共查询到20条相似文献,搜索用时 0 毫秒
1.
Shimizu H Yokobori S Ohkuri T Yokogawa T Nishikawa K Yamagishi A 《Journal of molecular biology》2007,369(4):1060-1069
Based on phylogenetic analysis of 16 S and 18 S rRNAs, the common ancestor of all organisms (Commonote) was proposed to be hyperthermophilic. We have previously tested this hypothesis using enzymes with ancestral residues that are inferred by molecular phylogenetic analysis. The ancestral mutant enzymes involved in metabolic systems show higher thermal stability than wild-type enzymes, consistent with the hyperthermophile common ancestor hypothesis. Here, we have extended the experiments to include an enzyme of the translation system, glycyl-tRNA synthetase (GlyRS). The translation system often shows a phylogenetic tree that is similar to the rRNA tree. Thus, it is likely that the tree represents the evolutionary route of the organisms. The maximum-likelihood tree of alpha(2) type GlyRS was constructed. From this analysis the ancestral sequence of GlyRS was deduced and individual or pairs of ancestral residues were introduced into Thermus thermophilus GlyRS. The ancestral mutants were expressed in Escherichia coli, purified and activity measured. The thermostability of eight mutated proteins was evaluated by CD (circular dichroism) measurements. Six mutants showed higher thermostability than wild-type enzyme and seven mutants showed higher activity than wild-type enzyme at 70 degrees C, suggesting an extremely thermophilic translation system in the common ancestor Commonote. 相似文献
2.
Tamakoshi M Nakano Y Kakizawa S Yamagishi A Oshima T 《Extremophiles : life under extreme conditions》2001,5(1):17-22
A leuB strain of Thermus thermophilus TTY1, was transformed with a plasmid vector that directed expression of 3-isopropylmalate dehydrogenase (IPMDH) of Saccharomyces cerevisiae encoded by the LEU2 gene. The original strain could not grow at 50 degrees C without leucine, probably because of the low stability of S. cerevisiae IPMDH. The mutants that could grow without leucine were selected at 50 degrees, 60 degrees, 62 degrees, 65 degrees, 67 degrees, and 70 degrees C, step by step. All the mutant strains except for one isolated at 50 degrees C accumulated mutations. Mutations were serially accumulated: Glu255Val, Asn43Tyr, Ala62Thr, Asn110Lys, and Alal 12Val, respectively, at each step. The analyses of residual activity after heat treatment and the denaturation profile as monitored by circular dichroism showed that thermal stability was increased with accumulation of the mutations. The kinetic parameters of most mutant enzymes were similar to those of the wild type. However, some mutant enzymes showed a reverse correlation between stability and activity: the enzymes with a large increase in thermal stability showed lower activity. Although the wild-type enzyme is unstable in the absence of glycerol, the stabilizing effect of glycerol was not observed for all the mutant enzymes containing the Glu255Val substitution, which is assumed to be located at the hydrophobic interface between two subunits. 相似文献
3.
We have performed random mutagenesis coupled with selection to isolate mutant enzymes with high catalytic activities at low temperature from thermophilic 3-isopropylmalate dehydrogenase (IPMDH) originally isolated from Thermus thermophilus. Five cold-adapted mutant IPMDHs with single-amino-acid substitutions were obtained and analyzed. Kinetic analysis revealed that there are two types of cold-adapted mutant IPMDH: k(cat)-improved (improved in k(cat)) and K(m)-improved (improved in k(cat)/K(m)) types. To determine the mechanisms of cold adaptation of these mutants, thermodynamic parameters were estimated and compared with those of the Escherichia coli wild-type IPMDH. The Delta G(m) values for Michaelis intermediate formation of the k(cat)-improved-type enzymes were larger than that of the T. thermophilus wild-type IPMDH and similar to that of the E. coli wild-type IPMDH. The Delta G(m) values of K(m)-improved-type enzymes were smaller than that of the T. thermophilus wild-type IPMDH. Fitting of NAD(+) binding was improved in the K(m)-improved-type enzymes. The two types of cold-adapted mutants employed one of the two strategies of E. coli wild-type IPMDH: relative destabilization of the Michaelis complex in k(cat)-improved-type, and destabilization of the rate-limiting step in K(m)-improved type mutants. Some cold-adapted mutant IPMDHs retained thermostability similar to that of the T. thermophilus wild-type IPMDH. 相似文献
4.
Further stabilization of 3-isopropylmalate dehydrogenase of an extreme thermophile, Thermus thermophilus, by a suppressor mutation method. 总被引:1,自引:2,他引:1
下载免费PDF全文

We succeeded in further improvement of the stability of 3-isopropylmalate dehydrogenase (IPMDH) from an extreme thermophile, Thermus thermophilus, by a suppressor mutation method. We previously constructed a chimeric IPMDH consisting of portions of thermophile and mesophile enzymes. The chimeric enzyme is less thermostable than the thermophile enzyme. The gene encoding the chimeric enzyme was subjected to random mutagenesis and integrated into the genome of a leuB-deficient mutant of T. thermophilus. The transformants were screened at 76 degrees C in minimum medium, and three independent stabilized mutants were obtained. The leuB genes from these three mutants were cloned and analyzed. The sequence analyses revealed Ala-172-->Val substitution in all of the mutants. The thermal stability of the thermophile IPMDH was improved by introducing the amino acid substitution. 相似文献
5.
Numata K Hayashiiwasaki Y Yutani K Oshima T 《Extremophiles : life under extreme conditions》1999,3(4):259-262
In our previous study, we showed that a chimeric isopropylmalate dehydrogenase, 2T2M6T, between an extreme thermophile, Thermus thermophilus, and a mesophile, Bacillus subtilis, isopropylmalate dehydrogenases (the name roughly denotes the primary structure; the first 20% from the N-terminal is coded
by the thermophile leuB gene, next 20% by mesophile, and the rest by the thermophile gene) denatured in two steps with a stable intermediate, suggesting
that in the chimera some of the interdomain interaction was lost by amino acid substitutions in the "2M" part. To identify
the residues involved in the interdomain interactions, the first and the second halves of the 2M part of the chimera were
substituted with the corresponding sequence of the thermophile enzyme. Both chimeras, 3T1M6T and 2T1M7T, apparently showed
one transition in the thermal denaturation without any stable intermediate state, suggesting that the cooperativity of the
conformational stability was at least partly restored by the substitutions. The present study also suggested involvement of
one or more basic residues in the unusual stability of the thermophile enzyme.
Received: September 29, 1998 / Accepted: June 25, 1999 相似文献
6.
Molecular cloning and nucleotide sequence of 3-isopropylmalate dehydrogenase gene (leuB) from an extreme thermophile, Thermus aquaticus YT-1 总被引:2,自引:0,他引:2
A gene (leuB) coding for 3-isopropylmalate dehydrogenase [EC 1.1.1.85] from an extreme thermophile, Thermus aquaticus YT-1 was cloned in Escherichia coli and the nucleotide sequence was determined. It contains an open reading frame of 1,035 bp encoding 344 amino acid residues. The homology with that from T. thermophilus HB8 is 87.0% in nucleotide and 91.3% in amino acid sequences. No overlapped gene was found in the present leuB gene, in contrast to the previous prediction that Thermus leuD gene is overlapped with leuB [Croft et al. (1987) Mol. Gen. Genet. 210, 490-497]. Substitutions in the primary structure which are unique for the thermophile sequences are discussed in relation to the unusual stability of the thermophile dehydrogenase based on amino acid sequence comparison of 9 microorganisms including thermophiles and mesophiles. 相似文献
7.
Adaptation of a thermophilic enzyme, 3-isopropylmalate dehydrogenase, to low temperatures 总被引:2,自引:0,他引:2
Random mutagenesis coupled with screening of the active enzyme at a low temperature was applied to isolate cold-adapted mutants of a thermophilic enzyme. Four mutant enzymes with enhanced specific activities (up to 4.1-fold at 40 degrees C) at a moderate temperature were isolated from randomly mutated Thermus thermophilus 3-isopropylmalate dehydrogenase. Kinetic analysis revealed two types of cold-adapted mutants, i.e. k(cat)-improved and K(m)-improved types. The k(cat)-improved mutants showed less temperature-dependent catalytic properties, resulting in improvement of k(cat) (up to 7.5-fold at 40 degrees C) at lower temperatures with increased K(m) values mainly for NAD. The K(m)-improved enzyme showed higher affinities toward the substrate and the coenzyme without significant change in k(cat) at the temperatures investigated (30-70 degrees C). In k(cat)-improved mutants, replacement of a residue was found near the binding pocket for the adenine portion of NAD. Two of the mutants retained thermal stability indistinguishable from the wild-type enzyme. Extreme thermal stability of the thermophilic enzyme is not necessarily decreased to improve the catalytic function at lower temperatures. The present strategy provides a powerful tool for obtaining active mutant enzymes at lower temperatures. The results also indicate that it is possible to obtain cold-adapted mutant enzymes with high thermal stability. 相似文献
8.
Previously, we showed that mutants of Thermus thermophilus 3-isopropylmalate dehydrogenase (IPMDH) each containing a residue (ancestral residue) that had been predicted to exist in a postulated common ancestor protein often have greater thermal stabilities than does the contemporary wild-type enzyme. In this study, the combined effects of multiple ancestral residues were analyzed. Two mutants, containing multiple mutations, Sup3mut (Val181Thr/Pro324Thr/Ala335Glu) and Sup4mut (Leu134Asn/Val181Thr/Pro324Thr/Ala335Glu) were constructed and show greater thermal stabilities than the wild-type and single-point mutant IPMDHs do. Most of the mutants have similar or improved catalytic efficiencies at 70 degrees C when compared with the wild-type IPMDH. 相似文献
9.
T Yamada N Akutsu K Miyazaki K Kakinuma M Yoshida T Oshima 《Journal of biochemistry》1990,108(3):449-456
Threo-Ds-3-isopropylmalate dehydrogenase coded by the leuB gene from an extreme thermophile, Thermus thermophilus strain HB8, was expressed in Escherichia coli carrying a recombinant plasmid. The thermostable enzyme thus produced was extracted from the E. coli cells, purified, and crystallized. The enzyme was shown to be a dimer of identical subunits of molecular weight (4.0 +/- 0.5) x 10(4). The Km for threo-Ds-3-isopropylmalate was estimated to be 8.0 x 10(-5) M and that for NAD 6.3 x 10(-4) M. The optimum pH at 75 degrees C in the presence of 1.2 M KCl was around 7.2. The presence of Mg2+ or Mn2+ was essential for the enzyme action. The enzyme was activated about 30-fold by the addition of 1 M KCl or RbCl. The high salt concentration decelerated the thermal unfolding of the enzyme, and accelerated the aggregation of the unfolded protein. Based on these effects, the molecular mechanism of the unusual stability of the enzyme is discussed. 相似文献
10.
D-glyceraldehyde-3-phosphate dehydrogenase. Amino-acid sequence of the enzyme from the extreme thermophile Thermus aquaticus 总被引:13,自引:0,他引:13
1. The amino acid sequence of D-glyceraldehyde-3-phosphate dehydrogenase from the extreme thermophile Thermus aquaticus has been elucidated. 2. The polypeptide contains 332 amino acids and its sequence is 70% identical with that of the enzyme from the moderate thermophile Bacillus stearothermophilus. 3. In contrast to less thermostable forms of the enzymes from B. stearothermophilus, pig, lobster and yeast, the T. aquaticus enzyme has only one cysteine residue, namely cysteine-149 which is required for catalysis. 相似文献
11.
1. D-Glyceraldehyde-3-phosphate dehydrogenase from an extreme thermophile, T. thermophilus strain HB8, was purified and crystallized. 2. The enzyme was found to possess remarkable heat stability, being slowly inactivated at 90 degrees C. 3. Basic kinetic constants and pH profile are reported. The enzyme was activated 25-fold by 90 mM NH4Cl, and also by ethanol up to 5-fold at 30 degrees C. 4. The enzyme was found to be far more resistant to urea or sodium dodecylsulfate than the rabbit enzyme. 5. The enzyme was shown to be a tetramer of molecular weight 130000--135000. Amino acid composition analysis revealed no unusual features. Circular dichroic spectra suggested that the contents of the ordered structure of the thermophile enzyme are similar to those of the rabbit enzyme. 6. The other catalytic properties of the thermophile enzyme are discussed in comparison with those of the enzymes from other sources. 相似文献
12.
K Miyazaki H Eguchi A Yamagishi T Wakagi T Oshima 《Applied and environmental microbiology》1992,58(1):93-98
The gene coding for isocitrate dehydrogenase of an extreme thermophile, Thermus thermophilus HB8, was cloned and sequenced. This gene consists of a single open reading frame of 1,485 bp preceded by a Shine-Dalgarno ribosome binding site. Promoter- and terminatorlike sequences were detected upstream and downstream of the open reading frame, respectively. The G + C content of the coding region was 65.6%, and that of the third nucleotide of the codons was 90.3%. On the basis of the deduced amino acid sequence, the Mr of the monomeric enzyme was calculated as 54,189, an Mr which is similar to that of the purified protein determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A comparison of the amino acid sequence of the T. thermophilus enzyme with that of the Escherichia coli enzyme showed (i) a 37% overall similarity; (ii) the conservation of the Ser residue, which is known to be phosphorylated in the E. coli enzyme, and of the surrounding sequence; and (iii) the presence of 141 extra residues at the C terminus of the T. thermophilus enzyme. T. thermophilus isocitrate dehydrogenase showed a high sequence homology (33% of the amino acid sequence is identical) to isopropylmalate dehydrogenase from the same organism and was suggested to have evolved from a common ancestral enzyme. 相似文献
13.
Molecular cloning of the isocitrate dehydrogenase gene of an extreme thermophile, Thermus thermophilus HB8. 总被引:8,自引:2,他引:8
下载免费PDF全文

The gene coding for isocitrate dehydrogenase of an extreme thermophile, Thermus thermophilus HB8, was cloned and sequenced. This gene consists of a single open reading frame of 1,485 bp preceded by a Shine-Dalgarno ribosome binding site. Promoter- and terminatorlike sequences were detected upstream and downstream of the open reading frame, respectively. The G + C content of the coding region was 65.6%, and that of the third nucleotide of the codons was 90.3%. On the basis of the deduced amino acid sequence, the Mr of the monomeric enzyme was calculated as 54,189, an Mr which is similar to that of the purified protein determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A comparison of the amino acid sequence of the T. thermophilus enzyme with that of the Escherichia coli enzyme showed (i) a 37% overall similarity; (ii) the conservation of the Ser residue, which is known to be phosphorylated in the E. coli enzyme, and of the surrounding sequence; and (iii) the presence of 141 extra residues at the C terminus of the T. thermophilus enzyme. T. thermophilus isocitrate dehydrogenase showed a high sequence homology (33% of the amino acid sequence is identical) to isopropylmalate dehydrogenase from the same organism and was suggested to have evolved from a common ancestral enzyme. 相似文献
14.
Srikanth Dakoji Injae Shin Kevin P. Battaile Jerry Vockley Hung-wen Liu 《Bioorganic & medicinal chemistry》1997,5(12):2157-2164
The acyl-CoA dehydrogenases are a family of related enzymes that share high structural homology and a common catalytic mechanism which involves abstraction of an -proton from the substrate by an active site glutamate residue. Several lines of investigation have shown that the position of the catalytic glutamate is conserved in most of these dehydrogenases (the E2 site), but is in a different location in two other family members (the E1 site). Using site specific in vitro mutagenesis, a double mutant rat short chain acyl-CoA dehydrogenase (rSCAD) has been constructed in which the catalytic glutamate is moved from the E2 to the E1 site (Glu368Gly/Gly247Glu). This mutant enzyme is catalytically active, but utilizes substrate less efficiently than the native enzyme (Km = 0.6 and 2.0 μM, and Vmax = 2.8 and 0.3 s−1 for native and mutant enzyme respectively). In this study we show that both the wild-type and mutant rSCADs display identical stereochemical preference for catalysis—abstraction of the -HR from the substrate followed by transfer of the β-HR to the FAD coenzyme. These results, in conjunction with molecular modeling of the native and double mutant SCAD indicate that the catalytic base in the E1 and E2 sites are topologically similar and catalytically competent. However, analysis of the 1H NMR spectra of the incubation products of these two enzymes revealed that, in contrast to the wild-type rSCAD, the Gly368Glu/Gly247Glu rSCAD could not perform γ-proton exchange of the product with the solvent, a property inherent to most acyl-CoA dehydrogenases. It is evident that the base in the mutant enzyme has access to the -HR but is far removed from the γ-Hs. These findings provide further support for a one base mechanism of - and γ-reprotonation/deprotonation catalysis by acyl-CoA dehydrogenases. 相似文献
15.
A stable intermediate in the thermal unfolding process of a chimeric 3-isopropylmalate dehydrogenase between a thermophilic and a mesophilic enzymes.
下载免费PDF全文

Y. Hayashi-Iwasaki K. Numata A. Yamagishi K. Yutani M. Sakurai N. Tanaka T. Oshima 《Protein science : a publication of the Protein Society》1996,5(3):511-516
The thermal unfolding process of a chimeric 3-isopropylmalate dehydrogenase made of parts from an extreme thermophile, Thermus thermophilus, and a mesophile, Bacillus subtilis, enzymes was studied by CD spectrophotometry and differential scanning calorimetry (DSC). The enzyme is a homodimer with a subunit containing two structural domains. The DSC melting profile of the chimeric enzyme in 20 mM NaHCO3, pH 10.4, showed two endothermic peaks, whereas that of the T. thermophilus wild-type enzyme had one peak. The CD melting profiles of the chimeric enzyme under the same conditions as the DSC measurement, also indicated biphasic unfolding transition. Concentration dependence of the unfolding profile revealed that the first phase was protein concentration-independent, whereas the second transition was protein concentration-dependent. When cooled after the first transition, the intermediate was isolated, which showed only the second transition upon heating. These results indicated the existence of a stable dimeric intermediate followed by the further unfolding and dissociation in the thermal unfolding of the chimeric enzyme at pH 10-11. Because the portion derived from the mesophilic isopropylmalate dehydrogenase in the chimeric enzyme is located in the hinge region between two domains of the enzyme, it is probably responsible for weakening of the interdomain interaction and causing the decooperativity of two domains. The dimeric form of the intermediate suggested that the first unfolding transition corresponds to the unfolding of domain 1 containing the N- and C-termini of the enzyme, and the second to that of domain 2 containing the subunit interface. 相似文献
16.
Pisani D Mohun SM Harris SR McInerney JO Wilkinson M 《Current biology : CB》2006,16(9):R318-9; author reply R320
17.
18.
A new type of NADH dehydrogenase specific for nitrate respiration in the extreme thermophile Thermus thermophilus 总被引:1,自引:0,他引:1
Cava F Zafra O Magalon A Blasco F Berenguer J 《The Journal of biological chemistry》2004,279(44):45369-45378
A four-gene operon (nrcDEFN) was identified within a conjugative element that allows Thermus thermophilus to use nitrate as an electron acceptor. Three of them encode homologues to components of bacterial respiratory chains: NrcD to ferredoxins; NrcF to iron-sulfur-containing subunits of succinate-quinone oxidoreductase (SQR); and NrcN to type-II NADH dehydrogenases (NDHs). The fourth gene, nrcE, encodes a membrane protein with no homologues in the protein data bank. Nitrate reduction with NADH was catalyzed by membrane fractions of the wild type strain, but was severely impaired in nrc::kat insertion mutants. A fusion to a thermophilic reporter gene was used for the first time in Thermus spp. to show that expression of nrc required the presence of nitrate and anoxic conditions. Therefore, a role for the nrc products as a new type of membrane NDH specific for nitrate respiration was deduced. Consistent with this, nrc::kat mutants grew more slowly than the wild type strain under anaerobic conditions, but not in the presence of oxygen. The oligomeric structure of this Nrc-NDH was deduced from the analysis of insertion mutants and a two-hybrid bacterial system. Attachment to the membrane of NrcD, NrcF, and NrcN was dependent on NrcE, whose cytoplasmic C terminus interacts with the three proteins. Interactions were also detected between NrcN and NrcF. Inactivation of nrcF produced solubilization of NrcN, but not of NrcD. These data lead us to conclude that the Nrc proteins form a distinct third type of bacterial respiratory NDH. 相似文献
19.
Gráczer E Konarev PV Szimler T Bacsó A Bodonyi A Svergun DI Závodszky P Vas M 《FEBS letters》2011,585(20):3297-3302
X-ray structures of 3-isopropylmalate dehydrogenase (IPMDH) do not provide sufficient information on the role of the metal-ion in the metal-IPM assisted domain closure. Here solution studies were carried out to test its importance. Small-angle X-ray scattering (SAXS) experiments with the Thermus thermophilus enzyme (complexes with single substrates) have revealed only a very marginal (0-5%) extent of domain closure in the absence of the metal-ion. Only the metal-IPM complex, but neither the metal-ion nor the free IPM itself, is efficient in stabilizing the native protein conformation as confirmed by denaturation experiments with Escherichia coli IPMDH and by studies of the characteristic fluorescence resonance energy transfer (FRET) signal (from Trp to bound NADH) with both IPMDHs. A possible atomic level explanation of the metal-effect is given. 相似文献
20.
Németh A Svingor A Pócsik M Dobó J Magyar C Szilágyi A Gál P Závodszky P 《FEBS letters》2000,468(1):48-52
The comparison of the three-dimensional structures of thermophilic (Thermus thermophilus) and mesophilic (Escherichia coli) 3-isopropylmalate dehydrogenases (IPMDH, EC 1.1.1.85) suggested that the existence of extra ion pairs in the thermophilic enzyme found in the intersubunit region may be an important factor for thermostability. As a test of our assumption, glutamine 200 in the E. coli enzyme was turned into glutamate (Q200E mutant) to mimic the thermophilic enzyme at this site by creating an intersubunit ion pair which can join existing ion clusters. At the same site in the thermophilic enzyme we changed glutamate 190 into glutamine (E190Q), hereby removing the corresponding ion pair. These single amino acid replacements resulted in increased thermostability of the mesophilic and decreased thermostability of the thermophilic enzyme, as measured by spectropolarimetry and differential scanning microcalorimetry. 相似文献