

MDAT will be useful for analysing changes in domain arrangements within and between protein families and will thus provide valuable insights into the evolution of proteins and their domains. MDAT is coded in C++, and the source code is freely available for download at http://www.bornberglab.org/pages/mdat.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0442-7) contains supplementary material, which is available to authorized users.  相似文献   

9.

Background

Shape complementarity and non-covalent interactions are believed to drive protein-ligand interaction. To date protein-protein, protein-DNA, and protein-RNA interactions were systematically investigated, which is in contrast to interactions with small ligands. We investigate the role of covalent and non-covalent bonds in protein-small ligand interactions using a comprehensive dataset of 2,320 complexes.

Methodology and Principal Findings

We show that protein-ligand interactions are governed by different forces for different ligand types, i.e., protein-organic compound interactions are governed by hydrogen bonds, van der Waals contacts, and covalent bonds; protein-metal ion interactions are dominated by electrostatic force and coordination bonds; protein-anion interactions are established with electrostatic force, hydrogen bonds, and van der Waals contacts; and protein-inorganic cluster interactions are driven by coordination bonds. We extracted several frequently occurring atomic-level patterns concerning these interactions. For instance, 73% of investigated covalent bonds were summarized with just three patterns in which bonds are formed between thiol of Cys and carbon or sulfur atoms of ligands, and nitrogen of Lys and carbon of ligands. Similar patterns were found for the coordination bonds. Hydrogen bonds occur in 67% of protein-organic compound complexes and 66% of them are formed between NH- group of protein residues and oxygen atom of ligands. We quantify relative abundance of specific interaction types and discuss their characteristic features. The extracted protein-organic compound patterns are shown to complement and improve a geometric approach for prediction of binding sites.

Conclusions and Significance

We show that for a given type (group) of ligands and type of the interaction force, majority of protein-ligand interactions are repetitive and could be summarized with several simple atomic-level patterns. We summarize and analyze 10 frequently occurring interaction patterns that cover 56% of all considered complexes and we show a practical application for the patterns that concerns interactions with organic compounds.  相似文献   

10.

Background

There is a great interest in understanding and exploiting protein-protein associations as new routes for treating human disease. However, these associations are difficult to structurally characterize or model although the number of X-ray structures for protein-protein complexes is expanding. One feature of these complexes that has received little attention is the role of water molecules in the interfacial region.

Methodology

A data set of 4741 water molecules abstracted from 179 high-resolution (≤ 2.30 Å) X-ray crystal structures of protein-protein complexes was analyzed with a suite of modeling tools based on the HINT forcefield and hydrogen-bonding geometry. A metric termed Relevance was used to classify the general roles of the water molecules.

Results

The water molecules were found to be involved in: a) (bridging) interactions with both proteins (21%), b) favorable interactions with only one protein (53%), and c) no interactions with either protein (26%). This trend is shown to be independent of the crystallographic resolution. Interactions with residue backbones are consistent for all classes and account for 21.5% of all interactions. Interactions with polar residues are significantly more common for the first group and interactions with non-polar residues dominate the last group. Waters interacting with both proteins stabilize on average the proteins'' interaction (−0.46 kcal mol−1), but the overall average contribution of a single water to the protein-protein interaction energy is unfavorable (+0.03 kcal mol−1). Analysis of the waters without favorable interactions with either protein suggests that this is a conserved phenomenon: 42% of these waters have SASA ≤ 10 Å2 and are thus largely buried, and 69% of these are within predominantly hydrophobic environments or “hydrophobic bubbles”. Such water molecules may have an important biological purpose in mediating protein-protein interactions.  相似文献   

11.

Background

Proteins interact with a variety of other molecules such as nucleic acids, small molecules and other proteins inside the cell. Structure-determination of protein-protein complexes is challenging due to several reasons such as the large molecular weights of these macromolecular complexes, their dynamic nature, difficulty in purification and sample preparation. Computational docking permits an early understanding of the feasibility and mode of protein-protein interactions. However, docking algorithms propose a number of solutions and it is a challenging task to select the native or near native pose(s) from this pool. DockScore is an objective scoring scheme that can be used to rank protein-protein docked poses. It considers several interface parameters, namely, surface area, evolutionary conservation, hydrophobicity, short contacts and spatial clustering at the interface for scoring.

Results

We have implemented DockScore in form of a webserver for its use by the scientific community. DockScore webserver can be employed, subsequent to docking, to perform scoring of the docked solutions, starting from multiple poses as inputs. The results, on scores and ranks for all the poses, can be downloaded as a csv file and graphical view of the interface of best ranking poses is possible.

Conclusions

The webserver for DockScore is made freely available for the scientific community at: http://caps.ncbs.res.in/dockscore/.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0572-6) contains supplementary material, which is available to authorized users.  相似文献   

12.

Background

Physcomitrella patens, a haploid dominant plant, is fast becoming a useful molecular genetics and bioinformatics tool due to its key phylogenetic position as a bryophyte in the post-genomic era. Genome sequences from select reference species were compared bioinformatically to Physcomitrella patens using reciprocal blasts with the InParanoid software package. A reference protein interaction database assembled using MySQL by compiling BioGrid, BIND, DIP, and Intact databases was queried for moss orthologs existing for both interacting partners. This method has been used to successfully predict interactions for a number of angiosperm plants.

Results

The first predicted protein-protein interactome for a bryophyte based on the interolog method contains 67,740 unique interactions from 5,695 different Physcomitrella patens proteins. Most conserved interactions among proteins were those associated with metabolic processes. Over-represented Gene Ontology categories are reported here.

Conclusion

Addition of moss, a plant representative 200 million years diverged from angiosperms to interactomic research greatly expands the possibility of conducting comparative analyses giving tremendous insight into network evolution of land plants. This work helps demonstrate the utility of “guilt-by-association” models for predicting protein interactions, providing provisional roadmaps that can be explored using experimental approaches. Included with this dataset is a method for characterizing subnetworks and investigating specific processes, such as the Calvin-Benson-Bassham cycle.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0524-1) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

Cellular activities are governed by the physical and the functional interactions among several proteins involved in various biological pathways. With the availability of sequenced genomes and high-throughput experimental data one can identify genome-wide protein-protein interactions using various computational techniques. Comparative assessments of these techniques in predicting protein interactions have been frequently reported in the literature but not their ability to elucidate a particular biological pathway.

Methods

Towards the goal of understanding the prediction capabilities of interactions among the specific biological pathway proteins, we report the analyses of 14 biological pathways of Escherichia coli catalogued in KEGG database using five protein-protein functional linkage prediction methods. These methods are phylogenetic profiling, gene neighborhood, co-presence of orthologous genes in the same gene clusters, a mirrortree variant, and expression similarity.

Conclusions

Our results reveal that the prediction of metabolic pathway protein interactions continues to be a challenging task for all methods which possibly reflect flexible/independent evolutionary histories of these proteins. These methods have predicted functional associations of proteins involved in amino acids, nucleotide, glycans and vitamins & co-factors pathways slightly better than the random performance on carbohydrate, lipid and energy metabolism. We also make similar observations for interactions involved among the environmental information processing proteins. On the contrary, genetic information processing or specialized processes such as motility related protein-protein linkages that occur in the subset of organisms are predicted with comparable accuracy. Metabolic pathways are best predicted by using neighborhood of orthologous genes whereas phyletic pattern is good enough to reconstruct central dogma pathway protein interactions. We have also shown that the effective use of a particular prediction method depends on the pathway under investigation. In case one is not focused on specific pathway, gene expression similarity method is the best option.  相似文献   

14.

Background

Impairments in facial mimicry are considered a proxy for deficits in affective empathy and have been demonstrated in 10 year old children and in adolescents with disruptive behavior disorder (DBD). However, it is not known whether these impairments are already present at an earlier age. Emotional deficits have also been shown in children with attention-deficit/hyperactivity disorder (ADHD).

Aims

To examine facial mimicry in younger, 6–7 year old children with DBD and with ADHD.

Methods

Electromyographic (EMG) activity in response to emotional facial expressions was recorded in 47 children with DBD, 18 children with ADHD and 35 healthy developing children.

Results

All groups displayed significant facial mimicry to the emotional expressions of other children. No group differences between children with DBD, children with ADHD and healthy developing children were found. In addition, no differences in facial mimicry were found between the clinical group (i.e., all children with a diagnosis) and the typically developing group in an analysis with ADHD symptoms as a covariate, and no differences were found between the clinical children and the typically developing children with DBD symptoms as a covariate.

Conclusion

Facial mimicry in children with DBD and ADHD throughout the first primary school years was unimpaired, in line with studies on empathy using other paradigms.  相似文献   

15.
Tomovic A  Oakeley EJ 《PloS one》2008,3(9):e3243

Background

With increasing numbers of crystal structures of protein∶DNA and protein∶protein∶DNA complexes publically available, it is now possible to extract sufficient structural, physical-chemical and thermodynamic parameters to make general observations and predictions about their interactions. In particular, the properties of macromolecular assemblies of multiple proteins bound to DNA have not previously been investigated in detail.

Methodology/Principal Findings

We have performed computational structural analyses on macromolecular assemblies of multiple proteins bound to DNA using a variety of different computational tools: PISA; PROMOTIF; X3DNA; ReadOut; DDNA and DCOMPLEX. Additionally, we have developed and employed an algorithm for approximate collision detection and overlapping volume estimation of two macromolecules. An implementation of this algorithm is available at http://promoterplot.fmi.ch/Collision1/. The results obtained are compared with structural, physical-chemical and thermodynamic parameters from protein∶protein and single protein∶DNA complexes. Many of interface properties of multiple protein∶DNA complexes were found to be very similar to those observed in binary protein∶DNA and protein∶protein complexes. However, the conformational change of the DNA upon protein binding is significantly higher when multiple proteins bind to it than is observed when single proteins bind. The water mediated contacts are less important (found in less quantity) between the interfaces of components in ternary (protein∶protein∶DNA) complexes than in those of binary complexes (protein∶protein and protein∶DNA).The thermodynamic stability of ternary complexes is also higher than in the binary interactions. Greater specificity and affinity of multiple proteins binding to DNA in comparison with binary protein-DNA interactions were observed. However, protein-protein binding affinities are stronger in complexes without the presence of DNA.

Conclusions/Significance

Our results indicate that the interface properties: interface area; number of interface residues/atoms and hydrogen bonds; and the distribution of interface residues, hydrogen bonds, van der Walls contacts and secondary structure motifs are independent of whether or not a protein is in a binary or ternary complex with DNA. However, changes in the shape of the DNA reduce the off-rate of the proteins which greatly enhances the stability and specificity of ternary complexes compared to binary ones.  相似文献   

16.

Background

Avian reoviruses replicate in viral factories, which are dense cytoplasmic compartments estabilished by protein-protein interactions. The non-structural protein muNS forms the factory scaffold that attracts other viral components in a controlled fashion. To create such a three-dimensional network, muNS uses several different self-interacting domains.

Methodology/Principal Findings

In this study we have devised a strategy to identify muNS regions containing self-interacting domains, based on the capacity of muNS-derived inclusions to recruit muNS fragments. The results revealed that the muNS region consisting of residues 477–542 was recruited with the best efficiency, and this raised the idea of using this fragment as a molecular tag for delivering foreign proteins to muNS inclusions. By combining such tagging system with our previously established method for purifying muNS inclusions from baculovirus-infected insect cells, we have developed a novel protein purification protocol.

Conclusions/Significance

We show that our tagging and inclusion-targeting system can be a simple, versatile and efficient method for immobilizing and purifying active proteins expressed in baculovirus-infected cells. We also demonstrate that muNS inclusions can simultaneously recruit several tagged proteins, a finding which may be used to generate protein complexes and create multiepitope particulate material for immunization purposes.  相似文献   

17.

Background

It is well established that only a portion of residues that mediate protein-protein interactions (PPIs), the so-called hot spot, contributes the most to the total binding energy, and thus its identification is an important and relevant question that has clear applications in drug discovery and protein design. The experimental identification of hot spots is however a lengthy and costly process, and thus there is an interest in computational tools that can complement and guide experimental efforts.

Principal Findings

Here, we present Presaging Critical Residues in Protein interfaces-Web server (http://www.bioinsilico.org/PCRPi), a web server that implements a recently described and highly accurate computational tool designed to predict critical residues in protein interfaces: PCRPi. PRCPi depends on the integration of structural, energetic, and evolutionary-based measures by using Bayesian Networks (BNs).

Conclusions

PCRPi-W has been designed to provide an easy and convenient access to the broad scientific community. Predictions are readily available for download or presented in a web page that includes among other information links to relevant files, sequence information, and a Jmol applet to visualize and analyze the predictions in the context of the protein structure.  相似文献   

18.

Background

Protein-protein interactions are critical to elucidating the role played by individual proteins in important biological pathways. Of particular interest are hub proteins that can interact with large numbers of partners and often play essential roles in cellular control. Depending on the number of binding sites, protein hubs can be classified at a structural level as singlish-interface hubs (SIH) with one or two binding sites, or multiple-interface hubs (MIH) with three or more binding sites. In terms of kinetics, hub proteins can be classified as date hubs (i.e., interact with different partners at different times or locations) or party hubs (i.e., simultaneously interact with multiple partners).

Methodology

Our approach works in 3 phases: Phase I classifies if a protein is likely to bind with another protein. Phase II determines if a protein-binding (PB) protein is a hub. Phase III classifies PB proteins as singlish-interface versus multiple-interface hubs and date versus party hubs. At each stage, we use sequence-based predictors trained using several standard machine learning techniques.

Conclusions

Our method is able to predict whether a protein is a protein-binding protein with an accuracy of 94% and a correlation coefficient of 0.87; identify hubs from non-hubs with 100% accuracy for 30% of the data; distinguish date hubs/party hubs with 69% accuracy and area under ROC curve of 0.68; and SIH/MIH with 89% accuracy and area under ROC curve of 0.84. Because our method is based on sequence information alone, it can be used even in settings where reliable protein-protein interaction data or structures of protein-protein complexes are unavailable to obtain useful insights into the functional and evolutionary characteristics of proteins and their interactions.

Availability

We provide a web server for our three-phase approach: http://hybsvm.gdcb.iastate.edu.  相似文献   

19.
20.

Background

The gaseous plant hormone ethylene is perceived in Arabidopsis thaliana by a five-member receptor family composed of ETR1, ERS1, ETR2, ERS2, and EIN4.

Methodology/Principal Findings

Gel-filtration analysis of ethylene receptors solubilized from Arabidopsis membranes demonstrates that the receptors exist as components of high-molecular-mass protein complexes. The ERS1 protein complex exhibits an ethylene-induced change in size consistent with ligand-mediated nucleation of protein-protein interactions. Deletion analysis supports the participation of multiple domains from ETR1 in formation of the protein complex, and also demonstrates that targeting to and retention of ETR1 at the endoplasmic reticulum only requires the first 147 amino acids of the receptor. A role for disulfide bonds in stabilizing the ETR1 protein complex was demonstrated by use of reducing agents and mutation of Cys4 and Cys6 of ETR1. Expression and analysis of ETR1 in a transgenic yeast system demonstrates the importance of Cys4 and Cys6 of ETR1 in stabilizing the receptor for ethylene binding.

Conclusions/Significance

These data support the participation of ethylene receptors in obligate as well as ligand-dependent non-obligate protein interactions. These data also suggest that different protein complexes may allow for tailoring of the ethylene signal to specific cellular environments and responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号