首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Cell surface binding, internalization, and biological effects of insulin-like growth factors (IGFs) I and II have been studied in primary neuronal cultures from developing rat brain (embryonic day 15). Two types of IGF binding sites are present on the cell surface. The IGF-I receptor alpha-subunit (Mr 125,000) binds IGF-I with a KD of 1 nM and IGF-II with 10 times lower affinity. The mannose-6-phosphate (Man-6-P)/IGF-II receptor (Mr 250,000) binds IGF-II with a KD of 0.5 nM and IGF-I with 100 times lower affinity. Surface-bound IGF-I and IGF-II are internalized by their respective receptors binding and internalization of IGF-II but not those of IGF-I. Neuronal synthesis of RNA and DNA is increased twofold by IGF-I with 10 times higher potency than IGF-II. Antibody 3637, which blocks receptor binding of IGF-II, has no effect on the DNA response to IGF-I or IGF-II. Double immunocytochemical staining with antibodies to bromodeoxyuridine and neurofilament shows that greater than 80% of the bromodeoxyuridine-positive cells become neurofilament positive. It is concluded that IGF-I and IGF-II bind to two receptors on the surface of neuronal precursor cells that mediate endocytosis and degradation of IGF-I and IGF-II. Proliferation of neuronal precursor cells is stimulated by IGF-I and IGF-II via activation of the IGF-I receptor.  相似文献   

6.
7.
Summary Previous investigations have demonstrated specific receptors and associated mitogenic actions for insulin and insulinlike growth factors I and II (IGF-I and II) in postnatal bovine aortic smooth muscle. Using fetal tissue we have observed different patterns of binding and action for these peptides. Smooth muscle cells isolated from near-term fetal bovine aortae were studied in early passage. Specific receptors for both IGF-I and IGF-II were identified. Specific binding averaged 5.7%/2.5×105 cells for IGF-I, and 16.2% for IGF-II, and 0.3% for insulin. High affinity K d for both IGF receptors were nanomolar. IGF-II was fivefold less potent than IGF-I in displacing IGF-I binding. IGF-I showed no affinity for the IGF-II receptor. Insulin, at physiologic concentrations, was incapable of displacing either IGF-I or IGF-II binding. Cellular incorporation of [methyl-3H]thymidine was stimulated at the lowest dose of IGF-I tested, 0.5 ng/ml. IGF-II showed no effect up to 100 ng/ml, after which a sharp increase in incorporation was noted. Insulin had a similar effect only at concentrations >0.5 μg/ml, with a maximal response noted at 5 to 10 μg/ml. Our results indicate that fetal bovine aortic smooth muscle cells have an abundance of IGF receptors but lack specific insulin receptors. In addition, IGF-II binding levels are three times higher than for IGF-I. These results are consistent with observations in other species, in which a predominance of IGF over insulin receptors has been demonstrated in fetal tissue, and provide further evidence for a role for the IGFs in embryonic cellular metabolism. This project was supported by grants AM22190 (R. L. H.), AM28229 (R. G. R.) from the National Institutes of Health, Bethesda, MD, and Research Career Development Award AM01275 from the NIH (R. G. R.). Dr. Lee was the recipient of a fellowship award from the Juvenile Diabetes Foundation International and is currently supported by funds from the American Diabetes Association. Dr. Benitz is the recipient of a Clinician-Scientist Award from the American Heart Association, with funds contributed in part by the California Affiliate.  相似文献   

8.
Abstract: Glycosyl phosphatidylinositols have been implicated in insulin signaling through their action as precursors of second messenger molecules in peripheral tissues. In the present study, cultured rat astrocytes were used to investigate whether glycosyl phosphatidylinositol might be involved in the mechanism of insulin signal transduction in neural cells. A glycosyl phosphatidylinositol sensitive to hydrolysis by both phosphatidylinositol-specific phospholipase C and glycosyl phosphatidylinositol-specific phospholipase D and to nitrous acid deamination was purified. When astrocytes were exposed to 10 n M insulin, a rapid and significant reduction in the content of glycosyl phosphatidylinositol was observed within 1–2 min. In addition, an inverse concentration-dependent relationship between glycosyl phosphatidylinositol and diacylglycerol levels was found, suggesting a phospholipase C-mediated hydrolysis of glycosyl phosphatidylinositol in response to insulin. The effects of insulin were mediated through its own receptors and not through insulin-like growth factor (IGF)-I and/or IGF-II receptors, as demonstrated by affinity cross-linking studies. Also, the effects of 5 n M IGF-I or 5 n M IGF-II on glycosyl phosphatidylinositol and diacylglycerol levels were different from those caused by insulin and were not essentially modified by pretreatment of the cells with either platelet-derived growth factor (PDGF) or epidermal growth factor (EGF). When cells were sequentially incubated with PDGF and EGF, a reduction in both glycosyl phosphatidylinositol and diacylglycerol contents was observed; the diacyl-glycerol but not the glycosyl phosphatidyl content was reversed after incubation with IGF-I, and especially with IGF-II, for 10 min. Despite the remarkable homology among insulin, IGF-I, and IGF-II, our results indicate that in astrocytes these compounds probably use different signal transduction pathways.  相似文献   

9.
The insulin-like growth-factor-II/mannose-6-phosphate (IGF-II/Man6P) receptor binds two classes of ligands, insulin-like growth factors and lysosomal enzymes. We have examined the ability of the lysosomal enzyme, beta-galactosidase, to modulate the binding of 125I-IGF-II to the receptor. beta-Galactosidase purified from bovine testis was fractionated on a DEAF-Sephacel ion-exchange column. Column fractions were assayed for enzymatic activity and for ability to inhibit the binding of 125I-IGF-II to the IGF-II/Man6P receptor. Enzyme fractions eluting at higher NaCl concentrations which had previously been shown to exhibit greater uptake by cells in culture, exhibited greater potency in inhibiting the binding of 125I-IGF-II to the receptor. A pool of these fractions from the DEAE-Sephacel column inhibited 125I-IGF-II binding to pure receptor by 80% with the concentration required for half-maximal inhibition being 25 nM. The inhibition of binding by beta-galactosidase was completely blocked by simultaneous incubation with Man6P. Inhibition of the enzymatic activity of beta-galactosidase with D-galactonic acid gamma-lactone did not affect the ability of beta-galactosidase to inhibit the binding of 125I-IGF-II to the receptor. Scatchard analysis of IGF-II binding to pure receptor in the presence and absence of beta-galactosidase showed that beta-galactosidase decreased the binding affinity for IGF-II (Kd 0.26 nM versus 1.0 nM in the presence of 57 nM beta-galactosidase). We confirmed the observations of others that Man6P alone actually increases the binding of 125I-IGF-II to the IGF-II/Man6P receptor, but we found that this phenomenon was dependent upon the method of preparation of the IGF-II/Man6P receptor. Microsomal membrane preparations, solubilized membranes, and receptors purified on an IGF-II-Sepharose column all exhibited stimulation of 125I-IGF-II binding by Man6P, whereas receptors purified on lysosomal enzyme affinity columns showed little or no stimulation of 125I-IGF-II binding by Man6P. We conclude that beta-galactosidase decreases the binding affinity of the IGF-II/Man-6-P receptor for IGF-II by binding with high affinity to the Man6P-recognition site.  相似文献   

10.
The tumor-promotor phorbol dibutyrate (PDBt) increases the binding of a neoglycoprotein containing mannose 6-phosphate (Man6P) and of insulin-like growth factor II (IGF-II) to the Man6P/IGF-II receptor at the cell surface. This effect is dependent on time and concentration and is also seen with synthetic 1-oleoyl-2-acetyl-sn-glycerol, but not with 4 alpha-phorbol, an inactive tumor-promoter. The increase is due to a 3-4-fold increase in the number of cell-surface, receptors, accompanied by a 1.6-fold increase in ligand-binding affinity. The internalization rate of the Man6P/IGF-II receptor is not affected by PDBt, suggesting that the redistribution of these receptors to the cell surface is due to an accelerated externalization rate. The redistribution of Man6P/IGF-II receptors did not impair the sorting of newly synthesized Man6P-containing ligands while uptake of these ligands is 2-4-fold increased. Inactivation or down regulation of protein kinase C decreased the binding of the Man6P-containing neoglycoprotein to 65% of controls. Incubation of cells with Man6P, IGF-I, IGF-II or epidermal growth factor induces a rapid redistribution of Man6P/IGF-II receptors to the plasma membrane [Braulke, T., Tippmer, S., Neher, E. & von Figura, K. (1989) EMBO J. 8, 681-686]. Incubation with PDBt prevented the effect of growth factors but not that of Man6P on receptor redistribution. Inactivation of protein kinase C did not affect the Man6P/IGF-II receptor redistribution induced by Man6P and growth factors. These data suggest that Man6P, growth factors and activation of protein kinase C by phorbol esters and diacylglycerols modulate Man6P/IGF-II receptor cell-surface binding by at least two independent mechanisms, receptor redistribution as well as an increase of binding affinity, which might be involved in regulation of endocytosis of ligands.  相似文献   

11.
Retinoids are currently being tested for the treatment and prevention of several human cancers, including breast cancer. However, the anti-cancer and growth inhibitory mechanisms of retinoids are not well understood. All-trans retinoic acid (RA) inhibits the growth of the estrogen receptor-positive (ER+) breast cancer cell line, MCF-7, in a reversible and dose-dependent manner. In contrast, insulin-like growth factors (IGF-I,IGF-II) and insulin are potent stimulators of the proliferation of MCF-7 and several other breast cancer cell lines. Pharmacologic doses of RA (≤10?6M) completely inhibit IGF-I-stimulated MCF-7 cell growth. Published data suggest that the growth inhibitory action of RA on IGF-stimulated cell growth is linear and dose-dependent, similar to RA inhibition of unstimulated or estradiol-stimulated MCF-7 cell growth. Surprisingly, we have found that IGF-I or insulin-stimulated cell growth is increased to a maximum of 132% and 127%, respectively, by cotreatment with 10?7 M RA, and that 10?9–10?7 M RA increase cell proliferation compared to IGF-I or insulin alone. MCF-7 cells that stably overexpress IGF-II are also resistant to the growth inhibitory effects of 10?9–10?7 M RA. Treatment with the IGF-I receptor blocking antibody, αIR-3, restores RA-induced growth inhibition of IGF-I-treated or IGF-II-overexpressing MCF-7 cells, indicating that the IGF-I receptor is mediating these effects. IGFs cannot reverse all RA effects since the altered cell culture morphology of RA-treated cells is similar in growth-inhibited cultures and in IGF-II expressing clones that are resistant to RA-induced growth inhibition. These results indicate that RA action on MCF-7 cells is biphasic in the presence of IGF-I or insulin with 10?9–10?7 M RA enhancing cell proliferation and ≥ 10?6M RA causing growth inhibition. As IGF-I and IGF-II ligands are frequently detectable in breast tumor tissues, their potential for modulation of RA effects should be considered when evaluating retinoids for use in in vivo experimental studies and for clinical purposes. Additionally, the therapeutic use of inhibitors of IGF action in combination with RA is suggested by these studies. © 1995 Wiley-Liss Inc.  相似文献   

12.
BACKGROUND: Perturbation in a level of any peptide from insulin-like growth factor (IGF) family (ligands, receptors, and binding proteins) seems to be implicated in lung cancer formation; IGF ligands and IGF-I receptor through their mitogenic and anti-apoptotic action, and the mannose 6-phosphate/insulin-like growth factor II receptor (M6-P/IGF-IIR) possibly as a tumor suppressor. MATERIALS AND METHODS: To determine the identity, role, and mutual relationship of IGFs in lung cancer growth and maintenance, we examined IGF's gene (by RT-PCR) and protein (by immunohistochemistry) expression in 69 human lung carcinoma tissues. We also examined IGF-I receptor numbers (Scatchard analysis) and IGF-II production and release (by Western blot) in IGF-II/IGF-IR mRNA positive and negative lung carcinomas. Finally, the potential role of IGF-IR and IGF-II as growth promoting factors in lung cancer was studied using antisense oligodeoxynucleotides that specifically inhibit IGF-IR and IGF-II mRNA. RESULTS: Thirty-two tumors were positive for IGF-I, 39 for IGF-II, 48 for IGF-IR, and 35 for IGFBP-4 mRNA. Seventeen tumors were concomitantly positive for all four IGFs, whereas 34 were positive for IGF-II, IGF-IR, and IGFBP-4 mRNA. An elevated amount of IGF-II peptide was secreted into the growth medium of cell cultures established from five different IGF-II/IGF-IR mRNA positive lung cancer tissues. The cells also expressed elevated numbers of IGF-IR. Nine IGF-II-negative and 19 IGF-II-positive lung cancers of different stages were selected, and M6-P/ IGF-II receptor was determined immunohistochemically. Most of the IGF-II-negative tumors were strongly positive for M6-P/IGF-IIR. IGF-II-positive tumors were mostly negative for M6-P/IGF-II receptors. Antisense oligodeoxynucleotides to IGF-II significantly inhibited, by 25-60%, the in vitro growth of all six lung cancer cell lines. However, the best results (growth inhibition of up to 80%) were achieved with concomitant antisense treatment (to IGF-IR and IGF-II). CONCLUSION: Our data suggest that lung cancer cells produce IGF-IR and IGF-II, which in turn stimulates their proliferation by autocrine mechanism. Cancer cell proliferation can be abrogated or alleviated by blocking the mRNA activity of these genes indicating that an antisense approach may represent an effective and practical cancer gene therapy strategy.  相似文献   

13.
Insulin and the insulin-like growth factors (IGFs) bind with high affinity to their cognate receptor and with lower affinity to the noncognate receptor. The major structural difference between insulin and the IGFs is that the IGFs are single chain polypeptides containing A-, B-, C-, and D-domains, whereas the insulin molecule contains separate A- and B-chains. The C-domain of IGF-I is critical for high affinity binding to the insulin-like growth factor I receptor, and lack of a C-domain largely explains the low affinity of insulin for the insulin-like growth factor I receptor. It is less clear why the IGFs have lower affinity for the insulin receptor. In this study, 24 insulin analogues and four IGF analogues were expressed and analyzed to explore the role of amino acid differences in the A- and B-domains between insulin and the IGFs in binding affinity for the insulin receptor. Using the information obtained from single substituted analogues, four multiple substituted analogues were produced. A "quadruple insulin" analogue ([Phe(A8), Ser(A10), Thr(B5), Gln(B16)]Ins) showed affinity as IGF-I for the insulin receptor, and a "sextuple insulin" analogue ([Phe(A8), Ser(A10), Thr(A18), Thr(B5), Thr(B14), Gln(B16)]Ins) showed an affinity close to that of IGF-II for the insulin receptor, whereas a "quadruple IGF-I" analogue ([His(4), Tyr(15), Thr(49), Ile(51)]IGF-I) and a "sextuple IGF-II" analogue ([His(7), Ala(16), Tyr(18), Thr(48), Ile(50), Asn(58)]IGF-II) showed affinities similar to that of insulin for the insulin receptor. The mitogenic potency of these analogues correlated well with the binding properties. Thus, a small number of A- and B-domain substitutions that map to the IGF surface equivalent to the classical binding surface of insulin weaken two hotspots that bind to the insulin receptor site 1.  相似文献   

14.
The review presents data on the insulin-like growth factor-II (IGF-II), a regulatory peptide included in the insulin superfamily, as its structure and function are the closest to those of insulin and IGF-I. The last decade investigations revealed the biological properties of IGF-II which distinguish it from related peptides. The primary sequence of the IGF-II structure has peculiar differences from those of insulin but insignificant ones from IGF-I. The tertiary structure of IGF-II is similar to that of the related peptide molecules, but a peculiar receptor-binding domain in the IGF-II molecule provides for its unique capability of interacting with receptors. IGF-II interacts with three types of receptors: receptors of IGF-I, IGF-2, and insulin. IGF-II has the highest affinity to IGF-2 receptors but its mitogenic effects are mediated by IGF-I receptors (i.e., the phenomenon of divergence of binding and biological activities). The arguments obtainedin vitro andin vivo are presented, which confirm propagation of mitogenic effects by IGF-I receptors but deny participation of IGF-2 receptors. The structural and functional bivalency of the M6P/IGF-2 receptor (a peculiar form of the M6P receptor in mammals) is considered in detail. The results of interactions of IGF-II and the M6P/IGF-2 receptors are not yet known. The primary function of the M6P/IGF-2 receptor (sorting and transport of the lysosomal enzymes) is likely to be due to the peptides inactivation and does not imply its participation in the IGF-II signaling. However, several data do not permit ruling out participation of the IGF-2 receptor in the IGF-II effects different from mitogenic ones. The organization of related peptide gene in the lancelet allows us to suggest the appearance of the IGF-II gene at the initial steps of the vertebrate evolution and to trace all stages of formation of two separate IGF genes up to the mammalian IGF-II and IGF-I genes with different structural organizations. The IGF-II expression by embryonic tissues is revealed earlier than that of other related peptides and reaches the highest level at the embryonal period. The general regularities of the IGF-II regulatory activity in embryogenesis and of the growth hormone effect on the IGF-II expression in embryonal tissues are considered.  相似文献   

15.
The erythroleukemia cell line K562 was previously shown to have specific binding sites for insulin but not for insulin-like growth factor I (IGF-I). In this study the presence of specific receptors for insulin-like growth factor II (IGFqI) is established. Scatchard analysis of the competition curve for IGF-II disclosed a non-cooperative binding kinetic with a calculated affinity constant of 2.4×108 M–1 and a receptor number of 4.8×l04 sites/cell. IGF-I displayed 10% crossreactivity over the IGF-II receptor but insulin did not crossreact at all. Instead insulin, present in high concentrations, enhanced the binding of IGF-II. The presence of IGF II but not IGF-I receptors makes t h e K562 cell line suitable for studying properties of the type-2 receptor.  相似文献   

16.
Antibodies against the insulin-like growth factor-I (IGF-I) or the IGF-I receptor (IGF-IR) directly initiate a rapid (within 6 h) hypertrophy of isolated adult rat ventricular cardiomyocytes cultured in the absence of serum. Further, cardiomyocytes treated with either of these agonistic antibodies upregulate the expression of their genes for insulin-like growth factor-II (IGF-II) and the IGF-II receptor (IGF-IIR). Genistein, an inhibitor of the tyrosine kinase IGF-IR, also induces the cardiomyocytes to hypertrophy. Anti-IGF-II antibody inhibits the cardiomyocyte hypertrophy induced by anti-IGF-I and anti-IGF-IR antibodies or by genistein. Results are consistent with a model in which local production of IGF-II is upregulated when the IGF-IR signaling pathway is blocked and in which an IGF-II-mediated pathway, likely involving the IGF-IIR, then stimulates hypertrophy of the cardiomyocytes.  相似文献   

17.
18.
Summary To facilitate the study of regulators of differentiation and proliferation of small intestinal epithelium in the suckling rat we have developed a serum-free organ culture system and used it to examine epithelial responsiveness to various regulatory hormones. These hormones included the insulin-like growth factors (IGFs) whose action can be blocked by binding proteins in serum. Jejunal explants from 5-day-old suckling rats maintained better brush border enzyme activity and better histology when cultured under hyperbaric conditions for 24 h in serum-free Dulbecco’s modified Eagle’s medium/F12 medium than in RPMI 1640 plus 10% fetal bovine serum. Tissue responsiveness to various regulatory hormones was then tested in the serum-free medium. Insulin had no significant effect on morphology, proliferation rate, or enzyme activity in 5-day explants after 24 h in culture. However, insulin did increase lactase activity and induce the early appearance of sucrase in 10- and 12-day explants after 48 h culture. Dexamethasone increased specific activities of alkaline phosphatase (30%,P<0.001) and lactase (15%,P<0.001), and reduced shedding of alkaline phosphatase into the medium (P<0.001), in explants of 5-day-old rats cultured over 24 h. Dexamethasone combined with insulin had no obvious effect on the rate of protein or DNA synthesis but did increase villus height (P=0.04) and crypt depth (P=0.001) and acted synergistically to further increase lactase activity above levels obtained by either alone. IGF-I and IGF-II, des-(1–3)IGF-I, fibroblast growth factor (FGF), and growth hormone (GH) had no effect on morphology or biochemical activity of explants after 24 or 48 h culture. In conclusion, histology, enzyme activity, protein, and DNA synthesis of suckling rat jejunal explants were equivalent or better in serum-free than in serum-containing organ culture systems. Furthermore, biological responsiveness was demonstrated by dexamethasone and insulin altering the explants morphologically or biochemically. None of the IGFs or GH had any biological effects, raising doubts about their direct biological action on the developing intestinal epithelium.  相似文献   

19.
The insulin-like growth factors (IGFs) I and II exert pleiotropic effects on diverse cell types through interaction with specific high affinity cell surface receptors and with locally produced binding proteins. In skeletal muscle and in myoblast cell lines, the functions of IGF-I and -II are complex. Both growth factors appear capable of stimulating cellular proliferation and differentiation, as well as exerting insulin-like effects on intermediary metabolism. We have demonstrated recently that the expression of IGF-II and its receptor is induced during the terminal differentiation of the myoblast cell line, C2, and have suggested that IGF-II may be an autocrine growth factor in these cells (Tollefsen, S.E., Sadow, J.L., and Rotwein, P. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 1543-1547). We now have examined this cell line for expression of other components involved in IGF signaling. The synthesis of IGF-I is low during myoblast proliferation; IGF-I mRNA can be detected only through use of a sensitive solution hybridization assay. Typical IGF-I receptors can be measured in myoblasts, whereas IGF binding proteins cannot be detected in proliferating cells or in conditioned culture medium. During myogenic differentiation, IGF-I mRNA levels increase transiently by 6-10-fold within 48-72 h. The expression of IGF-I mRNA is accompanied by a 2.5-fold accumulation of IGF-I in the culture medium. IGF-I receptors also increase transiently, doubling by 48 h after the onset of differentiation. By contrast, secretion of a Mr 29,000 IGF binding protein is induced 30-fold to 100 ng/ml within 16 h and continues to increase throughout differentiation. These studies demonstrate that several components critical to IGF action are produced in a fusing skeletal muscle cell line in a differentiation-dependent manner and suggest that both IGF-I and IGF-II may be autocrine factors for muscle.  相似文献   

20.
Sheep thyroid cells cultured in serum-free medium were used to study the biologic activity, binding, and production of the insulin-like growth factors (IGFs). IGF-I, IGF-II, and insulin stimulated thyroid cell division. Abundant, specific IGF receptors on sheep thyroid cell membranes were identified by binding displacement studies. Maximal specific binding of [125I]-labeled IGF-I and IGF-II to 25 micrograms of membrane protein averaged 21% and 27% respectively. The presence of type I and type II IGF receptors was confirmed by polyacrylamide gel electrophoresis of [125I]IGFs covalently cross-linked to cell membranes. Under reducing conditions, [125I]IGF-I bound to a moiety of approximate Mr = 135,000 and [125I]IGF-II to a moiety of approximate Mr = 260,000. Cross-linking of [125I]IGF-I to medium conditioned by thyroid cells indicated the presence of four IGF binding proteins with apparent Mr = 34,000, 26,000, 19,000 and 14,000. Thyroid cells also secreted IGF-I and II into the medium. IGF synthesis was enhanced consistently by recombinant growth hormone. These data indicate that sheep thyroid cells are a site for IGF action, binding, and production and provide further evidence that IGFs may modulate thyroid gland growth in an autocrine or paracrine manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号