首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural studies have been carried out on the putative O-specific polysaccharide of the reference strain (C.D.C. 3607-60) for Serratia marcescens O13. Circumstantial evidence that the O13 antigen is a microcapsular, acidic polymer, rather than an integral part of the lipopolysaccharide, has been obtained. Degradative and spectroscopic studies established that the polymer is based on the repeating unit shown, in which the glucuronic acid residue of the linear pentasaccharide carries the lateral 2-acetamido-2-deoxy-beta-D-glucopyranosyl substituent in only about half of the units. The same polymer, again with non-stoichiometric substitution, is also produced by strain IP 421 (O13:H7). The latter strain also produces a neutral polymer which appears to constitute the side chain of the lipopolysaccharide. This polymer, which has a disaccharide repeating-unit of 2-substituted beta-D-ribofuranosyl and 4-substituted 2-acetamido-2-deoxy-alpha-D-galactopyranosyl residues, has been isolated previously from the lipopolysaccharides of the reference strains for S. marcescens serogroups O12 and O14, and appears to be the antigen known to be shared by these strains. (Formula: see text).  相似文献   

2.
A "neutral" polymer of glucose, galactose, and 2-acetamido-2-deoxyglucose (molar ratios 1:1:2) has been isolated from the lipopolysaccharide of Serratia marcescens strain C.D.C. 1783-57 (O14:H9). Degradative and spectroscopic studies established that the polysaccharide has a branched tetrasaccharide repeating-unit of the structure shown. The polymer was absent from other strains of serogroup O14 studied, but a polymer differing only in the configuration of the glucose residue has previously been isolated from a strain of S. marcescens O8. The polymer from strain C.D.C. 1783-57 also shares structural features with the Escherichia coli O18 antigen, which is known to be serologically related to the S. marcescens O8 antigen. (Formula: see text).  相似文献   

3.
A neutral glucorhamnan has been isolated from the lipopolysaccharide of the O10 reference strain (C.D.C. 1287-54) of Serratia marcescens. By means of n.m.r. spectroscopy, methylation analysis, and degradative studies, the polymer (the putative O-specific antigen) was found to have the branched, pentasaccharide repeating-unit shown. (formula; see text).  相似文献   

4.
Previous immunoelectron microscopic studies have shown that both the final intermediate in O-antigen synthesis, undecaprenol-linked O polymer, and newly synthesized O-antigenic lipopolysaccharide are localized to the periplasmic face of the inner membrane (C. A. Mulford and M. J. Osborn, Proc. Natl. Acad. Sci. USA 80:1159-1163, 1983). In vivo pulse-chase experiments now provide further evidence that attachment of O antigen to core lipopolysaccharide, as well as polymerization of O-specific polysaccharide chains, takes place at the periplasmic face of the membrane. Mutants doubly conditional in lipopolysaccharide synthesis [kdsA(Ts) pmi] were constructed in which synthesis of core lipopolysaccharide and O antigen are temperature sensitive and mannose dependent, respectively. Periplasmic orientation of O antigen:core lipopolysaccharide ligase was established by experiments showing rapid chase of undecaprenol-linked O polymer, previously accumulated at 42 degrees C in the absence of core synthesis, into lipopolysaccharide following resumption of core formation at 30 degrees C. In addition, chase of the monomeric O-specific tetrasaccharide unit into lipopolysaccharide was found in similar experiments in an O-polymerase-negative [rfc kdsA(Ts) pmi] mutant, suggesting that polymerization of O chains also occurs at the external face of the inner membrane.  相似文献   

5.
Both neutral and acidic polymers have been isolated from the lipopolysaccharide extract of the reference strain (C.D.C. 4523-60) for Serratia marcescens serogroup O15. By means of n.m.r. spectroscopy, methylation analysis, and studies of degradation products, the acidic polysaccharide was shown to have a branched pentasaccharide repeating-unit with the following structure. (Formula: see text)  相似文献   

6.
The O-specific moieties of the O1B antigen (lipopolysaccharide) from Escherichia coli O1B:K1 and the O1C antigen from E. coli O1C:K- both consist of L-rhamnose, D-galactose, N-acetyl-D-glucosamine, and N-acetyl-D-mannosamine in a molar ratio of 2:1:1:1. By using fragmentation procedures, methylation analysis, and one- and two-dimensional nuclear magnetic resonance spectroscopy, the structures of these polysaccharides were found to be [formula: see text] In the O1B polysaccharide X is 2, and in the O1C polysaccharide X is 3. With the recently published structure of the O1A polysaccharides (B. Jann, A. S. Shashkov, D. S. Gupta, S. M. Panasenko, and K. Jann, Carbohydr. Polym. 18:51-57 1992), three related O1 antigens are now known. Their common (O1-specific) epitope is suggested to be the side-chain N-acetyl-D-mannosamine residue.  相似文献   

7.
Structural studies have been carried out on the O-specific polysaccharide from the lipopolysaccharide of the reference strain (CDC 1604-55) for serogroup O8 of Serratia marcescens. The polymer has a branched, tetrasaccharide repeating unit of D-galactose(Gal),D-glucose(Glc), and 2-acetamido-2-deoxy-D-glucose(GlcNAc) with the following structure: (Formula: see text). The anomeric configuration assigned to the glucose residue differs from that (beta) previously proposed [Tarcsay, L., Wang, C. S., Li, S.-C. and Alaupovic, P. (1973) Biochemistry 12, 1948-1955]. The structure of the O8 polymer is identical with that of one of two polymers present in the cell envelope of a strain (CDC 1783-57) of S. marcescens O14.  相似文献   

8.
Partially acetylated glucorhamnans have been isolated from the lipopolysaccharides of three strains of Serratia marcescens. The polymer from the reference strain (C.D.C. 864-57) for serogroup O4 has the disaccharide repeating-unit shown below, in which acetylation at position 2 of the rhamnosyl residue is approximately 90% complete. Similar glucorhamnans from the reference strain (C.D.C. 843-57) for serogroup O7 and from a pigmented strain (NM) of serogroup O14 differ only in the configuration of the L-rhamnopyranosyl residue (beta) and the extent of O-acetylation (O7, almost stoichiometric; NM, 80-90%). Glucorhamnans of the second type have been isolated previously from the lipopolysaccharides of other strains of S. marcescens, including the reference strain for serogroup O6 and another pigmented O14 strain (N.C.T.C. 1377). In all cases, the lipopolysaccharide extracts also contained acidic glycans, but the glucorhamnans are believed to constitute the integral side-chains. (Formula: see text).  相似文献   

9.
Endotoxin is a well established elicitor of cytokine production in mononuclear cells. Nevertheless, the path of signal transduction between the crucial contact of the cells with endotoxin (lipopolysaccharide) and the synthesis and release of the mediators is yet poorly understood. In particular, the involvement of Ca2+ and protein kinase C in this process is still a matter of controversy. Here, it will be demonstrated that removal of extracellular Ca2+ by EGTA does not have a significant effect on the endotoxin-stimulated production of tumor necrosis factor-alpha (TNF-alpha) and on total protein synthesis in rat Kupffer cells. However, the release of prostaglandin E2 could not be raised above the basal level under these conditions. Treatment with inhibitors of protein kinase C such as the isoquinoline derivative, H-7, or staurosporin is without influence on TNF-alpha synthesis. The depletion of protein kinase C through preincubation of rat Kupffer cells with phorbol 12-myristate 13-acetate for 24 h was also without effect on TNF-alpha production. The effectiveness of these inhibitors under the conditions used was ascertained by measurement of the O2- release from the same cell batches. Superoxide production known as protein kinase C-dependent in Kupffer cells (Dieter et al. (1986) Eur. J. Biochem. 86, 451-457) was suppressed in a dose-dependent manner by staurosporin or after prolonged pretreatment with the phorbol ester. H-7 decreased superoxide production only slightly in high doses that severely harm the Kupffer cells. Prostaglandin E2 release, although clearly protein-kinase C-dependent in phagocytosing rat Kupffer cells, is not decreased following exposure to lipopolysaccharide in the presence of protein kinase C inhibitors.  相似文献   

10.
Serological studies using SDS-PAGE and immunoblotting revealed that from five strains that are ascribed to Citrobacter serogroup O2, four strains, PCM 1494, PCM 1495, PCM 1496 and PCM 1507, are reactive with specific anti-Citrobacter O2 serum. In contrast, strain PCM 1573 did not react with anti-Citrobacter O2 serum and, hence, does not belong to serogroup O2. The LPS of Citrobacter youngae O2a,1b (strain PCM 1507) was degraded under mild acidic conditions and the O-specific polysaccharide (OPS) released was isolated by gel chromatography. Sugar and methylation analyses along with (1)H- and (13)C-NMR spectroscopy, including two-dimensional (1)H,(1)H COSY, TOCSY, NOESY and (1)H,(13)C HSQC experiments, showed that the repeating unit of the OPS has the following structure: [structure: see text]. NMR spectroscopic studies demonstrated that Citrobacter werkmanii O20 and C. youngae O25 have the same OPS structure as C. youngae O2. Sugar and methylation analyses of the core oligosaccharide fractions demonstrated structural differences in the lipopolysaccharide core regions of these strains, which may substantiate their classification in different serogroups.  相似文献   

11.
The lipopolysaccharide (LPS) of Klebsiella serotype O2 is antigenically heterogeneous; some strains express multiple antigenic factors. To study this heterogeneity, we determined the structure of the O-antigen polysaccharides in isolates belonging to serotypes O2(2a), O2(2a,2b), and O2(2a,2c), by using composition analysis, methylation analysis, and both 1H and 13C nuclear magnetic resonance spectroscopy. The repeating unit structure of the 2a polysaccharide was identified as the disaccharide [----3)-beta-D-Galf-(1----3)-alpha-D-Galp-(1----] and was identical to D-galactan I, one of two O polysaccharides present in the LPS of Klebsiella pneumoniae serotype O1 (C. Whitfield, J. C. Richards, M. B. Perry, B. R. Clarke, and L. L. MacLean, J. Bacteriol. 173:1420-1431, 1991). LPS from serotype O2(2a,2b) also contained D-galactan I as the only O polysaccharide, suggesting that the 2b antigen is not an O antigen. The LPS of serotype O2(2a,2c) contained a mixture of two structurally distinct O polysaccharides and provides a second example of this phenomenon in Klebsiella spp. One polymer was identical to D-galactan I, and the other polysaccharide, the 2c antigen, was a polymer with a disaccharide repeating unit structure, [----3)-beta-D-GlcpNAc-(1----5)-beta-D-Galf-(1----]. The 2c structure does not resemble previously reported O polysaccharides from Klebsiella spp. Periodate oxidation confirmed that D-galactan I and the 2c polysaccharide are distinct glycans, rather than representing domains within a single polysaccharide chain. Monoclonal antibodies against the 2c antigen indicated that only LPS molecules with the longest O-polysaccharide chains contained the 2c epitope.  相似文献   

12.
Abstract Mesophilic Aeromonas spp. strains (serotype O:34) showed sensitivity to complement-mediated killing when they were cultivated at 37°C (serum-sensitive) but not when they were cultivated at 20°C (serum-resistant). These strains produced smooth lipopolysaccharide when they were grown at 20°C and rough lipolysaccharide when cultivated at 37°C. The reason for the resistance to complement-mediated killing could be that C3b is rapidly degraded (possibly because it is bound far from the cell membrane), consequently the lytic complex (C5b-9) is not formed.  相似文献   

13.
The Gram-negative bacterium Cronobacter sakazakii is an emerging food-borne pathogen that causes severe invasive infections in neonates. Variation in the O-antigen lipopolysaccharide in the outer membrane provides the basis for Gram-negative bacteria serotyping. The O-antigen serotyping scheme for C. sakazakii, which includes seven serotypes (O1 to O7), has been recently established, and the O-antigen gene clusters and specific primers for three C. sakazakii serotypes (O1, O2, and O3) have been characterized. In this study, the C. sakazakii O4, O5, O6, and O7 O-antigen gene clusters were sequenced, and gene functions were predicted on the basis of homology. C. sakazakii O4 shared a similar O-antigen gene cluster with Escherichia coli O103. The general features and anomalies of all seven C. sakazakii O-antigen gene clusters were evaluated and the relationship between O-antigen structures and their gene clusters were investigated. Serotype-specific genes for O4 to O7 were identified, and a molecular serotyping method for all C. sakazakii O serotypes, a multiplex PCR assay, was developed by screening against 136 strains of C. sakazakii and closely related species. The sensitivity of PCR-based serotyping method was determined to be 0.01 ng of genomic DNA and 10(3) CFU of each strain/ml. This study completes the elucidation of C. sakazakii O-antigen genetics and provides a molecular method suitable for the identification of C. sakazakii O1 to O7 strains.  相似文献   

14.
Both a neutral and an acidic polymer have been isolated from a lipopolysaccharide extract of the reference strain for Serratia marcescens serogroup O22. The neutral polymer has a linear structure with the repeating unit shown. The same tetrasaccharide unit also forms the backbone of the branched neutral polymer isolated from the reference strain for serogroup O10, which cross-reacts strongly with O22. ----2)-alpha-L-Rhap-(1----2)-alpha-L-Rhap-(1----3)-alpha-L-+ ++Rhap-(1----3)-alpha- D-GlcpNAc-(1----  相似文献   

15.
The antigenic O-polysaccharide of the lipopolysaccharide produced by Salmonella virginia (O:8), analyzed by methylation, partial acid hydrolysis, and one- and two-dimensional nuclear magnetic resonance methods, was found to be a polymer of a repeating pentasaccharide unit composed of D-mannose, D-galactose, L-rhamnose, D-abequose, and O-acetyl (2:1:1:1:1.3) and having the following structure: [formula; see text] The disaccharide structure alpha-D-Abep-(1----3)-L-Rhap was identified as the Salmonella O:8 antigenic factor epitope, since the removal of alpha-D-Abep residues from the O-polysaccharide left a residual tetrasaccharide repeating unit backbone that did not show reaction with Salmonella type O:8 factor antiserum.  相似文献   

16.
The O-polysaccharide of the lipopolysaccharide produced by Salmonella milwaukee O:43 (group U) was shown by composition analysis, methylation, periodate oxidation, and 1H and 13C nuclear magnetic resonance spectroscopic analytical methods to be a polymer of branched pentasaccharide repeating units having the structure: [formula: see text] The blood-group activity of the O-polysaccharide was established by its serological reactivity with a specific monoclonal antibody to human blood group B, using passive hemagglutination and ELISA assays, indicating the common antigenic epitope to be a nonreducing terminal trisaccharide unit composed of L-Fucp and D-Galp (1:2) residues.  相似文献   

17.
The smooth lipopolysaccharide produced by Salmonella eimsbuttel, which had the O:6, O:7, and O:14 antigenic factors defined in the Kauffmann-White classification, was shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, composition analysis, methylation, periodate oxidation, deamination, and 1H and 13C nuclear magnetic resonance studies to contain a high molecular weight O-chain polysaccharide composed of D-mannose (four parts), D-glucose (one part), and 2-acetamido-2-deoxy-D-glucose (one part). It was a branched polymer of a repeating hexasaccharide unit having the structure (formula; see text).  相似文献   

18.
Most Pseudomonas aeruginosa strains are able to produce two distinct lipopolysaccharide (LPS) O-polysaccharide types, A-band (common-antigen) and B-band (serotype-specific) LPSs. The relative expression levels of these two LPS types in P. aeruginosa PAO1 (O5 serotype) at various growth temperatures were investigated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining or Western blotting (immunoblotting) with monoclonal antibodies specific for each O polysaccharide. A-band and B-band LPSs were expressed concurrently when the cells grew at 15, 25, and 35 degrees C; however, growth at 45 degrees C resulted in a surface deficiency in B-band LPS as determined by immunoblotting and agglutination with B-band-specific monoclonal antibody. Transfer of these cells (expressing A-band LPS but deficient in B-band LPS) [A+B-]) to a lower temperature (at which the division time was comparable) resulted in a rapid resumption of normal A-band and B-band expression. B-band LPS was detectable by immunoblotting before measurable growth of the culture had occurred.  相似文献   

19.
A phosphorylated O-specific polysaccharide (O-antigen) was obtained by mild acid degradation of Proteus vulgaris O12 lipopolysaccharide and studied by sugar and methylation analyses, 1H-, 13C- and 31P-NMR spectroscopy, including two-dimensional COSY, TOCSY, NOESY, H-detected 1H, 13C and 1H, 31P heteronuclear multiple-quantum coherence experiments. It was found that the polysaccharide consists of pentasaccharide repeating units connected via a glycerol phosphate group, and has the following structure: where FucNAc is 2-acetamido-2,6-dideoxygalactose and the degree of O-acetylation at position 4 of GalNAc is approximately 25%. Immunochemical studies with P. vulgaris O12 O-antiserum suggested that the lipopolysaccharide studied shares common epitopes with the lipopolysaccharide core of P. vulgaris O8 and with the O-antigens of P. penneri strains 8 and 63.  相似文献   

20.
A polysaccharide containing D-ribose, N-acetyl-D-glucosamine, and N-acetyl-D-mannosamine was isolated from the phenol-soluble lipopolysaccharide extracted from defatted cell walls of the reference strain (560) for serogroup O16 of Stenotrophomonas maltophilia. The results of methylation analysis, chemical degradations, and NMR spectroscopy showed that the polysaccharide is based on a branched trisaccharide repeating-unit of the structure shown below. Although ribose was absent from about half of the units in the isolated polymer, the regularity and spacing of the ladder observed on SDS-PAGE of the parent lipopolysaccharide indicate that this was an artefact of the mild acid hydrolysis used to release the polymer. On the other hand, the effects of mild alkaline hydrolysis on the polymer indicated partial O-acetylation. [structure: see text]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号