首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Individual groups of 6 ram lambs were housed within a controlled environment and exposed to one of 6 photoperiod schedules. Groups I and II received 8 (short day) or 16 (long day) h of continuous light, respectively; Groups III, IV and V were exposed to asymmetrical skeleton photoperiods consisting of a main light period of 7 h followed 9 h later by a light pulse of 1 h, 15 min or 1 min duration, respectively, and Group VI was exposed to a symmetrical skeleton photoperiod consisting of two 1-h light pulses positioned 16 h apart. After 4 weeks of treatment serum concentrations of prolactin and testosterone were measured over 24 h. Long-day responses characteristic of the 16L:8D photoperiod (i.e. elevated prolactin and reduced testosterone) were obtained in each of the asymmetric light-pulse treatment groups, but whereas prolactin was elevated over the full 24 h in lambs exposed to 16L:8D, two prominent nocturnal prolactin releases were largely responsible for the high 24-h mean prolactin values in Groups III, IV and V. Reduced serum testosterone in these same groups could not be attributed to a diurnal pattern of secretion but was associated with an overall decrease in testosterone pulse frequency. Prolactin and testosterone levels in Group IV were intermediate between those observed in lambs exposed to 8 or 16 h of light. In summary, light pulses of short duration (1 min) positioned at 17 h after dawn can produce endocrine changes in lambs similar to those observed in lambs exposed to 16 h of continuous light.  相似文献   

2.
Male golden hamsters were exposed to long photoperiod or short photoperiod (SP) and injected with 1 microgram TRH and/or 1 microgram LHRH at lights on (LO) or lights off (LX) for a total of 8 weeks. Both TRH and LHRH prevented testicular regression if they were injected at LO. Injected at LX, TRH did not prevent testicular regression, and LHRH was only partially effective. Plasma beta-endorphin levels were significantly higher in groups with atrophic testes. These results indicate that TRH like LHRH can prevent SP-induced testicular regression in hamsters by some unknown mechanism and that beta-endorphin may be involved in the control of testicular function in hamsters.  相似文献   

3.
Melatonin (12-100 mug/day) administered via subcutaneous Silastic implants prevented or suppressed light-induced testicular recrudescence in adult golden hamsters. In addition, melatonin (150 mug/day) induced marked testicular regression in sexually mature hamsters maintained on photostimulatory long days. These results clearly establish that exogenous melatonin can inhibit gonodal function in adult male hamsters.  相似文献   

4.
Castrated hamsters which were transferred from long (14L:10D) to short (9L:15D) days and received testosterone-filled capsules for 1 week after transfer failed to show a significant suppression in the plasma levels of FSH and LH after capsule removal. In contrast, gonadotrophin concentrations were suppressed in hamsters in which the long-day castration response had been blocked with exogenous testosterone. After castration on long days and exposure to 10 weeks of short days pituitary gland weight and gonadotrophin content, as well as plasma FSH titres, were higher in control animals than in those that had received testosterone implants for 7 weeks of short days. The results suggest that failure of castrated hamsters to respond to the suppressive effects of short days reflects castration-induced changes in hypothalamo-pituitary physiology rather than a neuroendocrine mechanism by which photoperiod modulates gonadotrophin secretion.  相似文献   

5.
Juvenile hamsters are typically less vulnerable to social subjugation than adults, although they will avoid aggressive individuals in some situations. The purpose of this study was to determine the extent to which social subjugation stimulates fear- or anxiety-like behavior in juvenile hamsters in both social and non-social contexts. Social context testing was conducted in a Y-maze while the non-social context apparatus consisted of an open field arena and a lat-maze. In the Y-maze, subjects were exposed to an unfamiliar aggressive adult hamster. Compared with non-subjugated controls, subjugated juveniles spent significantly more time in the area furthest from the aggressive adult stimulus. In addition, socially stressed animals were more likely to avoid the arm of the maze containing the social stimulus. When they did walk in the arm containing the social stimulus, subjugated individuals were more likely to ambulate slowly. Subjugated hamsters also performed fewer olfactory investigations in the proximity of the unfamiliar aggressive individual. Despite these behavioral differences detected between groups during testing in a social context, we observed no differences between groups in the open field and lat-maze. This suggests that the effects of subjugation observed in the Y-maze are specific to exposure to a social context and that social subjugation in juvenile hamsters does not result in a generalized state of fear. Instead, subjugated juveniles learned to avoid adult males and were otherwise behaviorally similar to non-subjugated controls.  相似文献   

6.
Dehydroepiandrosterone (DHEA) is an adrenal androgen whose function is poorly understood. Although DHEA and DHEA sulfate (DHEAS) are secreted in relatively high quantities by the human adrenal, the laboratory rat secretes very little, thus hindering experimental studies of the hormone. In this paper, we measured the changes in serum DHEA and DHEAS under various physiological conditions in golden hamsters. Evening serum DHEAS fell from 6.30 +/- 0.78 microg/dl (mean +/- SE) before surgery to 3.03 +/- 0.23 microg/dl 12 days after bilateral adrenalectomy. Hamsters had higher levels of DHEA and DHEAS in the evening than in the morning, but removal of the gonads did not consistently decrease serum DHEA or DHEAS in males or females. Evening levels of DHEA and DHEAS reached a peak around 7 weeks of age and then gradually decreased to about one-third of these levels by one year of age. These results suggest that DHEA and DHEAS are secreted at least in part from the hamster adrenal, that they do not originate from the gonads, and that there is a daily rhythm with peak levels at a time of day just preceding the active phase. In addition, the levels of these hormones decrease with aging.  相似文献   

7.
8.
9.
10.
Specific testicular binding of 125I-HCG and plasma levels of testosterone are decreased in rats three weeks after hypophysectomy or adrenalectomy plus thyroidectomy but they are not changed after adrenalectomy or thyroidectomy. The affinity of gonadotropin receptors to HCG is not altered.  相似文献   

11.
Serum testosterone levels, testicular LH binding and the spermatogenic cycle were analyzed in rats 4 and 22 mo of age. With age, serum testosterone levels decreased from 3.2 to 0.63 ng/ml serum. There was no age related decline in testicular LH binding or changes in the spermatogenic cycle.  相似文献   

12.
A study was conducted with hypophysectomized hamsters to determine effects of administration of prolactin (PRL), luteinizing hormone (LH), and follicle-stimulating hormone (FSH)-alone or in combination-on testicular PRL receptors and in vitro testosterone production. Hormonal injections commenced the second day after hypophysectomy, and hamsters were killed on Day 5, approximately 13 h after the last hormonal injection. PRL receptor numbers were reduced by hypophysectomy, and PRL administration alone lessened the extent of this decrease. By themselves, neither LH nor FSH affected PRL receptors, but a combination of PRL + FSH + LH produced the greatest effect on these receptors. Receptor affinity was only modestly affected by any treatments. In vitro testosterone synthesis was measured after addition of 0, 2, 10, and 50 mIU of human chorionic gonadotropin (hCG) to incubations of testicular tissue. Neither PRL nor FSH by themselves in vivo affected basal or hCG-stimulated testosterone production. However, PRL + FSH increased (p less than 0.05) the magnitude of the in vitro testosterone response to hCG, as well as the sensitivity of that response (slope of the dose-response curve). LH alone increased both basal and hCG-stimulated testosterone production. PRL + LH provided no additional increase in the magnitude of the testosterone response, but increased (p less than 0.05) the sensitivity. PRL + FSH + LH in vivo provided for the greatest sensitivity of the testosterone response to hCG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Here, we show that in a skeleton photoperiod where all midday light is removed from a standard laboratory 12:12 LD photoperiod, a large diurnal peak of activity is revealed that is continuous with the E peak seen in constant dark (DD). We further show that the circadian clock gene tim regulates light-dependent masking of daytime activity, but the clock gene per does not. Finally, relative to wild-type flies, mutants for both of these clock genes showed increased nighttime activity in the skeleton photoperiod but not in the standard photoperiod. This result suggests that nighttime activity is suppressed by the intact circadian clock, and in its absence, by exposure to a standard photoperiod. These results support and extend the literature addressing the complex interactions between masking and clock-controlled components of overt circadian rhythms.  相似文献   

14.
Adult male wild rabbits were exposed to at least 16 weeks of 16L:8 D before experiments began. Plasma LH and FSH concentrations increased significantly (P less than 0.001) when rabbits were castrated in 16L:8D but declined when rabbits were transferred to 8L:16D. Concentrations had returned to normal for castrated rabbits in 16L:8D by 74 days after the start of the 8L:16D treatment. Treatment of intact male rabbits with an injection of LHRH before and after transfer to short daylengths caused a transient increase in plasma LH which lasted 50-80 min and this produced a concomitant rise in plasma testosterone. The daylength change had no effect on this response even though testicular size declined after the transfer to short daylengths. Rabbits moulted in response to exposure to 8L:16D. This suggests that hypothalamic activity responds to photoperiod and that changes in pituitary responsiveness to LHRH and steroid negative feedback are unimportant.  相似文献   

15.
Spontaneous reentrainment to phase shifts of the photocycle is a fundamental property of all circadian systems. Siberian hamsters are, however, unique in this regard because most fail to reentrain when the LD cycle (16-h light/day) is phase delayed by 5 h. In the present study, the authors compared reentrainment responses in hamsters from 2 colonies. One colony descended from animals trapped in the wild more than 30 years ago (designated "nonentrainers"), and the other colony was outbred as recently as 13 years ago (designated "entrainers"). As reported previously, only 10% of hamsters from the nonentrainer colony reentrained to a 5-h phase delay of the LD cycle. By contrast, 75% of animals from the entrainer colony reentrained to the phase shift. Another goal of this study was to test the hypothesis that failure to reentrain was a consequence of light exposure during the middle of the night on the day of the 5-h phase delay. This hypothesis was tested by exposing animals to 2 h of light during the early, middle, or late part of the night and then subjecting them on the next day to a 3-h phase delay of the photocycle, which is a phase shift to which all hamsters normally reentrain. All animals from both colonies reentrained when light pulses occurred early in the night, but more animals from the entrainer colony, compared to the nonentrainer colony, reentrained when the light pulse occurred in the middle or late part of the night. The phenotypic variation in reentrainment responses is similar to the variation in photoperiodic responsiveness previously reported for these 2 colonies. Phenotypic variation in both traits is due to underlying differences in circadian organization and suggests a common genetic basis for reentrainment responses and photoperiodic responsiveness.  相似文献   

16.
LH surges occur 3 h later in intact anovulatory hamsters exposed to nonstimulatory photoperiods (6L:18D) for 8 wk than the proestrous LH surges from the same hamsters housed in 6L:18D for 3 weeks. In ovariectomized hamsters housed in 6L:18D for 3 wk, the LH surge was observed at the same time of day as in intact anovulatory hamsters at 8 wk. Implanting Silastic capsules containing estradiol benzoate (EB) advanced the timing of the daily surge of LH in ovariectomized hamsters housed in 6L:18D for 8 wk. EB also affected the magnitude of the LH surge in hamsters housed in 6L:18D for 8 wk. Two days after receiving EB implants, daily LH surges in anovulatory hamsters were suppressed by 75% and in ovariectomized "regressed" hamsters by 37%. This difference between groups was probably due to ovarian progesterone in intact animals. Estrogen is not required for LH surges in anovulatory hamsters but suppresses LH release when administered exogenously. The delay in the timing of the LH surge in anovulatory hamsters may result from the decline in estrogen resulting from short photoperiod exposure.  相似文献   

17.
Light causes damage to the retina, which is one of the supposed factors for age-related macular degeneration in human. Some animal species show drastic retinal changes when exposed to intense light (e.g. albino rats). Although birds have a pigmented retina, few reports indicated its susceptibility to light damage. To know how light influences a cone-dominated retina (as is the case with human), we examined the effects of moderate light intensity on the retina of white Leghorn chicks (Gallus g. domesticus). The newly hatched chicks were initially acclimatized at 500 lux for 7 days in 12 h light: 12 h dark cycles (12L:12D). From posthatch day (PH) 8 until PH 30, they were exposed to 2000 lux at 12L:12D, 18L:6D (prolonged light) and 24L:0D (constant light) conditions. The retinas were processed for transmission electron microscopy and the level of expressions of rhodopsin, S- and L/M cone opsins, and synaptic proteins (Synaptophysin and PSD-95) were determined by immunohistochemistry and Western blotting. Rearing in 24L:0D condition caused disorganization of photoreceptor outer segments. Consequently, there were significantly decreased expressions of opsins and synaptic proteins, compared to those seen in 12L:12D and 18L:6D conditions. Also, there were ultrastructural changes in outer and inner plexiform layer (OPL, IPL) of the retinas exposed to 24L:0D condition. Our data indicate that the cone-dominated chick retina is affected in constant light condition, with changes (decreased) in opsin levels. Also, photoreceptor alterations lead to an overall decrease in synaptic protein expressions in OPL and IPL and death of degenerated axonal processes in IPL.  相似文献   

18.
The effects of brief light pulses (1-60 min in duration) on the circadian rhythm of locomotor activity and/or the neuroendocrine-gonadal axis was investigated in male Djungarian hamsters. Exposure of hamsters free-running in constant darkness to a single 1-h pulse of light induced phase-dependent phase shifts in the rhythm of locomotor activity. The general shape of the "phase-response curve" was similar to that observed in other animals; phase-delays and phase-advances were induced by light pulses delivered in the early and late subjective night, respectively, while light pulses during the subjective day induced little or no phase-shift in the activity rhythm. Animals exposed for 7 days to 1-min of light during the night in animals otherwise exposed to 6L:18D resulted in increased levels of serum FSH and testicular weight. Daily exposure to two 1-h or two 10-min pulses of light (but not two 1-min pulses) for 10 days resulted in stable entrainment of the activity rhythm as well as testicular weight gains and serum FSH increases. When two 10-min pulses of light were presented 8 and 16 h apart, some animals showed a short-day entrainment pattern (i.e., locomotor activity confined to the long period of darkness) while other animals showed a long-day entrainment pattern (i.e., locomotor activity confined to the short period of darkness). Importantly, the stimulatory effects of light on neuroendocrine-gonadal activity were clearly dependent on the phase-relationship between the light pulses and the circadian rhythm of locomotor activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Summary Although current physiological findings imply that the mammalian pineal organ liberates an antigonadal agent, microscopic examinations of this organ have afforded little information regarding the possible storage and release of such a substance. Since it is known that light deprivation for six weeks results in pineal-induced atrophy of certain reproductive organs in adult golden hamsters, one might expect that any morphological manifestations of this activity in the pineal organ would be enhanced in hamsters which had heen deprived of light for that length of time. A comparison at the ultrastructural level of pineal glands from normal and experimentally blinded hamsters revealed that pineal cells from the blinded animals exhibited a greater number of vesicles and contained complex membranous whorls. The possible significance of the vesicles and lamellar whorls is discussed in terms of similar structures found in other tissues.A feature common to pineal tissue of both the normal and experimental hamsters was the apparent cellular segregation of two morphologically distinct types of mitochondria. Pinealocytes containing small, cristaform mitochondria were designated as P1 cells; those containing larger mitochondria characterized by a dense, plexiform array of cristae were designated as P2 cells.Supported by A. D. Williams 3558, Medical College of Virginia, and National Institutes of Health 5FI-GM-31, 981-02.The author is grateful to Dr. Hugo R. Seibel of the Department of Anatomy at the Medical College of Virginia for assistance with the surgical procedures employed in this study.  相似文献   

20.
Female golden hamsters exposed to short photoperiods become anestrous and exhibit daily surges of gonadotropins and progesterone. Since little is known about the transition between the cycling and anovulatory states, the following experiments were done to determine whether there are hormonal changes that precede cessation of estrous cyclicity. Females killed on the morning of estrus, up to the tenth estrous cycle in short days, showed no hormonal or ovarian morphologic evidence of changes in reproductive function. When assessed on the afternoon of estrus, however, serum levels of luteinizing hormone and progesterone increased significantly before vaginal and ovarian cyclicity ceased. Females sampled in both the morning and afternoon at increasing durations since their last vaginal estrus revealed that maximal daily surges of both gonadotropins and progesterone were not consistently manifested until the vaginal cycle had been absent for 2 weeks. By then, estrogen levels and uterine weights were low and ovaries showed hypertrophied interstitia and arrested follicular growth. We have demonstrated that there are hormonal changes in females before the loss of the vaginal cycle and onset of major daily hormonal surges. Our results suggest that alterations in feedback relationships between steroid hormones and gonadotropins may precede photoperiod-induced anestrus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号