首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently tissue engineering has escalated much interest in biomedical and biotechnological applications. In this regard, exploration of new and suitable biomaterials is needed. Silk fibroin protein is used as one of the most preferable biomaterials for fabrication of scaffolds and several new techniques are being adopted to fabricate silk scaffolds with greater ease, efficiency and perfection. In this study, a freeze gelation technique is used for fabrication of silk fibroin protein 3D scaffolds, which is both time and energy efficient as compared to the conventional freeze drying technique. The fabricated silk fibroin freeze-gelled scaffolds are evaluated micro structurally for morphology with scanning electron microscopy which reveals relatively homogeneous pore structure and good interconnectivity. The pore sizes and porosity of these scaffolds ranges between 60-110 μm and 90-95%, respectively. Mechanical test shows that the compressive strength of the scaffolds is in the range of 20-40 kPa. The applicability to cell culture of the freeze gelled scaffolds has been examined with human keratinocytes HaCat cells which show the good cell viability and proliferation of cells after 5 days of culture suggesting the cytocompatibility. The freeze-gelled 3D scaffolds show comparable results with the conventionally prepared freeze dried 3D scaffolds. Thus, this technique may be used as an alternative method for 3D scaffolds preparation and may also be utilized for tissue engineering applications.  相似文献   

2.
This study discusses the possibilities of liquid silk (Silk gland silk) of Muga and Eri silk, the indigenous non mulberry silkworms of North Eastern region of India, as potential biomaterials. Silk protein fibroin of Bombyx mori, commonly known as mulberry silkworm, has been extensively studied as a versatile biomaterial. As properties of different silk‐based biomaterials vary significantly, it is important to characterize the non mulberry silkworms also in this aspect. Fibroin was extracted from the posterior silk gland of full grown fifth instars larvae, and 2D film was fabricated using standard methods. The films were characterized using SEM, Dynamic contact angle test, FTIR, XRD, DSC, and TGA and compared with respective silk fibers. SEM images of films reveal presence of some globules and filamentous structure. Films of both the silkworms were found to be amorphous with random coil conformation, hydrophobic in nature, and resistant to organic solvents. Non mulberry silk films had higher thermal resistance than mulberry silk. Fibers were thermally more stable than the films. This study provides insight into the new arena of research in application of liquid silk of non mulberry silkworms as biomaterials. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 292–333, 2013.  相似文献   

3.
The importance of silk protein has increased because of its potential use as a natural biopolymer for tissue engineering and biomedical applications. In this report we show a novel and ecofriendly method for dissolution of gland silk protein fibroin. Non-mulberry silk fibroin from mature fifth instar larvae of Antheraea mylitta was found to be optimally soluble in 1% (w/v) anionic surfactant sodium dodecyl sulfate (SDS). Regenerated fibroin showed distinct bands of approximately 395 and 197 kDa on electrophoresis in non-reducing and reducing conditions, respectively. Enhanced fibroin dissolution via internalization of hydrophobic amino groups inside a hydrophilic amino acid core in the form of micelles was observed. Prolonged storage stability without gelation of SDS-extracted fibroin was seen. Atomic force microscopy showed micellar aggregation with mean micellar aggregation size of 8 nm. Circular dichroism spectroscopy revealed predominantly helical conformation due to surfactant addition with internal protein conformational changes as revealed by fluorescence spectroscopic studies.  相似文献   

4.
Tissue engineering of multilayered constructs that model complex tissues poses a significant challenge for regenerative medicine. In this study, a three-layered scaffold consisting of an electrospun silk fibroin (SF) mat sandwiched between two dense collagen (DC) layers was designed and characterized. It was hypothesized that the SF layer would endow the DC-SF-DC construct with enhanced mechanical properties (e.g., apparent modulus, tensile strength, and toughness), while the surrounding DC layers provide an extracellular matrix-like environment for mesenchymal stem cell (MSC) growth. MSC-seeded DC-SF-DC hybrids were produced using the plastic compression technique and characterized morphologically, chemically, and mechanically. Moreover, MSC viability was assessed for up to 1 wk in culture. Scaffold analyses confirmed compaction and integration of the meso-scaled multilayered DC-SF-DC hybrid, which was reflected in a significantly higher toughness value when compared to DC and SF alone. MSCs directly incorporated into the DC layers remained viable for up to day 7. The ease of multilayered construct fabrication, enhanced biomechanical properties, along with uniformity of cell distribution confirmed the possibility for the incorporation and segregation of different cell types within distinct layers for the regeneration of complex tissues, such as skin, or central nervous system dura mater.  相似文献   

5.
Lim JS  Ki CS  Kim JW  Lee KG  Kang SW  Kweon HY  Park YH 《Biopolymers》2012,97(5):265-275
In this study we investigated the blend electrospinning of poly(?‐caprolactone) (PCL) and silk fibroin (SF) to improve the biodegradability and biocompatibility of PCL‐based nanofibrous scaffolds. Optimal conditions to fabricate PCL/SF (50/50) blend nanofiber were established for electrospinning using formic acid as a cosolvent and three‐dimensional (3D) PCL/SF blend nanofibrous scaffolds were prepared by a modified electrospinning process using methanol coagulation bath. The physical properties of 2D PCL/SF blend nanofiber mats and 3D highly porous blend nanofibrous scaffolds were measured and compared. To evaluate cytocompatibility of the 3D blend scaffolds as compared to 3D PCL nanofibrous scaffold, normal human dermal fibroblasts were cultured. It is concluded that biodegradability and cytocompatibility could be improved for the 3D highly porous PCL/SF (50/50) blend nanofibrous scaffold prepared by blending PCL with SF in electrospinning. In addition to the blending of PCL and SF, the 3D structure and high porosity of electrospun nanofiber assemblies may also be important factors for enhancing the performance of scaffolds. © 2011 Wiley Periodicals, Inc. Biopolymers 97: 265–275, 2012.  相似文献   

6.
Bombyx mori silk fibroin from the silkworm was found to be soluble in a calcium nitrate-methanol system. Fibroin dissolves in 75% w/v Ca(NO3)2/MeOH solution at a temperature of 67°C. The viscometric behavior of the fibroin-salt solution was analyzed and the fibroin's secondary structures were determined via 13C solution nmr. Fourier transform ir, solid state 13C-nmr, x-ray diffraction, differential scanning calorimetry, scanning electron microscopy (SEM), and polarizing microscopy were used to characterize regenerated films and fibers. A compositional phase diagram of fibroin in the salt solution was constructed. Viscosity data indicate that there is aggregation of fibroin chains within the salt solution. The extremely high value of intrinsic viscosity of 8.7 dL/g at 298 K may be due to aggregation. Aggregation may be caused by the complexing of calcium ions with the fibroin chains at their amide linkages. The energy required for viscous flow for the fibroin solution (ΔHvis = 9.03 kcal/mol) is greater than that of the solvent (ΔHvis = 7.01 kcal/mol). Chain entanglements may be hindering the free motion of chains thus increasing the energy required for the viscous flow. 13C-nmr shows that fibroin chains exist in two independent conformational environments. While most of the molecule is in a random coil conformation, there is evidence of some order within the chains of fibroin. In as-cast regenerated films, the fibroin chains are in a random coil/α-helix conformation with some β-sheet content. Crystallinity induced by immersion of thin films in methanol is evidenced via x-ray diffraction, which shows lattice spacings at 4.042 Å. Thin films have a fibrillar morphology that is clearly shown under the SEM and the polarizing microscope. Fibers were hand pulled from the concentrated fibroin-salt solutions and coagulated with acetone and methanol. A microscopic analysis was done using the polarizer. © 1997 John Wiley & Sons, Inc. Biopoly 42: 61–74, 1997  相似文献   

7.
为了进一步提高伤口敷料的止血性能,文中在生物相容性良好的壳聚糖溶液中引入含有多种生长因子的人源性富血小板血浆(Humanplatelet-richplasma,hPRP),并加入不同体积比例(1∶1、1∶3、3∶1、1∶0)的丝素蛋白溶液以提高材料的多孔性与止血性,通过冷冻干燥法制备不同配比的hPRP-壳聚糖/丝素蛋白敷料,并将纯壳聚糖敷料作为对照组,研究hPRP和丝素蛋白对敷料的止血性能的影响以及丝素蛋白对PRP中生长因子控制释放的影响。结果表明,在壳聚糖敷料中引入hPRP对敷料的止血性有所提高,但对敷料的多孔结构及吸水率无明显改善,若在hPRP-壳聚糖溶液中按照体积比为1∶1的比例加入丝素蛋白溶液,会得到具有较为均匀的多孔结构的敷料,敷料的孔隙率与吸水率分别可达到86.83%±3.84%与1 474%±114%,且该比例的敷料在快速止血性能上表现优异。此外,加入丝素蛋白与壳聚糖比例为1∶1的PRP敷料能有效减少PRP中生长因子在初始阶段的爆裂释放。因此,含hPRP的壳聚糖/丝素蛋白复合敷料有望成为一种能快速止血且能促进伤口愈合的新型伤口敷料。  相似文献   

8.
Zhao C  Yao J  Masuda H  Kishore R  Asakura T 《Biopolymers》2003,69(2):253-259
High-resolution solution (13)C-NMR and CD studies of Bombyx mori silk fibroin revealed the presence of an ordered secondary structure 3(10)-helix, in hexafluoro-iso-propanol (HFIP). The solid-state structure of the silk fibroin film prepared by drying it gently from the HFIP solution still keep the structure, 3(10)-helix, which was studied with high-resolution solid state (13)C-NMR. The structural transition from the 3(10)-helix to silk II structure, heterogeneous structure including antiparallel beta-sheet, occurred during the artificial spinning from the HFIP solution. The wide-angle x-ray diffraction and differential scanning calorimetry thermograms of the artificial spinning fiber after postspinning treatments were observed together with the stress-strain curves. The results emphasize that the molecular structures, controlled morphology, and mechanical properties of the protein-based synthetic polymers can be modulated for enhancing biocompatibility.  相似文献   

9.
10.
Monti P  Taddei P  Freddi G  Ohgo K  Asakura T 《Biopolymers》2003,72(5):329-338
This study focuses on the conformational characterization of poly(alanine-glycine) II (pAG II) as a model for a Bombyx mori fibroin silk I structure. Raman, IR, and 13C-cross-polarization/magic angle spinning NMR spectra of pAG II are discussed in comparison with those of the crystalline fraction of B. mori silk fibroin (chymotryptic precipitate, Cp) with a silk I (silk I-Cp) structure. The spectral data give evidence that silk I-Cp and the synthetic copolypeptide pAG II have similar conformations. Moreover, the spectral findings reveal that silk I-Cp is more crystalline than pAG II; consequently, the latter contains a larger amount of the random coil conformation. Differential scanning calorimetry measurements confirm this result. N-Deuteration experiments on pAG II allow us to attribute the Raman component at 1320 cm(-1) to the amide III mode of a beta-turn type II conformation, thus confirming the results of those who propose a repeated beta-turn type II structure for silk I. The analysis of the Raman spectra in the nuNH region confirms that the silk I structure is characterized by the presence of different types of H-bonding arrangements, in agreement with the above model.  相似文献   

11.
12.
This article reports the development of fibers from starch acetates that have mechanical properties and water stability better than most polysaccharide‐based biomaterials and protein fibers used in tissue engineering. In this research, starch acetates with three different degrees of substitution (DS) have been used to develop fibers for potential use as tissue engineering scaffolds. Varying the DS of starch acetate will provide fibers with different mechanical properties, hydrophilicity, and degradation behavior. Fibers made from DS 2.3 and 2.8 starch acetates have mechanical properties and water stability required for tissue engineering applications. The starch acetate fibers support the adhesion of fibroblasts demonstrating that the fibers would be suitable for tissue engineering and other medical applications. Biotechnol. Bioeng. 2009;103: 1016–1022. © 2009 Wiley Periodicals, Inc.  相似文献   

13.
The structural evolution of regenerated Bombyx mori silk fibroin during shearing with a Couette cell has been studied in situ by synchrotron radiation small- and wide-angle x-ray scattering techniques. An elongation of fibroin molecules was observed with increasing shear rate, followed by an aggregation phase. The aggregates were found to be amorphous with beta-conformation according to infrared spectroscopy. Scanning x-ray microdiffraction with a 5 microm beam on aggregated material, which had solidified in air, showed silk II reflections and a material with equatorial reflections close to the silk I structure reflections, but with strong differences in reflection intensities. This silk I type material shows up to two low-angle peaks suggesting the presence of water molecules that might be intercalated between hydrogen-bonded sheets.  相似文献   

14.
15.
16.
利用聚赖氨酸修饰丝素蛋白膜,观察其对神经干细胞(NSCs)生长及分化的影响,为中枢神经系统损伤修复材料的选择提供实验基础和理论依据。文中首先制备聚赖氨酸修饰的丝素蛋白膜,并通过核磁共振图谱和紫外-可见光谱进行验证。NSCs分别接种在单纯丝蛋白膜(Silk)、聚赖氨酸修饰的丝蛋白膜(Silk-PIL)和多聚赖氨酸(PLL)上进行培养,分别在1、3、5、7 d时用CCK-8检测NSCs增殖活性。在第7天时,用免疫荧光染色检测NSCs分化情况,Western blotting和TUNEL检测细胞凋亡水平,Real-time PCR检测脑源性神经营养因子(BDNF)mRNA水平。结果表明,核磁共振图谱和紫外-可见光谱证明聚赖氨酸成功地接枝到了丝素蛋白膜上,CCK-8检测显示:从第3天开始一直到第7天,NSCs在Silk-PIL上的增殖活性要显著高于Silk组(P0.05),而与PLL组无显著性差异(P0.05)。免疫荧光观察显示,NSCs在Silk-PIL上分化成神经元的细胞显著多于Silk组(P0.05),而与PLL组无显著性差异,3个组之间分化为星型胶质细胞的数量并无显著性差异。Western blotting和TUNEL检测结果表明Silk-PIL组NSCs凋亡程度显著小于Silk组(P0.05),但与PLL组无显著性差异(P0.05)。RT-PCR结果显示,NSCs在Silk-PIL和PLL组的BDNFmRNA表达水平显著高于Silk组(P0.05)。结果表明,聚赖氨酸修饰的丝素蛋白膜能够促进NSCs的增殖活性并减少NSCs细胞凋亡,同时促进NSCs向神经元方向分化,有望成为新型组织工程支架材料搭载NSCs移植修复中枢神经系统损伤。  相似文献   

17.
Electrospinning of chitin/silk fibroin (SF) blend solutions in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) was investigated to fabricate a biomimetic nanostructured scaffolds for tissue engineering. The morphology of the electrospun chitin/SF blend nanofibers was investigated with a field emission scanning electron microscope (FE-SEM). The average diameters of chitin/SF blend fibers decreased from 920 to 340 nm, with the increase of chitin content in blend compositions. The miscibility of chitin/SF blend fibers was examined by solution viscosity measurement. The chitin and SF were immiscible in the as-spun nanofibrous structure. The dimensional stability of chitin/SF blend nanofibers, with or without water vapor after-treatment, was conducted by immersing in water. As-spun SF-rich blend nanofibrous matrices were lost their fibrous structure after the water immersion for 24 h, and then changed into membrane-like structure. On the contrary, nanofibrous structures of water vapor-treated SF-rich blends were almost maintained. To assay the cytocompatibility and cell behavior on the chitin/SF blend nanofibrous scaffolds, cell attachment and spreading of normal human epidermal keratinocyte and fibroblasts seeded on the scaffolds were studied. Our results indicate that chitin/SF blend nanofibrous matrix, particularly the one that contained 75% chitin and 25% SF, could be a potential candidate for tissue engineering scaffolds because it has both biomimetic three-dimensional structure and an excellent cell attachment and spreading for NHEK and NHEF.  相似文献   

18.
为了制备传染性法氏囊病病毒(Infectious bursal disease virus,IBDV)DNA微球疫苗,并评价其免疫效果。以丝素蛋白(Silk fibroin,SF)/壳聚糖(Chitosan,CS)为壁材,IBDV的VP2/4/3 DNA疫苗为芯材,通过戊二醛和Na2SO4介导的乳化交联技术,制备出SF/CS复合微球疫苗,然后经肌肉注射14日龄非免疫鸡,2周后加强免疫一次,酶联免疫法(ELISA)定期监测鸡血清的IBDV抗体,以研究微球化疫苗的免疫原性。结果显示:戊二醛介导交联方法影响荷载DNA疫苗的活性,而Na2SO4介导的交联方法操作简单且不影响荷载DNA活性;建立了以壳聚糖浓度0.5%(pH 5.0)、丝素蛋白浓度0.6%,质粒DNA 500μg/mL溶解在2%Na2SO4溶液中的工作条件;SF-CS复合微球DNA疫苗荷载率89.14%,大小1.98μm,对DNaseⅠ的消化有保护作用。免疫后的抗IBDV血清ELISA抗体的检测显示,微球免疫组总体高于质粒疫苗免疫组(P0.05),而且SF/CS复合微球组免疫反应要略高于单纯CS包被的抗原组。研究表明,丝素蛋白/壳聚糖作为微球佐剂能提高IBDV DNA疫苗的临床免疫效果,有很好的应用前景。  相似文献   

19.
Taddei P  Asakura T  Yao J  Monti P 《Biopolymers》2004,75(4):314-324
For a deeper insight into the structure of Bombyx mori silk fibroin, some model peptides containing tyrosine (Y), valine (V), and serine (S) in the basic (AG)n sequence were synthesized by the solid-phase method and analyzed by Raman spectroscopy in order to clarify their conformation and to evaluate the formation and/or disruption of the ordered structure typical of B. mori silk fibroin upon incorporation of Y, V, and S residues into the basic (AG)n sequence. The Raman results indicated that the silk I structure remains stable only when the Y residue is positioned near the chain terminus; otherwise, a silk I --> silk II conformational transition occurs. The peptides AGVGAGYGAGVGAGYGAGVGAGYG(AG)3 and (AG)3YG(AG)2VGYG(AG)3YG(AG)3 treated with LiBr revealed a prevalent silk II conformation; moreover, the former contained a higher amount of random coil than the latter. This result was explained in relation to the different degrees of interruption of the (AG)n sequence. The Raman analysis of the AGSGAG-containing samples confirmed that the AGSGAG hexapeptide is a good model for the silk II crystalline domain. As the number of AGSGAG repeating units decreased, the random coil content increased. The study of the Y domain (I850/I830 intensity ratio) allowed us to hypothesize that in the packing characteristic of Silk I and Silk II conformations the Y residues experience different environments and hydrogen-bonding arrangements; the packing typical of silk I structure traps the tyrosyl side chains in environments more unfavorable to phenoxyl hydrogen-bonding interactions.  相似文献   

20.
Silk fibroin (SF), extracted from Bombyx mori, has unique physicochemical properties to achieve an efficient wound dressing. In this study, reduced graphene oxide (RGO)/ZnO NPs/silk fibroin nanocomposite was made, and an innovative nanofiber of SF/polyvinyl alcohol (PVA)/RGO/ZnO NPs was ready with the electrospinning technique and successfully characterized. The results of MIC and OD analyses were used to investigate the synthesized materials' antibacterial effects and displayed that the synthesized materials could inhibit growth against Staphylococcus aureus and Escherichia coli bacteria. However, both in vitro cytotoxicity (MTT) and scratch wound studies have shown that RGO/ZnO NPs and SF/PVA/RGO/ZnO NPs are not only non-toxic to NIH 3T3 fibroblasts, but also can cause cell viability, cell proliferation, and cell migration. Furthermore, improving the synthesized nanofiber's structural properties in the presence of RGO and ZnO NPs has been confirmed by performing tensile strength, contact angle, and biodegradation analyses. Also, in a cell attachment analysis, fibroblast cells had migrated and expanded well in the nanofibrous structures. Moreover, in vivo assay, SF/PVA/RGO/ZnO NPs nanofiber treated rats and has been shown significant healing activity and tissue regeneration compared with other treated groups. Therefore, this study suggests that SF/PVA/RGO/ZnO NPs nanofiber is a hopeful wound dressing for preventing bacteria growth and improving superficial wound repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号