首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We analyzed the genetic structure and gene products of the newly isolated avian sarcoma virus UR1, which recently has been shown to be replication defective and to contain no sequences homologous to the src gene of Rous sarcoma virus. The sizes of the genomic RNAs of UR1 and its associated helper virus, UR1AV, were determined to be 29S and 35S (5.9 and 8.5 kilobases), respectively, by gel electrophoresis and sucrose gradient sedimentation. RNase T1 oligonucleotide mapping of purified viral RNAs indicated that UR1 RNA contains eight unique oligonucleotides in the middle of the genome and shares four 5'-terminal and three 3'-terminal oligonucleotides with UR1AV RNA. The unique sequences of UR1 and Fujinami sarcoma virus were found to be closely related to each other by molecular hybridization of UR1 RNA with DNA complementary to the unique sequence of Fujinami sarcoma virus RNA, but minor differences were found by oligonucleotides fingerprinting. In the regions flanking the unique sequences, UR1 and Fujinami sarcoma viral RNAs contain distinct oligonucleotides, which are shared with oligonucleotides of the respective helper viral RNAs. Cell transformed with UR1 produce a single 29S RNA species which contains a UR1 unique sequence; this species is most likely the mRNA coding for the transforming protein. In UR1-transformed cells, a phosphoprotein fo 150,000 daltons (p150) was detected by immunoprecipitation with antiserum against gag proteins. p150 was associated with a protein kinase activity that was capable of phosphorylating p150 itself, immunoglobulin G of antiserum, and a soluble substrate, alpha-casein. This enzyme transferred phosphate exclusively to tyrosine residues of substrates in vitro, but p 150 labeled in vivo with 32P contained both phosphoserine and phosphotyrosine. The in vitro kinase reaction was not affected by the presence of cyclic AMP or cyclic GMP and strongly preferred Mn2+ over Mg2+. Thus, the properties of UR1 protein are almost identical to those of Fujinami sarcoma virus protein.  相似文献   

2.
The genome of the defective, murine spleen focus-forming Friend virus (SFFV) was identified as a 50S RNA complex consisting of 32S RNA monomers. Electrophoretic mobility and the molecular weights of unique RNase T1-resistant oligonucleotides (T1-oligonucleotides) indicated that the 32S RNA had a complexity of about 7.4 kilobases. Hybridization with DNA complementary to Friend murine leukemia virus (Fr-MLV) has distinguished two sets of nucleotide sequences in 32S SFFV RNA, 74% which were Fr-MLV related and 26% which were SFFV specific. By the same method, SFFV RNA was 48% related to Moloney MLV. We have resolved 23 large T1-oligonucleotides of SFFV RNA and 43 of Fr-MLV RNA. On the basis of the relationship between SFFV and Fr-MLV RNAs, the 23 SFFV oligonucleotides fell into four classes: (i) seven which had homologous equivalents in Fr-MLV RNA; (ii) six more which could be isolated from SFFV RNA-Fr-MLV cDNA hybrids treated with RNases A and T1; (iii) eight more which were isolated from hybrids treated with RNases A and T1; and (iv) two which did not have Fr-MLV-related counterparts. Surprisingly, the two class iv oligonucleotides had homologous counterparts in the RNA of six amphotropic MLV's including mink cell focus-forming and HIX-MLVs analyzed previously. The map locations of the 23 SFFV T1-oligonucleotides relative to the 3' polyadenylic acid coordinate of SFFV RNA were deduced from the size of the smallest polyadenylic acid-tagged RNA fragment from which a given oligonucleotide was isolated. The resulting oligonucleotide map could be divided roughly into three segments: two terminal segments which are mosaics of oligonucleotides of classes i, ii, and iii and an internal segment between 2 and 2.5 kilobases from the 3' end containing the two oligonucleotides shared with amphotropic MLVs. Since SFFV RNA consists predominantly of sequence elements related to ecotropic and amphotropic helper-independent MLVs, it would appear that the transforming gene of SFFV is not a major specific sequence unrelated to genes of helper viruses, as is the case with Rous sarcoma and probably withe other defective sarcoma and acute leukemia viruses.  相似文献   

3.
Avian sarcoma virus UR2 and its associated helper virus, UR2AV , were molecularly cloned into lambda gtWES X lambda B by using unintegrated viral DNAs. One UR2 and several UR2AV clones were obtained. The UR2 DNA was subsequently cloned into pBR322. Both UR2 and UR2AV DNAs were tested for their biological activity by transfection onto chicken embryo fibroblasts. When cotransfected with UR2AV DNA, UR2 DNA was able to induce transformation of chicken embryo fibroblasts with a morphology similar to that of parental UR2 . UR2 -specific protein with kinase activity and UR2 -specific RNA were detected in the transfected cells. Transforming virus, UR2 ( UR2AV ), was produced from the doubly transfected cells. Five of the six UR2AV clones tested were also shown to be biologically active. The insert of the UR2 DNA clone is 3.4 kilobases in length and contains two copies of the long terminal repeat. Detailed restriction mapping showed that UR2 DNA shared with UR2AV DNA 0.8 kilobases of 5' sequence, including a portion of 5' gag, and 1.4 kilobases of 3' sequence, including a portion of 3' env. The UR2 transforming sequence, ros, is ca. 1.2 kilobases. No significant homology was found between v-ros and the conserved regions of v-src, v-yes, or v- abl . By contrast, a significant homology was found between v-ros and v-fps. The v-fps-related sequence was mapped within a 300-base-pair sequence in the middle of ros.  相似文献   

4.
UR2 is a newly characterized avian sarcoma virus whose genome contains a unique sequence that is not related to the sequences of other avian sarcoma virus transforming genes thus far identified. This unique sequence, termed ros, is fused to part of the viral gag gene. The product of the fused gag-ros gene of UR2 is a protein of 68,000 daltons (P68) immunoprecipitable by antiserum against viral gag proteins. In vitro translation of viral RNA and in vivo pulse-chase experiments showed that P68 is not synthesized as a large precursor and that it is the only protein product encoded in the UR2 genome, suggesting that it is involved in cell transformation by UR2. In vivo, P68 was phosphorylated at both serine and tyrosine residues. Immunoprecipitates of P68 with anti-gag antisera had a cyclic nucleotide-independent protein kinase activity that phosphorylated P68, rabbit immunoglobulin G in the immune complex, and alpha-casein. The phosphorylation by P68 was specific to tyrosine of the substrate proteins. P68 was phosphorylated in vitro at only one tyrosine site, and the tryptic phosphopeptide of in vitro-labeled P68 was different from those of Fujinami sarcoma virus P140 and avian sarcoma virus Y73-P90. A comparison of the protein kinases encoded by UR2, Rous sarcoma virus, Fujinami sarcoma virus, and avian sarcoma virus Y73 revealed that UR2-P68 protein kinase is distinct from the protein kinases encoded by those viruses by several criteria. Our results suggest that several different protein kinases encoded by viral transforming genes have the same functional specificity and cause essentially the same cellular alterations.  相似文献   

5.
The genetic complexities of several ribodeoxyviruses were measured by quantitative analysis of unique RNase T1-resistant oligonucleotides from 60-70S viral RNAs. Moloney murine leukemia virus was found to have an RNA complexity of 3.5 x 10(6) daltons, whereas Moloney murine sarcoma virus had a significantly smaller genome size of 2.3 x 10(6). Reticuleondotheliosis and visna virus RNAs had complexities of 3.9 x 10(6), respectively. Analysis of RNase A-resistant oligonucleotides of Rous sarcoma virus RNA gave a complexity of 3.6 x 10(6), similar to that previously obtained with RNase T1-resistant oligonucleotides. Since each of these viruses was found to have a unique sequence genomic complexity near the molecular weight of a single 30-40S viral RNA subunit, it was concluded that ribodeoxyvirus genomes are at least largely polyploid.  相似文献   

6.
The genome structure of a newly isolated sarcoma virus, Y73, was studied. Y73 is a defective, potent sarcomagenic virus and contains 4.8-kilobase (kb) RNA as its genome; in contrast, helper virus associated with Y73 had 8.5-kb RNA, similar to other avian leukemia viruses. Fingerprinting analysis these RNAs demonstrated that the 4.8-kb RNA contains a specific RNA sequence of 2.5 kb, which represents the transforming gene (yas) of Y73. This specific sequence was mapped in the middle of the genome and had at both ends 1- to 1.5-kb sequences in common with Y73-associated virus RNA. This structure is very similar to those of avian and mammalian leukemia viruses. In vitro translation of the 4.8-kb RNA and the immunospecificity of the products directly demonstrated that polyprotein p90, containing p19, is a product translated from capped 4.8-kb RNA and that the specific peptide portion is coded by the yas sequence. Protein 90, which was also found in cells transformed with Y73, was suggested to be a transforming protein.  相似文献   

7.
We have analyzed the structure of OK10-BM virus, an avian acute leukemia virus produced by a bone marrow-derived cell line of macrophage origin, and compared it with that of OK10 AV, an associated virus originally present in the OK10 virus stock. The RNAs of OK10-BM virus and OK10 AV had the same mobility in agarose gels, corresponding to 8.0 to 8.5 kilobases, a size considerably larger than that of the transforming component (5 to 6 kb) of most other avian acute leukemia viruses. Fingerprint analysis showed a close relationship between OK10-BM virus and OK10 AV RNAs. The polypeptide compositions of OK10-BM and OK10 AV viruses were similar except for the envelope glycoproteins. In analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the large envelope glycoprotein of OK10-BM virus migrated at Mr = 78,000 (gp78), whereas OK10 AV had the characteristic 85,000-dalton glycoprotein (gp85) of nondefective avian leukemia viruses. gp78 was weakly labeled with methionine, glycine, proline, or mannose, suggesting that purified OK10-BM virus had reduced amounts of the modified envelope glycoprotein. In cell-free rabbit reticulocyte lysates, OK10-BM virion RNA directed the synthesis of a 200,000-dalton polypeptide (p200), a 180,000-dalton polypeptide (pr180), and a 76,000-dalton polypeptide (pr76), whereas OK10 AV RNA gave rise only to pr180 and pr76, suggesting that p200 may represent an OK10-BM-encoded transforming protein. No biochemical evidence for the presence of an associated helper virus was found in the OK10-BM virus population produced by the macrophage cell line. However, when OK10-BM virus was serially passaged in chicken embryo fibroblasts, a virus having structural properties similar to those of OK10 AV (OK10 AV-specific oligonucleotides and gp85) appeared after three passages. Moreover, nonproducer clones of transformed cells could be readily obtained in OK10-BM virus-infected quail cell cultures. It is thus likely that the bone marrow-derived macrophage cell line produces a transforming virus defective in its env gene and low amounts of an associated helper virus, which upon transfer to fibroblasts is preferentially replicated.  相似文献   

8.
The src genes of six different strains of avian sarcoma virus (ASV) were compared with those of a series of newly isolated sarcoma viruses, termed "recovery avian sarcoma viruses" (rASV's). The rASV's were isolated recently from chicken and quail tumors induced by transformation-defective (td) deletion mutants of Schmidt-Ruppin Rous sarcoma virus. The RNase T1-resistant oligonucleotide maps were constructed for the RNA genomes of different strains of ASV and td mutants. The src-specific sequences, characterized by RNase T1-resistant oligonucleotides ranging from 9 to 19 nucleotides long, were defined as those mapping between approximately 600 and 2,800 nucleotides from the 3' polyadenylate end of individual sarcoma viral RNAs, and missing in the corresponding td viral RNAs. Our results revealed that 12 src-specific oligonucleotides were highly conserved among several strains of ASV, including the rASV's, whereas certain strains of ASV were found to contain one to three characteristic src-specific oligonucleotides. We previously presented evidence supporting the idea that most of the src-specific sequences present in rASV RNAs are derived from cellular genetic information. Our present data indicate that the src genes of rASV's are closely related to other known ASVs. We conclude that the src genes of different strains of ASV and the cellular sarc sequences are of common origin, although some divergence has occurred among different viral src genes and related cellular sequences.  相似文献   

9.
The genome of avian sarcoma virus UR2 was completely sequenced and found to have a size of 3,165 nucleotides. The UR2-specific transforming sequence, ros, with a length of 1,273 nucleotides, is inserted between the truncated gag gene coding for p19 and the env gene coding for gp37 of the UR2AV helper virus. The deduced amino acid sequence for the UR2 transforming protein P68 gives a molecular weight of 61,113 and shows that it is closely related to the oncogene family coding for tyrosine protein kinases. P68 contains two distinctive hydrophobic regions that are absent in other tyrosine kinases, and it has unique amino acid changes and insertions within the conserved domain of the kinases. These characteristics may modulate the activity and target specificity of P68.  相似文献   

10.
The large RNase T1-resistant oligonucleotides of the nondefective (nd) Rous sarcoma virus (RSV): Prague RSV of subgroup B (PR-B), PR-C and B77 of subgroup C; of their transformation-defective (td0 deletion mutants: td PR-B, td PR-C, and td B77; and of replication-defective (rd) RSV(-) were completely or partially mapped on the 30 to 40S viral RNAs. The location of a given oligonucleotide relative to the poly(A) terminus of the viral RNAs was directly deduced from the smallest size of the poly(A)-tagged RNA fragment from which it could be isolated. Identification of distinct oligonucleotides was based on their location in the electrophoretic/chromatographic fingerprint pattern and on analysis of their RNase A-resistant fragments. The following results were obtained. (i) The number of large oligonucleotides per poly(A)-tagged ffagment increased with increasing size of the fragment. This implies that the genetic map is linear and that a given RNase T1-resistant oligonucleotides has, relative to the poly(A) end, the same location on all 30 to 40S RNA subunits of a given 60 to 70S viral RNA complex, (ii) Three sarcoma-specific oligonucleotides were identified in the RNAs of Pr-B, PR-C and B77 by comparison with the RNAs of the corresponding td viruses...  相似文献   

11.
During serial passages of an avian leukosis virus (the transformation-defective, src deletion mutant of Bratislava 77 avian sarcoma virus, designated tdB77) in chicken embryo fibroblasts, viruses which transformed chicken embryo fibroblasts in vitro emerged. Chicken embryo fibroblasts infected with these viruses (SK770 and Sk780) had a distinctive morphology, formed foci in monolayer cultures, and grew independent of anchorage in semisolid agar. Bone marrow cells were not transformed by these viruses. Another virus (SK790) with similar properties emerged during serial subcultures of chicken embryo fibroblasts after a single infection with tdB77. The 50S to RNAs isolated from these viruses contained a tdB77-sized genome (7.6 kilobases), 8.7- and 5.7-kilobase RNAs, and either a 4.1-kilobase RNA or a 4.6-kilobase RNA. These RNAs did not hybridize with cDNA's representing the src, erb, mac, and myb genes of avian acute transforming viruses. Cells transformed by any one of the Sk viruses (SK770, SK780, or SK790) synthesized two novel gag-related polyproteins having molecular weights of 110,000 (p110) and 125,000 (p125). We investigated the compositions of these proteins with monospecific antiviral protein sera. We found that p110 was a gag-pol fusion protein which contained antigenic determinants, leaving 49,000 daltons which was antigenically unrelated to the structural and replicative proteins of avian leukosis viruses. An analysis of the SK viral RNAs with specific DNA probes indicated that the 5.7-kilobase RNA contained gag sequences but lacked pol sequences and, therefore, probably encoded p125. The transforming ability, the deleted genome, and the induced polyproteins of the SK viruses were reminiscent of the properties of several replication-defective acute transforming viruses.  相似文献   

12.
13.
A recombinant DNA clone containing cellular sequences homologous to the transforming sequence, v-ros, of avian sarcoma virus UR2 was isolated from a chicken genomic DNA library. Heteroduplex mapping and nucleotide sequencing reveal that the v-ros sequences are distributed in nine exons ranging from 65 to 204 nucleotides on cellular ros (c-ros) DNA over a range of 11 kilobases. Comparison of the deduced amino acid sequences of c-ros and v-ros shows two differences: v-ros contains a three-amino-acid insertion within the hydrophobic domain presumed to be involved in membrane association, and (ii) the carboxyl 12 amino acids of v-ros are completely different from those of the deduced c-ros sequence. The deduced amino acid sequence of c-ros bears striking structural features similar to those of insulin and epidermal growth factor receptors, including the presumed hydrophobic membrane binding domain, amino acids flanking the domain, and the distance between the domain and the catalytic region of the kinase activity. The expression of c-ros appears to be under a very stringent control. When tissues at various stages of chicken development were analyzed, only kidney was found to contain a significant level of c-ros RNA. The level of c-ros RNA in kidney tissue is most abundant in 7- to 14-day-old chickens. Finally, nucleotide sequences of c-ros DNA and UR2-associated helper viral genome at regions corresponding to the gag ros recombination site suggest that the junction has been formed by RNA splicing.  相似文献   

14.
Participation of subgenomic retroviral mRNAs in recombination.   总被引:6,自引:4,他引:2       下载免费PDF全文
  相似文献   

15.
The genome structure of defective, oncogenic avian reticuloendotheliosis virus (REV) was studied by heteroduplex mapping between the full-length complementary DNA of the helper virus REV-T1 and the 30S REV RNA. The REV genome (5.5 kilobases) had a deletion of 3.69 kilobases in the gag-pol region, confirming the genetic defectiveness of REV. In addition, REV lacked the sequences corresponding to the env gene but contained, instead, a contiguous stretch (1.6 to 1.9 kilobases) of the specific sequences presumably related to viral oncogenicity. Unlike those of other avian acute leukemia viruses, the transformation-specific sequences of REV were not contiguous with the gag-pol deletion. Thus, REV has a genome structure similar to that of a defective mink cell focus-inducing virus or a defective murine sarcoma virus. An additional class of heteroduplex molecules containing the gag-pol deletion and two other smaller deletion loops was observed. These molecules probably represented recombinants between the oncogenic REV and its helper virus.  相似文献   

16.
Retroviruses have been isolated from the tissues of human leukemia patients. Previous studies have shown that these isolates share some antigenic determinants with the family of viruses isolated from the woolly monkey and gibbon ape and that they exhibit partial nuclei acid homology with this same group of viruses. We have compared the RNAs of the viruses by two-dimensional polyacrylamide gel electrophoresis of the large RNase T1-resistant oligonucleotides. The degree of sequence identity between the RNAs was determined by the similarity of their RNase T1-resistant oligonucleotide pattern on gels, fingerprints, and in some cases by partial sequence analysis of individual oligonucleotides. This technique permits us to determine the degree of sequence identity among related RNA species. From our studies we conclude that viruses isolated from the tissues of two human leukemia patients, A1476 and SKA 21-3, as well as some subcultures of a virus isolated from the leukemic tissues of a third patient, HL23V, are closely related to the wooly monkey virus. However, the fingerprints of other HL23 viral isolates are very similar to that of GaLVSF, a gibbon ape leukemia virus isolated from a lymphosarcoma.  相似文献   

17.
RNA and protein of the defective avian acute leukemia virus CMII, which causes myelocytomas in chickens, and of CMII-associated helper virus (CMIIAV) were investigated. The RNA of CMII measured 6 kilobases (kb) and that of CMIIAV measured 8.5 kb. By comparing more than 20 mapped oligonucleotides of CMII RNA with mapped and nonmapped oligonucleotides of acute leukemia viruses MC29 and MH2 and with mapped oligonucleotides of CMIIAV and other nondefective avian tumor viruses, three segments were distinguished in the oligonucleotide map of CMII RNA: (i) a 5' group-specific segment of 1.5 kb which was conserved among CMII, MC29, and MH2 and also homologous with gag-related oligonucleotides of CMIIAV and other helper viruses (hence, group specific); (ii) an internal segment of 2 kb which was conserved specifically among CMII, MC29, and MH2 and whose presence in CMII lends new support to the view that this class of genetic elements is essential for oncogenicity, because it was absent from an otherwise isogenic, nontransforming helper, CMIIAV; and (iii) a 3' group-specific segment of 2.5 kb which shared 13 of 14 oligonucleotides with CMIIAV and included env oligonucleotides of other nondefective viruses of the avian tumor virus group (hence, group specific). This segment and analogous map segments of MC29 and MH2 were not conserved at the level of shared oligonucleotides. CMII-transformed cells contained a nonstructural, gag gene-related protein of 90,000 daltons, distinguished by its size from 110,000-daltom MC29 and 100,000-dalton MH2 counterparts. The gag relatedness and similarity to the 110,000-dalton MC29 counterpart indicated that the 90,000-dalton CMII protein is translated from the 5' and internal segments of CMII RNA. The existence of conserved 5' and internal RNA segments and conserved nonstructural protein products in CMII, MC29, and MH2 indicates that these viruses belong to a related group, termed here the MC29 group. Viruses of the MC29 group differ from one another mainly in their 3' RNA segments and in minor variations of their conserved RNA segments as well as by strain-specific size markers of their gag-related proteins. Because (i) the conserved 5' gag-related and internal RNA segments and their gag-related, nonvirion protein products correlate with the conserved oncogenic spectra of the MC29 group of viruses and because (ii) the internal RNA sequences and nonvirion proteins are not found in nondefective viruses, we propose that the conserved RNA and protein elements are necessary for oncogenicity and probably are the onc gene products of the MC29 group of viruses.  相似文献   

18.
Avian infectious bronchitis virus, a coronavirus, directed the synthesis of six major single-stranded polyadenylated RNA species in infected chicken embryo kidney cells. These RNAs include the intracellular form of the genome (RNA F) and five smaller RNA species (RNAs A, B, C, D, and E). Species A, B, C, and D are subgenomic RNAs and together with the genome form a nested sequence set, with the sequences of each RNA contained within every larger RNA species (D. F. Stern and S. I. T. Kennedy, J. Virol 34:665-674, 1980). In the present paper we show by RNase T1 oligonucleotide fingerprinting that RNA E is also a member of the nested set. Partial alkaline fragmentation of the genome followed by sucrose fractionation, oligodeoxythymidylate-cellulose chromatography, and RNase T1 fingerprinting gave a partial 3'-to-5' oligonucleotide spot order. A comparison of the oligonucleotides of each of the five subgenomic RNAs with this spot order established that all of the RNAs are comprised of nucleotide sequences inward from the 3' end of the genome. This result is discussed in relation to the multiplication strategy both of coronaviruses and of other RNA-containing viruses.  相似文献   

19.
Properties and Location of Poly(A) in Rous Sarcoma Virus RNA   总被引:40,自引:26,他引:14       下载免费PDF全文
The poly(A) sequence of 30 to 40S Rous sarcoma virus RNA, prepared by digestion of the RNA with RNase T(1), showed a rather homogenous electrophoretic distribution in formamide-polyacrylamide gels. Its size was estimated to be about 200 AMP residues. The poly(A) appears to be located at or near the 3' end of the 30 to 40S RNA because: (i) it contained one adenosine per 180 AMP residues, and because (ii) incubation of 30 to 40S RNA with bacterial RNase H in the presence of poly(dT) removed its poly(A) without significantly affecting its hydrodynamic or electrophoretic properties in denaturing solvents. The viral 60 to 70S RNA complex was found to consist of 30 to 40S subunits both with (65%) and without (approximately 30%) poly(A). The heteropolymeric sequences of these two species of 30 to 40S subunits have the same RNase T(1)-resistant oligonucleotide composition. Some, perhaps all, RNase T(1)-resistant oligonucleotides of 30 to 40S Rous sarcoma virus RNA appear to have a unique location relative to the poly(A) sequence, because the complexity of poly(A)-tagged fragments of 30 to 40S RNA decreased with decreasing size of the fragment. Two RNase T(1)-resistant oligonucleotides which distinguish sarcoma virus Prague B RNA from that of a transformation-defective deletion mutant of the same virus appear to be associated with an 11S poly(A)-tagged fragment of Prague B RNA. Thus RNA sequences concerned with cell transformation seem to be located within 5 to 10% of the 3' terminus of Prague B RNA.  相似文献   

20.
Alfalfa mosaic virus (AMV) genome consists of three pieces of RNA (24-S, 20-S and 17-s RNA). For infectivity these three RNAs and the coat protein are required. In the absence of coat protein, infectivity is obtained by adding the 12-S RNA also normally present in the virus. This 12-S RNA represents the message for coat protein. Thus a redundancy of the gene for coat protein exists between 12-S RNA and one of the other RNAs. Sequence analysis of the oligonucleotides resulting from pancreatic ribonuclease digestion of the AMV RNAs indicates that the nucleotide sequence of 12-S RNA occurs in 17-S RNA. Analysis of the pancreatic ribonuclease digestion products of the two larger alfalfa mosaic virus RNAs (20-S and 24-S RNA) shows some oligonucleotides containing seven, eight and nine nucleotides with the same structure present in both RNAs. The possibility of a limited nucleotide sequence homology between these two RNAs is discussed. The comparison of the RNase digestion products of 20-S and 24-S RNA with those of 12-S or 17-S RNA revealed no homologous oligonucleotides, thus the origin of 12-S RNA appears to be 17-S RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号