首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutational bias toward expansion or contraction of simple sequence repeats (SSRs) is referred to as directionality of SSR evolution. In this communication, we report the mutational bias exhibited by mononucleotide SSRs occurring in the non-coding regions of several prokaryotic genomes. Our investigations revealed that the strains or species lacking mismatch repair (MMR) system generally show higher number of polymorphic SSRs than those species/strains having MMR system. An exception to this observation was seen in the mycobacterial genomes that are MMR deficient where only a few SSR tracts were seen with mutations. This low incidence of SSR mutations even in the MMR-deficient background could be attributed to the high fidelity of the DNA polymerases as a consequence of high generation time of the mycobacteria. MMR system-deficient species generally did not show any bias toward mononucleotide SSR expansions or contractions indicating a neutral evolution of SSRs in these species. The MMR-proficient species in which the observed mutations correspond to secondary mutations showed bias toward contraction of polymononucleotide tracts, perhaps, indicating low efficiency of MMR system to repair SSR-induced slippage errors on template strands. This bias toward deletion in the mononucleotide SSR tracts might be a probable reason behind scarcity for long poly A|T and G|C tracts in prokaryotic systems which are mostly MMR proficient. In conclusion, our study clearly demonstrates mutational dynamics of SSRs in relation to the presence/absence of MMR system in the prokaryotic system.  相似文献   

2.
Studies on microsatellite distribution and divergence in related genomes contribute towards understanding of genome evolution in eukaryotes. Despite the availability of whole genome sequences of four rice genomes, occurrence and significance of microsatellites in the rice genome has remained a relatively unexplored area of research. We have aligned genomes of two rice subspecies i.e. indica and japonica to understand the trends of microsatellite conservation and divergence in the rice genome. Nearly 62% of the indica microsatellites were also found in the japonica genome. Occurrence of microsatellites showed a negative association with that of retrotransposons. Microsatellites repeat unit length and sequence showed direct influence on the microsatellite locus length. Further, microsatellite allele length was also influenced by the sequence characteristics of the neighbouring regions. CCG repeats were most conserved microsatellite sequences across the different syntenic regions in the two rice genomes and often showed association with CpG islands. Our study suggested that microsatellite distribution is not only governed by a balance between replication slippage and point mutations as proposed earlier, but also by the microsatellite motif sequence and characteristics of microsatellite neighbouring regions in the genome. Thus, this study is likely to prove an important reference for understanding the process of microsatellite evolution and dynamics in the two rice subspecies.  相似文献   

3.
Microsatellites are DNA elements composed of short tandem repeats of 1-5bp. These sequences are particularly prone to frameshift mutation by insertion-deletion loop formation during replication. The mismatch repair system is responsible for correcting these replication errors, and microsatellite mutation rates are significantly elevated in the absence of mismatch repair. We have investigated the effect of varying the number of repeats in a (CA)n microsatellite on mutation rates in cultured mammalian cells proficient or deficient in mismatch repair. We have also compared the relative rates of single-repeat insertions and deletions in these cells. Two plasmid vectors were constructed for each repeat unit number (n=8, 17, and 30), such that the microsatellites, placed upstream of a bacterial neomycin resistance gene (neo), disrupted the reading frame of the gene in the (-1) or (+1) direction. Plasmids were introduced separately into the cells, where they integrated into the cellular genome. Mutation rates were determined by selection of clones with frameshift mutations in the microsatellite that restored the reading frame of the neo gene. We found that mutation rates were significantly higher for (CA)17 and (CA)30 tracts than for (CA)8 tracts in both mismatch repair proficient (mouse) and deficient (human) cells. A mutational bias favoring insertions was generally observed. In both (CA)17 and (CA)30 tracts, single-repeat insertion rates were higher than single-repeat deletion rates with or without mismatch repair; deletions of multiple repeat units (> or =8bp) were observed in these tracts, where as deletions this large were not found in the (CA)8 tract. Single-repeat mutations of both types were made at similar rates in (CA)8 tracts in human mismatch repair deficient (MMR-) cells, but single-repeat insertion rates were higher than single-repeat deletion rates in mouse mismatch repair proficient (MMR+) cells. Results of these direct studies on microsatellite mutations in cultured cells should be useful for refinement of mathematical models for microsatellite evolution.  相似文献   

4.
Simple sequence repeats (SSRs), or microsatellites, are special DNA/RNA sequences with repeated unit of 1–6 bp. The genomes of Herpesvirales have many repeating structures, which is an excellent system to study the evolution and roles of microsatellites and compound microsatellites in viruses. Therefore, 56 genomes of Herpesvirales were selected and the occurrence, composition and complexity of different repeats were investigated in the genomes. A total of 63,939 microsatellites and 5825 compound microsatellites were extracted from 56 genomes. It found that GC content has a significant strong correlation with both the counts of microsatellites (CM) and the counts of compound microsatellites (CCM). However, genome size has a moderate correlation only with CM and almost no correlation with CCM. The compound microsatellites occurring in genic regions are obviously more than that in intergenic regions. In general, the number of compound microsatellite decreases with the increase of complexity (C) (the count of individual microsatellites being part of a compound microsatellite) and the complexity hardly exceeds C = 4. The vast majority of compound microsatellites exist in intergenic regions, when C ≥ 10. The distributions of SSRs tend to be organism-specific rather than host-specific in herpesvirus genomes. The diversity of microsatellites and compound microsatellites may be helpful for a better understanding of the viral genetic diversity, genotyping, and evolutionary biology in herpesviruses genomes.  相似文献   

5.
Microsatellites or simple sequence repeats (SSRs) are among the genetic markers most widely utilized in research. This includes applications in numerous fields such as genetic conservation, paternity testing, and molecular breeding. Though ordered draft genome assemblies of camels have been announced, including for the Arabian camel, systemic analysis of camel SSRs is still limited. The identification and development of informative and robust molecular SSR markers are essential for marker assisted breeding programs and paternity testing. Here we searched and compared perfect SSRs with 1–6 bp nucleotide motifs to characterize microsatellites for draft genome sequences of the Camelidae. We analyzed and compared the occurrence, relative abundance, relative density, and guanine-cytosine (GC) content in four taxonomically different camelid species: Camelus dromedarius, C. bactrianus, C. ferus, and Vicugna pacos. A total of 546762, 544494, 547974, and 437815 SSRs were mined, respectively. Mononucleotide SSRs were the most frequent in the four genomes, followed in descending order by di-, tetra-, tri-, penta-, and hexanucleotide SSRs. GC content was highest in dinucleotide SSRs and lowest in mononucleotide SSRs. Our results provide further evidence that SSRs are more abundant in noncoding regions than in coding regions. Similar distributions of microsatellites were found in all four species, which indicates that the pattern of microsatellites is conserved in family Camelidae.  相似文献   

6.
Microsatellites or Simple Sequence Repeats (SSRs) are tandem iterations of one to six base pairs, non-randomly distributed throughout prokaryotic and eukaryotic genomes. Limited knowledge is available about distribution of microsatellites in single stranded DNA (ssDNA) viruses, particularly vertebrate infecting viruses. We studied microsatellite distribution in 118 ssDNA virus genomes belonging to three families of vertebrate infecting viruses namely Circoviridae, Parvoviridae, and Anelloviridae, and found that microsatellites constitute an important component of these virus genomes. Mononucleotide repeats were predominant followed by dinucleotide and trinucleotide repeats. A strong positive relationship existed between number of mononucleotide repeats and genome size among all the three virus families. A similar relationship existed for the occurrence of DTTPH (di-, tri-, tetra-, penta- and hexa-nucleotide) repeats in the families Anelloviridae and Parvoviridae only. Relative abundance and relative density of mononucleotide repeats showed a strong positive relationship with genome size in Circoviridae and Parvoviridae. However, in the case of DTTPH repeats, these features showed a strong relationship with genome size in Circoviridae only. On the other hand, relative microsatellite abundance and relative density of mononucleotide repeats were negatively correlated with GC content (%) in Parvoviridae genomes. On the basis of available annotations, our analysis revealed maximum occurrence of mononucleotide as well as DTTPH repeats in the coding regions of these virus genomes. Interestingly, after normalizing the length of the coding and non-coding regions of each virus genome, we found relative density of microsatellites much higher in the non-coding regions. We understand that the present study will help in the better characterization of the stability, genome organization and evolution of these virus classes and may provide useful leads to decipher the etiopathogenesis of these viruses.  相似文献   

7.
Survey of simple sequence repeats in completed fungal genomes   总被引:7,自引:0,他引:7  
The use of simple sequence repeats or microsatellites as genetic markers has become very popular because of their abundance and length variation between different individuals. SSRs are tandem repeat units of 1 to 6 base pairs that are found abundantly in many prokaryotic and eukaryotic genomes. This is the first study examining and comparing SSRs in completely sequenced fungal genomes. We analyzed and compared the occurrences, relative abundance, relative density, most common, and longest SSRs in nine taxonomically different fungal species: Aspergillus nidulans, Cryptococcus neoformans, Encephalitozoon cuniculi, Fusarium graminearum, Magnaporthe grisea, Neurospora crassa, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Ustilago maydis. Our analysis revealed that, in all of the genomes studied, the occurrence, abundance, and relative density of SSRs varied and was not influenced by the genome sizes. No correlation between relative abundance and the genome sizes was observed, but it was shown that N. crassa, the largest genome analyzed had the highest relative abundance of SSRs. In most genomes, mononucleotide, dinucleotide, and trinucleotide repeats were more abundant than the longer repeated SSRs. Generally, in each organism, the occurrence, relative abundance, and relative density of SSRs decreased as the repeat unit increased. Furthermore, each organism had its own common and longest SSRs. Our analysis showed that the relative abundance of SSRs in fungi is low compared with the human genome and that longer SSRs in fungi are rare. In addition to providing new information concerning the abundance of SSRs for each of these fungi, the results provide a general source of molecular markers that could be useful for a variety of applications such as population genetics and strain identification of fungal organisms.  相似文献   

8.
Microsatellite markers are widely used for genetic studies, but the relationship between microsatellite slippage mutation rate and the number of repeat units remains unclear. In this study, microsatellite distributions in the human genome are collected from public sequence databases. We observe that there is a threshold size for slippage mutations. We consider a model of microsatellite mutation consisting of point mutations and single stepwise slippage mutations. From two sets of equations based on two stochastic processes and equilibrium assumptions, we estimate microsatellite slippage mutation rates without assuming any relationship between microsatellite slippage mutation rate and the number of repeat units. We use the least squares method with constraints to estimate expansion and contraction mutation rates. The estimated slippage mutation rate increases exponentially as the number of repeat units increases. When slippage mutations happen, expansion occurs more frequently for short microsatellites and contraction occurs more frequently for long microsatellites. Our results agree with the length-dependent mutation pattern observed from experimental data, and they explain the scarcity of long microsatellites.  相似文献   

9.
We mapped and analyzed the microsatellites throughout 284295605 base pairs of the unambiguously assembled sequence scaffolds along 19 chromosomes of the haploid poplar genome. Totally, we found 150985 SSRs with repeat unit lengths between 2 and 5 bp. The established microsatellite physical map demonstrated that SSRs were distributed relatively evenly across the genome of Populus. On average, These SSRs occurred every 1883 bp within the poplar genome and the SSR densities in intergenic regions, introns, exons and UTRs were 85.4%, 10.7%, 2.7% and 1.2%, respectively. We took di-, tri-, tetra-and pentamers as the four classes of repeat units and found that the density of each class of SSRs decreased with the repeat unit lengths except for the tetranucleotide repeats. It was noteworthy that the length diversification of microsatellite sequences was negatively correlated with their repeat unit length and the SSRs with shorter repeat units gained repeats faster than the SSRs with longer repeat units. We also found that the GC content of poplar sequence significantly correlated with densities of SSRs with uneven repeat unit lengths (tri-and penta-), but had no significant correlation with densities of SSRs with even repeat unit lengths (di-and tetra-). In poplar genome, there were evidences that the occurrence of different microsatellites was under selection and the GC content in SSR sequences was found to significantly relate to the functional importance of microsatellites.  相似文献   

10.
李伟  陈怀谷  李伟  张爱香  陈丽华  姜伟丽 《遗传》2007,29(9):1154-1160
利用公共的真菌基因组数据库资源, 对核盘菌(Sclerotinia sclerotiorum)和灰葡萄孢(Botrytis cinerea)基因组中SSRs的结构类型、分布、丰度及最长序列等进行了系统分析, 并与已经研究过的禾谷镰孢菌(Fusarium graminearum), 稻瘟病菌(Magnaporthe grisea)和黑粉菌(Ustilago maydis)等几种植物病原真菌基因组中的SSRs进行了比较。结果表明: 核盘菌和灰葡萄孢基因组中的SSRs非常丰富, 分别为6 539和8 627个, 并且在结构类型和分布规律上具有一定的相似性; 与其他几种病原真菌相比, 核盘菌和灰葡萄孢基因组中长重复的四、五、六核苷酸基序更为丰富, 从而使得这两种真菌具有更高的变异性。同时, 我们发现真菌基因组中SSRs的丰度与基因组的大小及GC含量没有必然的关系。文章对核盘菌和灰葡萄孢基因组中SSRs的丰度、出现频率及最长基序的分析为快速、便捷地设计多态性丰富的SSRs引物提供了有益的信息。  相似文献   

11.
Simultaneous identification and comparison of perfect and imperfect microsatellites within a genome is a valuable tool both to overcome the lack of a consensus definition of SSRs and to assess repeat history. Detailed analysis of the overall distribution of perfect and imperfect microsatellites in closely related bacterial taxa is expected to give new insight into the evolution of prokaryotic genomes. We have performed a genome-wide analysis of microsatellite distribution in four Escherichia coli and seven Chlamydial strains. Chlamydial strains generally have a higher density of SSRs and show greater intra-group differences of SSR distribution patterns than E. coli genomes. In most investigated genomes the distribution of the total lengths of matching perfect and imperfect trinucleotide repeats are highly similar, with the notable exception of C. muridarum. Closely related strains show more similar repeat distribution patterns than strains separated by a longer divergence time. The discrepancy between the preferred classes of perfect and imperfect repeats in C. muridarum implies accelerated evolution of SSRs in this particular strain. Our results suggest that microsatellites, although considerably less abundant than in eukaryotic genomes, may nevertheless play an important role in the evolution of prokaryotic genomes and several gene families.  相似文献   

12.
Simple sequence repeats (SSRs) or microsatellites constitute a countable portion of genomes. However, the significance of SSRs in organelle genomes has not been completely understood. The availability of organelle genome sequences allows us to understand the organization of SSRs in their genic and intergenic regions. In the current study we surveyed the patterns of SSRs in mitochondrial genomes of different taxa of plants. A total of 16 mitochondrial genomes, from algae to angiosperms, have been considered to analyze the pattern of simple sequence repeats present in them. Based on study, the mononucleotide repeats of A/T were found to be more prevalent in mitochondrial genomes over other repeat types. The dinucleotides repeats, TA/AT, were the second most numerous, whereas tri-, tetra-, and pentanucleotide repeats were in less number and present in intronic or intergenic portions only. Mononucleotide repeats prevailed in protein-coding exonic portions of all organisms. These results indicates that microsatellite pattern in mitochondrial genomes is different from nuclear genomes and also focuses on organization and diversity at SSR locuses in mitochondrial genomes. This is the novel report of microsatellite polymorphism in plant mitochondrion on whole genome level.  相似文献   

13.
The first microsatellite linkage map of Ae. speltoides Tausch (2n = 2x = 14, SS), which is a wild species with a genome closely related to the B and G genomes of polyploid wheats, was developed based on two F2 mapping populations using microsatellite (SSR) markers from Ae. speltoides, wheat genomic SSRs (g-SSRs) and EST-derived SSRs. A total of 144 different microsatellite loci were mapped in the Ae. speltoides genome. The transferability of the SSRs markers between the related S, B, and G genomes allowed possible integration of new markers into the T. timopheevii G genome chromosomal maps and map-based comparisons. Thirty-one new microsatellite loci assigned to the genetic framework of the T. timopheevii G genome maps were composed of wheat g-SSR (genomic SSR) markers. Most of the used Ae. speltoides SSRs were mapped onto chromosomes of the G genome supporting a close relationship between the G and S genomes. Comparative microsatellite mapping of the S, B, and G genomes demonstrated colinearity between the chromosomes within homoeologous groups, except for intergenomic T6AtS.1G, T4AL.5AL.7BS translocations. A translocation between chromosomes 2 and 6 that is present in the T. aestivum B genome was found in neither Ae. speltoides nor in T. timopheevii. Although the marker order was generally conserved among the B, S, and G genomes, the total length of the Ae. speltoides chromosomal maps and the genetic distances between homoeologous loci located in the proximal regions of the S genome chromosomes were reduced compared with the B, and G genome chromosomes.  相似文献   

14.
Simple sequence repeats (SSRs) or microsatellites are a common component of genomes but vary greatly across species in their abundance. We tested the hypothesis that this variation is due in part to AT/GC content of genomes, with genomes biased toward either high AT or high CG generating more short random repeats that are long enough to enhance expansion through slippage during replication. To test this hypothesis, we identified repeats with perfect tandem iterations of 1-6 bp from 25 protists with complete or near-complete genome sequences. As expected, the density and the frequency are highly related to genome AT content, with excellent fits to quadratic regressions with minima near a 50% AT content and rising toward both extremes. Within species, the same trends hold, except the limited variation in AT content within each species places each mainly on the descending (GC rich), middle, or ascending (AT rich) part of the curve. The base usages of repeat motifs are also significantly correlated with genome nucleotide compositions: Percentages of AT-rich motifs rise with the increase of genome AT content but vice versa for GC-rich subgroups. Amino acid homopolymer repeats also show the expected quadratic relationship, with higher abundance in species with AT content biased in either direction. Our results show that genome nucleotide composition explains up to half of the variance in the abundance and motif constitution of SSRs.  相似文献   

15.
We have previously shown that GAA trinucleotide repeats have undergone significant expansion in the human genome. Here we present the analysis of the length distribution of all 10 nonredundant trinucleotide repeat motifs in 20 complete eukaryotic genomes (6 mammalian, 2 nonmammalian vertebrates, 4 arthropods, 4 fungi, and 1 each of nematode, amoebozoa, alveolate, and plant), which showed that the abundance of large expansions of GAA trinucleotide repeats is specific to mammals. Analysis of human-chimpanzee-gorilla orthologs revealed that loci with large expansions are species-specific and have occurred after divergence from the common ancestor. PCR analysis of human controls revealed large expansions at multiple human (GAA)(30+) loci; nine loci showed expanded alleles containing >65 triplets, analogous to disease-causing expansions in Friedreich ataxia, including two that are in introns of genes of unknown function. The abundance of long GAA trinucleotide repeat tracts in mammalian genomes represents a significant mutation potential and source of interindividual variability.  相似文献   

16.
邵伟伟  乔芬  蔡玮  林植华  韦力 《兽类学报》2023,43(2):182-192
脊椎动物基因组含有丰富的微卫星信息。本研究对翼手目动物中的大蹄蝠全基因组及其基因的微卫星分布特征进行分析,并对含有微卫星编码序列的基因进行注释分析。结果表明,大蹄蝠全基因组大小为2.24 Gb,共含有497 883个微卫星,其中,数量和比例最多的是单碱基和二碱基重复类型,分别有173 953个(34.94%)和222 591个(44.71%),相对丰度分别为77.78 loci/Mb和99.52 loci/Mb。微卫星数量从单碱基重复到六碱基重复单元最多的类型分别为(A)n、(AC)n、(TAT)n、(TTTA)n、(AACAA)n和(TATCTA)n,比例分别为95.14%、55.25%、38.41%、22.17%、48.68%和20.30%。不同基因区和基因间区的数量及丰度不同,其中基因间区的微卫星数量及其丰度最大,分别为322 666个和2 541.57 loci/Mb,编码区的微卫星数量及其丰度最小,分别为1 461个和461.98 loci/Mb。基因间区和全基因组的微卫星的分布特征相似。编码区最多的微卫星类型为三碱基重复单元,外显子最多的微卫星类型为单碱基、二碱基和三碱基重...  相似文献   

17.
Robust, polymorphic microsatellite DNA markers (simple sequence repeats—SSRs) are valuable tools for a range of tree conservation and breeding applications. SSRs are routinely used in the study of population genetic structure and diversity, pedigree reconstruction and genetic linkage mapping. Their abundance in the genome, co-dominant inheritance and potential for cross-species amplification make microsatellites highly prized markers. This paper characterises 22 novel genomic polymorphic microsatellite loci for Sitka spruce (Picea sitchensis (Bong.) Carr.). Amplification of DNA from Sitka spruce material was carried out both with a set of unrelated trees to obtain diversity statistics for each locus, and with the progeny of a full-sib family to test simple Mendelian inheritance. Observed heterozygosity ranged from 0.38 to 0.91 and allele number per locus ranged from 6 to 21, with a mean of 12.2. In addition, the primer pairs were tested with DNA from Norway spruce (P. abies) and white spruce (P. glauca) to investigate their potential for cross-species amplification and ten loci amplified in all three species. The results from these genomic microsatellites are compared to data generated from microsatellites derived from Picea EST libraries. In summary, this novel, highly polymorphic markers represent a significant addition to the rapidly expanding Picea genomics tool-box. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
简单重复序列亦称微卫星,被成功应用于许多真核生物、原核生物和病毒的基因组和进化研究,但是噬菌体中的微卫星目前很少被研究。因此对60条尾病毒目基因组中的微卫星和和复合型微卫星(由两个或两个以上直接相邻的微卫星组成)做综合性分析,在这60个基因组中总共观察到11 874个微卫星和449个复合型微卫星。相关性分析表明微卫星个数与基因组大小成正线性相关(ρ=0.899, P<0.01)。参考序列中的微卫星个数少于对应的随机序列中微卫星个数,这种反常现象主要是因为参考序列含有较少的单核苷酸和二核苷酸重复。A/T和AT/TA重复是单核苷酸和二核苷酸重复中最主要的类型,因此单核苷酸重复中的GC含量明显低于相应的序列中的GC含量;相比之下,微卫星中的二核苷酸和三核苷酸重复的GC含量与对应的参考序列的GC含量无明显区别。尾病毒目基因组中的这些结果与其它生物体基因组存在一定的差别。有助于了解尾病毒目中微卫星的分布、进化和生物学功能。  相似文献   

19.
The MICdb (Microsatellites Database) (http://www.cdfd.org.in/micas) is a comprehensive relational database of non-redundant microsatellites extracted from fully sequenced prokaryotic genomes. The current version (1.0) of the database has been compiled from 83 genomes belonging to different phylogenetic groups. This database has been linked to MICAS, the web-based Microstatellite Analysis Server. MICAS provides a user-friendly front-end to systematically extract data on microsatellite tracts from genomes. The database contains the following information pertaining to the microsatellites: the regions (coding/non-coding, if coding, their GenBank annotations) containing microsatellite tracts; the frequencies of their occurrences, the size and the number of repeating motifs; and the sequences of the tracts. MICAS also provides an interface to Autoprimer, a primer design program to automatically design primers for selected microsatellite loci.  相似文献   

20.
Simple sequence repeats (SSRs) are omnipresent in prokaryotes and eukaryotes, and are found anywhere in the genome in both protein encoding and noncoding regions. In present study the whole genome sequences of seven chromosomes (Shigella flexneri 2a str301 and 2457T, Shigella sonnei, Escherichia coli k12, Mycobacterium tuberculosis, Mycobacterium leprae and Staphylococcus saprophyticus) have downloaded from the GenBank database for identifying abundance, distribution and composition of SSRs and also to determine difference between the tandem repeats in real genome and randomness genome (using sequence shuffling tool) of the organisms included in this study. The data obtained in the present study show that: (i) tandem repeats are widely distributed throughout the genomes; (ii) SSRs are differentially distributed among coding and noncoding regions in investigated Shigella genomes; (iii) total frequency of SSRs in noncoding regions are higher than coding regions; (iv) in all investigated chromosomes ratio of Trinucleotide SSRs in real genomes are much higher than randomness genomes and Di nucleotide SSRs are lower; (v) Ratio of total and mononucleotide SSRs in real genome is higher than randomness genomes in E. coli K12, S. flexneri str 301 and S. saprophyticus, while it is lower in S. flexneri str 2457T, S.sonnei and M. tuberculosis and it is approximately same in M. leprae; (vi) frequency of codon repetitions are vary considerably depending on the type of encoded amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号