首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
LS174T human colon cancer cells formed glandular structures with microvilli, tight junctions, desmosomes and basal laminae arranged in order as in normal intestinal epithelial cells when combined with fetal rat mesenchymes in organ culture. When cultured with type I collagen gel, they also formed glandular structures, but less efficiently than with the mesenchyme. In collagen gel-induced glandular structures, microvilli, tight junctions and desmosomes were arranged in order as in mesenchyme-induced ones, but basal laminae were never observed in contrast with mesenchyme-induced ones. These results indicate that basal lamina formation is not necessary for the glandular structure formation and that mesenchymes promote glandular structure formation of LS174T cells by supplying components necessary for basal lamina formation.  相似文献   

2.
Summary An electron microscopic study of aldehyde and osmium fixed normal guinea pig middle ear epithelium was made. Numerous branching microvilli occur between the cilia of the ciliated cells. The granules of the secretory cells are always surrounded by a membrane, and they vary in their content of electron dense substance. Half desmosomes are frequent in basal cells. The squamous epithelial cells of the bulla contain few microvilli and pinocytoric invaginations. In the basal part of the squamous epithelium dilations of the intercellular clefts often occur. The luminal part of the intercellular clefts are closed by multiple tight junctions.  相似文献   

3.
After glutaraldehyde fixation and treatment with ethanolic phosphotungstic acid (E-PTA) before plastic embedding, sections of rat large intestine showed a characteristic electron contrasting pattern in epithelial cells. The axis of microvilli, terminal web, a thin band below the luminal plasma membrane, centrioles and junctional complexes (tight junctions, adherens junctions, and desmosomes) appeared highly contrasted. In addition to protein components of microfilaments and intermediate filaments, proteins from the junctional complexes could also be implicated in the contrasting reaction with E-PTA. Mitochondrial membranes, chromatin masses, and nucleoli of enterocytes showed considerable electron density, whereas no reaction was found in the glycocalyx and mucin content of goblet cells. The clear visualization of cytoskeleton elements and junctional complexes by E-PTA contrasting represents a simple and valuable method for studies on the normal and pathological organization of these structures in epithelial cells.  相似文献   

4.
Culture of human endometrial cells under polarizing conditions   总被引:3,自引:0,他引:3  
Glandular epithelial and stromal cells were isolated from human endometrial biopsies and cultured in a dual-chambered system (Millicell; Millipore, Bedford, Ma., USA) that provides access of the medium to both sides of a membrane coated with reconstituted basement membrane material (Matrigel; Collaborative Research Inc., Bedford, Ma., USA). Examination by electron microscopy revealed that the epithelial cells formed a polarized cuboidal-columnar monolayer on the Matrigel surface. The cells exhibited apical microvilli, basal nuclei, and numerous cytoplasmic structures consistent with a well-differentiated cytoplasm; they were joined basally by interdigitating processes and apically by tight junctions and desmosomes. In contrast, epithelial cells cultured in parallel on plastic dishes were flattened, had fewer microvilli and cytoplasmic structures, and no junctional complexes.  相似文献   

5.
Colorectal cancers are often composed of cell types representing various differentiated cell lineages, however little is known concerning the relationship of differentiation and drug resistance in these cancers. The present study was performed to develop and characterize a stable, differentiated clone of the human colon cancer cell line LS174T and to characterize the drug resistance of this cell line in relation to its undifferentiated parental cell line. LS174T cell line was treated with the differentiating agent sodium butyrate (0.5 mM) for 30 days, then recultured in standard medium. Foci of flat-appearing cells appeared and were isolated using cloning rings, and subcloned. One subclone was designated LS174T-D. The LS174T-D clone maintains a stable, differentiated phenotype in standard culture conditions in the absence of sodium butyrate. It is characterized by the formation of a polarized monolayer with dome formation and the presence of prominent apical microvilli and tight junctions. This cell line demonstrated reduced growth in soft agar and nude mice compared with the parental cell line. LS174T-D cells expressed immunoreactive intestinal mucin antigens and brush border enzymes dipeptidyl aminopeptidase (DAP)-IV and aminopeptidase. The activities of DAP-IV and aminopeptidase were increased 5.6-fold and 3.4-fold, respectively, in LS174T-D compared with parental cells. Proliferation assays demonstrated that, compared with the parental cell line, LS174T-D cells were more resistant to doxorubicin (93-fold), cisplatin (23-fold), 5-fluorouracil (12-fold), 5-fluorodeoxyuridine (31-fold), and methotrexate (12.5-fold). Intracellular uptake of (3H)-5-fluorodeoxyuridine did not differ significantly in the differentiated and undifferentiated cell lines. Levels of mdr-1 p-glycoprotein measured by Western blot and RNA Northern blot assays were also similarly low in both cell lines. However, total glutathione content and glutathione-S-transferase activities were increased in LS174T-D cells by sixfold and threefold, respectively, compared with parental cells. Depletion of glutathione by pretreatment with DL-buthionine sulfoximine reversed LS174T-D resistance to cisplatin. Long-term treatment with sodium butyrate induces or selects for colon cancer cells with features of enterocytic differentiation. This stably differentiated cell line is associated with glutathione-mediated multidrug resistance, and provides a model for further studies of differentiation in normal and cancerous colon. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America
  •   相似文献   

    6.
    Summary A new low shear stress microcarrier culture system has been developed at NASA’s Johnson Space Center that permits three-dimensional tissue culture. Two established human colon adenocarcinoma cell lines, HT-29, an undifferentiated, and HT-29KM, a stable, moderately differentiated subline of HT-29, were grown in new tissue culture bioreactors called Rotating-Wall Vessels (RWVs). RWVs are used in conjunction with multicellular cocultivation to develop a unique in vitro tissue modeling system. Cells were cultivated on Cytodex-3 microcarrier beads, with and without mixed normal human colonic fibroblasts, which served as the mesenchymal layer. Culture of the tumor lines in the absence of fibroblasts produced spheroidlike growth and minimal differentiation. In contrast, when tumor lines were co-cultivated with normal colonic fibroblasts, initial growth was confined to the fibroblast population until the microcarriers were covered. The tumor cells then commenced proliferation at an accelerated rate, organizing themselves into three-dimensional tissue masses that achieved 1.0- to 1.5-cm diameters. The masses displayed glandular structures, apical and internal glandular microvilli, tight intercellular junctions, desmosomes, cellular polarity, sinusoid development, internalized mucin, and structural organization akin to normal colon crypt development. Differentiated samples were subjected to transmission and scanning electron microscopy and histologic analysis, revealing embryoniclike mesenchymal cells lining the areas around the growth matrices. Necrosis was minimal throughout the tissue masses. These data suggest that the RWV affords a new model for investigation and isolation of growth, regulatory, and structural processes within neoplastic and normal tissue.  相似文献   

    7.
    Maintenance of intestinal mucosal epithelial integrity requires polyamines that are involved in the multiple signaling pathways controlling gene expression and different epithelial cell functions. Integrity of the intestinal epithelial barrier depends on a complex of proteins composing different intercellular junctions, including tight junctions, adherens junctions, and desmosomes. E-cadherin is primarily found at the adherens junctions and plays a critical role in cell-cell adhesions that are fundamental to formation of the intestinal epithelial barrier. The current study determined whether polyamines regulate intestinal epithelial barrier function by altering E-cadherin expression. Depletion of cellular polyamines by alpha-difluoromethylornithine (DFMO) reduced intracellular free Ca2+ concentration ([Ca2+]cyt), decreased E-cadherin expression, and increased paracellular permeability in normal intestinal epithelial cells (IEC-6 line). Polyamine depletion did not alter expression of tight junction proteins such as zona occludens (ZO)-1, ZO-2, and junctional adhesion molecule (JAM)-1. Addition of exogenous polyamine spermidine reversed the effects of DFMO on [Ca2+]cyt and E-cadherin expression and restored paracellular permeability to near normal. Elevation of [Ca2+]cyt by the Ca2+ ionophore ionomycin increased E-cadherin expression in polyamine-deficient cells. In contrast, reduction of [Ca2+]cyt by polyamine depletion or removal of extracellular Ca2+ not only inhibited expression of E-cadherin mRNA but also decreased the half-life of E-cadherin protein. These results indicate that polyamines regulate intestinal epithelial paracellular barrier function by altering E-cadherin expression and that polyamines are essential for E-cadherin expression at least partially through [Ca2+]cyt.  相似文献   

    8.
    Cells dissociated from normal prelactating mouse mammary glands or from spontaneous mammary adenocarcinomas, when grown at high density on an impermeable substrate, form nonproliferating, confluent, epithelial pavements in which turgid, blister-like domes appear as a result of fluid accumulation beneath the cell layer. To compare the structure of the fluid-segregating cell associations in normal and tumor cell cultures with that of lactating gland in vivo, we have examined such cultures alive and in thick and thin sections and freeze-fracture replicas. Pavement cells in all cases are polarized toward the bulk medium as a lumen equivalent, with microvilli and continuous, well-developed occluding junctions at this surface. Between the pavement and the substrate are other cells, of parenchymal or stromal origin, scattered or in loose piles; these sequestered cells are relatively unpolarized and never possess occluding junctions. Small gap junctions have been found in the pavement layer, and desmosomes may link epithelial cells in any location. Under the culture conditions used, development of the epithelial secretory apparatus is not demonstrable; normal and neoplastic cells do not differ consistently in any property examined. A dome's roof is merely a raised part of the epithelial pavement and does not differ from the latter in either cell or junction structure. We suggest that dome formation demonstrates the persistence of some transport functions and of the capacity to form effective occluding junctions. These basic epithelial properties can survive both neoplastic transformation and transition to culture.  相似文献   

    9.
    Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12) and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6) origins using Ussing chamber methodology and (immuno)histology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces suitable for studies of host-pathogen interactions at the mucosal surface.  相似文献   

    10.
    We have tested the requirement of keratin intermediate filaments for the formation and function of a simple epithelium. We disrupted both alleles of the mouse keratin 8 (mK8) gene in embryonic stem cells, and subsequently analyzed the phenotype in developing embryoid bodies in suspension culture. After the inactivation of the mouse keratin 8 (mK8) gene by a targeted insertion, mK8 protein synthesis was undetectable. In the absence of mK8 its complementary partners mK18 and mK19 were unable to form filaments within differentiated cells. Surprisingly, these ES cells differentiate to both simple and cystic embryoid bodies with apparently normal epithelia. Ultrastructural analysis shows an apparently normal epithelium with microvilli on the apical membrane, tight junctions and desmosomes on the lateral membrane, and an underlying basal membrane. No significant differences in the synthesis or secretion of alpha 1-fetoprotein and laminin were observed between the mK8- or wild-type embryoid bodies. Our data show that mK8 is not required for simple epithelium formation of extraembryonic endoderm.  相似文献   

    11.
    Na,K-ATPase is a key enzyme that regulates a variety of transport functions in epithelial cells. In this study, we demonstrate a role for Na,K-ATPase in the formation of tight junctions, desmosomes, and epithelial polarity with the use of the calcium switch model in Madin-Darby canine kidney cells. Inhibition of Na,K-ATPase either by ouabain or potassium depletion prevented the formation of tight junctions and desmosomes and the cells remained nonpolarized. The formation of bundled stress fibers that appeared transiently in control cells was largely inhibited in ouabain-treated or potassium-depleted cells. Failure to form stress fibers correlated with a large reduction of RhoA GTPase activity in Na,K-ATPase-inhibited cells. In cells overexpressing wild-type RhoA GTPase, Na,K-ATPase inhibition did not affect the formation of stress fibers, tight junctions, or desmosomes, and epithelial polarity developed normally, suggesting that RhoA GTPase is an essential component downstream of Na,K-ATPase-mediated regulation of these junctions. The effects of Na,K-ATPase inhibition were mimicked by treatment with the sodium ionophore gramicidin and were correlated with the increased intracellular sodium levels. Furthermore, ouabain treatment under sodium-free condition did not affect the formation of junctions and epithelial polarity, suggesting that the intracellular Na(+) homeostasis plays a crucial role in generation of the polarized phenotype of epithelial cells. These results thus demonstrate that the Na,K-ATPase activity plays an important role in regulating both the structure and function of polarized epithelial cells.  相似文献   

    12.
    Epithelial cell organization into multicellular structures is a critical biological process required for both organogenesis and repair following injury. The basement membrane and the cytoskeleton have important roles in this process; however, the functions of individual components of basement membrane and cytoskeleton are poorly understood. We used IEC-6 cells, a rat intestinal crypt cell line, grown on a three-dimensional gel of reconstituted basement membrane as a model system to determine which extracellular matrix and cytoskeletal components mediate intestinal epithelial cell organization. The cells entered the gel and formed hollow, tubular structures that resembled intestinal crypts. These structures were characterized by a single layer of polarized cells with apical tight junctions and microvilli on the luminal surface. Antiserum to laminin and the pentapeptide Tyr-Ile-Gly-Ser-Arg (which prevents cell attachment to laminin) inhibited this organization, but a control pentapeptide (Tyr-Tyr-Gly-Asp-Ala) and antiserum to collagen IV did not. Cytochalasin B, which interferes with actin microfilament polymerization, also inhibited organization of cells into multicellular structures, but vinblastine and Colcemid, which disrupt microtubules, and cycloheximide, which inhibits protein synthesis, did not. We conclude that organization of intestinal epithelial cells on a basement membrane into multicellular structures results from specific interactions between cells and laminin and requires intact actin microfilaments.  相似文献   

    13.
    Summary A method is described for the three-dimensional (3-D) in vitro culture of nontransformed gastrointestinal epithelial cells from the human duodenal mucosa. Biopsies obtained from human duodenum were finely minced. The tissue fragments were suspended in culture medium supplemented with 5% fetal calf serum and the appropriate antibiotics. The suspended mucosal fragments generated spheroid-like multicellular vesicles consisting of highly prismatic absorptive and goblet cells retaining most of the histological features of the tissue in vivo. We performed immunocytochemical studies to determine the origin of the vesicles using monoclonal antibodies against EP4. The histochemistry of the vesicles showed alkaline phosphatase activity. Ultrastructural studies revealed that these cells exhibit characteristics of normal duodenal cells in vivo: apical microvilli, glycocalyx, tight junctions and desmosomes, lateral membrane interdigitations, mucous droplets, and a well-developed Golgi apparatus. An overgrowth of the vesicles by fibroblasts was not seen during cultivation. In contrast with the two-dimensional cell cultures grown on artificial supports, the vesicle cells show organization similar to that of natural epithelia. The polarization and cytoarchitecture of normal gastrointestinal epithelial cells cultured as 3-D vesicles are comparable to those known for the native tissue. This study was undertaken to provide a morphological baseline for subsequent infection experiments.  相似文献   

    14.
    Whole body studies of Plotosus tandanus revealed that ampullary pores occur over the entire body of the fish, but are in higher concentrations in the head region. These pores give rise to a short canal (50-60 microm) produced by columnar epithelial cells bound together by tight junctions and desmosomes. At the junction of the canal and the ampulla, cuboidal epithelial cells make up the wall. The ampulla consists of layers of collagen fibers that surround flattened epithelial cells in the lateral regions and give rise to supportive cells that encase a small number of receptor cells (10-15). The ampullary wall comprises several types of cells that are adjoined via tight junctions and desmosomes between cell types. The ovoid receptor cells possess microvilli along the luminar apical area. Beneath this area, the cells are rich in mitochondria and rough endoplasmic reticulum. An unmyelinated neuron adjoins with each receptor cell opposite multiple presynaptic bodies. This form of microampulla has not been previously described within the Family Plotosidae.  相似文献   

    15.
    16.
    During the 7 days prior to birth (Days 15–22), the small-intestinal epithelium of the fetal rat changes from primitive stratified to simple columnar epithelium which lines villi at 19 days. As seen in thin sections, this remodeling involves rapid formation of new junctional complexes and secondary lumens between epithelial cells deep in the stratified epithelium. We have examined the formation and reorganization of junctional complexes in proximal small intestine of 15- to 19-day fetal rats using freeze-fracture techniques. On Days 15 and 16 the epithelial cells surrounding the primary lumen are joined by conventional apical junctional complexes. Additionally, macular junctional complexes are located on deeper epithelial cells. These display no polarity and consist of tight-junction strands intermixed with gap junction-like arrays and desmosomes. On Days 17 and 18 nonluminal, macular junctional complexes enlarge and secondary lumens develop within their centers. As the secondary lumens expand, microvilli appear and the junctional complex polarizes about the secondary lumen; tight-junction strands become parallel to the luminal surface, desmosomes migrate basolaterally, and gap junction-like arrays disappear. By Day 19, secondary lumens have fused with the primary lumen; concomitant loss of apical cells results in formation of villi lined by simple columnar epithelium with polarized apical tight junctions. The observed pattern of junctional complex formation may play a role in maintaining barrier function and establishing epithelial cell polarity as the epithelium is remodeled.  相似文献   

    17.
    Summary In the present study we describe a new method to cultivate human tumors, which allows organoid differentiation under in vitro conditions. Diverse tumors of different origin and various histopathology which had been heterotransplanted to athymic mice were dissociated into single cells and seeded at high cell density onto a membrane filter consisting of cellulose nitrate at the gas-medium interface. Within a few days, the tumor cells reorganized and differentiated into organoid structures which exhibited the typical histological characteristics of the original tissues. Due to the formation of organoid aggregates, which was also previously seen with normal fetal cells, this type of culture has been described as organoid culture. In the case of adenocarcinomas of the lung and the colon including the rectum, glandular structures with central lumina, adjacent microvilli, and junctional complexes were formed. Numerous specific intercellular contacts such as desmosomes and tight junctions occurred as well as interdigitations of adjacent cell membranes. In a tumor of the rectum, a typical brush border differentiated at the surface of the reorganized tumor-tissue aggregate. Epidermoid carcinomas of the head and neck developed structures resembling the spinous layer of the epidermis, exhibiting numerous desmosomes and intracytoplasmic bundles of tonofilaments radiating into the desmosomes. Most tumors produced a fragmentary monolayered or multilayered basal lamina of similar morphological appearance as under in vivo conditions. These results illustrate the organoid reorganization and differentiation of human tumor cells under the experimentally rather simple conditions of the organoid culture systems and clearly demonstrate that this in vitro system comes close to the in vivo situation as far as certain differentiation phenomena are concerned.  相似文献   

    18.
    Cell density is known to modify the survival of mammalian cells exposed to elevated temperatures. We have examined the role that cell–cell contact plays in this phenomenon. The formation of cell–cell contact is carried out by cells' junctional complex, i.e., tight junctions, desmosomes, and gap junctions. Lack of formation of tight junctions and desmosomes, or their opening, could interfere with the functions and structures of cell membrane. Membrane damage is at least partially responsible for cell death at elevated temperatures. MDCK cells with high density plated in low calcium medium form confluent monolayers devoid of the formation of tight junctions and desmosomes but quickly assemble them after Ca2+ restoration. We used MDCK cells and the calcium switch technique to investigate effects of cell–cell contact and, independently, of cell density on hyperthermic cell killing. We found that MDCK cells that formed tight junctions and desmosomes were more resistant to hyperthermic treatment than those that did not. Blocking the formation pathway of tight junctions made cells sensitive to heat. Cells growing at lowdensity showed almost the same survival as did cells at high density in the absence of the formation of tight junctions and desmosomes. The results suggest that the formation of tight junctions and desmosomes play a more important role in determining hyperthermic response than does density per se. The formation of tight junctions and desmosomes appears to protect cells modestly against hyperthermic killing. © 1994 Wiley-Liss, Inc.  相似文献   

    19.
    Hemidesmosome formation in vitro   总被引:13,自引:6,他引:7       下载免费PDF全文
    Intact, viable sheets of adult rabbit corneal epithelium, 9 mm in diameter, were prepared by the Dispase II method (Gipson, I. K., and S. M. Grill, 1982, Invest. Ophthalmol. Vis. Sci. 23:269-273). The sheets, freed of the basal lamina, retained their desmosomes and stratified epithelial characteristics, but lacked hemidesmosomes (HD). Epithelial sheets were placed on fresh segments of corneal stroma with denuded basal laminae and incubated in serum-free media for 1, 3, 6, 18, or 24 h. Tissue was processed for electron microscopy, and the number of HD/micron membrane, the number of HDs with anchoring fibrils directly across the lamina densa from them, and the number of anchoring fibrils not associated with HDs were counted. After 6 h in culture, the number of newly formed HD was 82% of controls (normal rabbit corneas), and by 24 h the number had reached 95% of controls. At all time periods studied, 80-86% of HDs had anchoring fibrils directly across the lamina densa from them. Anchoring fibrils not associated with HDs decreased with culture time. These data indicate that the sites where anchoring fibrils insert into the lamina densa may be nucleation sites for new HD formation. Corneal epithelial sheets placed on two other ocular basal laminae, Descemet's membrane and lens capsule, had not formed HDs after 24 h in culture. These two laminae do not have anchoring fibrils associated with them. Rabbit epithelial sheets placed on the denuded epithelial basal lamina of rat and human corneas formed new HDs. Thus, at least in these mammalian species, HD formation may involve some of the same molecular components.  相似文献   

    20.
    Rat small intestinal epithelial cell lines have been established in vitro and subcultured serially for periods up to 6 mo. These cells have an epithelioid morphology, grow as monolayers of closely opposed polygonal cells, and during the logarithmic phase of growth have a population doubling time of 19--22 h. Ultrastructural studies revealed the presence of microvilli, tight junctions, an extensive Golgi complex, and the presence of extracellular amorphous material similar in appearance to isolated basement membrane. These cells exhibit a number of features characteristic of normal cells in culture; namely, a normal rat diploid karyotype, strong density inhibition of growth, lack of growth in soft agar, and a low plating efficiency when seeded at low density. They did not produce tumors when injected in syngeneic animals. Immunochemical studies were performed to determine their origin using antisera prepared against rat small intestinal crypt cell plasma membrane, brush border membrane of villus cells and isolated sucrase-isomaltase complex. Antigenic determinants specific for small intestinal epithelial (crypt and villus) cells were demonstrated on the surface of the epithelioid cells, but they lacked immunological determinants specific for differentiated villus cells. An antiserum specifically staining extracellular material surrounding the cells cultured in vitro demonstrated cross-reactivity to basement membrane in rat intestinal frozen sections. It is concluded that the cultured epithelioid cells have features of undifferentiated small intestinal crypt cells.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号