首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial apoptosis and apoptotic signaling modulations by aerobic training were studied in cardiac and skeletal muscles of obese Zucker rats (OZR), a rodent model of metabolic syndrome. Comparisons were made between left ventricle, soleus, and gastrocnemius muscles from OZR (n = 16) and aged-matched lean Zucker rats (LZR; n = 16) that were untrained (n = 8) or aerobically trained on a treadmill for 9 wk (n = 8). Cardiac Bcl-2 protein expression levels were approximately 50% lower in the OZR compared with the LZR, with no difference in either of the skeletal muscles. Bax protein expression levels were similar in skeletal muscles of the OZR compared with the LZR. Furthermore, mitochondrial apoptotic signaling was not different in skeletal muscles of OZR and LZR groups. However, there was an approximate sevenfold increase in the Bax protein accumulation in the myocardial mitochondrial-rich protein fraction of the OZR compared with the LZR. Additionally, there was an increase in cytosolic cytochrome c released from the mitochondria, caspase-9 and caspase-3 activity, with a corresponding elevation in DNA fragmentation in the cardiac muscles of the OZR compared with the LZR. Exercise training reduced cardiac Bax protein levels, the mitochondrial localization of Bax, cytosolic cytochrome c, caspase activity, and DNA fragmentation in cardiac muscles of the OZR after exercise, with no change in the skeletal muscles. These data show that mitochondrial apoptosis is elevated in the cardiac but not skeletal muscles of the OZR, but aerobic exercise training was effective in reducing cardiac mitochondrial apoptotic signaling.  相似文献   

2.
Although apoptosis has been demonstrated in soleus during hindlimb suspension (HS), it is not known whether apoptosis is also involved in the loss of muscles dominated by mixed fibers. Therefore, we examined the apoptotic responses in gastrocnemius muscles of young adult and aged Fischer 344 x Brown Norway rats after 14 days of HS. The medial gastrocnemius muscle wet weight significantly decreased by 30 and 32%, and muscle wet weight normalized to the animal body weight decreased by 11 and 15% in young adult and aged animals, respectively, after HS. The extent of apoptotic DNA fragmentation increased by 119 and 61% in suspended muscles from young and aged rats, respectively. Bax mRNA increased by 73% in young muscles after HS. Bax and Bcl-2 protein levels were greater in suspended muscles relative to control muscles in both age groups. The level of cytosolic mitochondria-housed apoptotic factor cytochrome c was significantly increased in the mitochondria-free cytosol of suspended muscles from young and aged rats. In contrast, the release/accumulation of AIF, a caspase-independent apoptogenic factor, was exclusively expressed in the suspended muscles from aged rats. Our data also show that aging favors the proapoptotic signaling in skeletal muscle by altering the contents of Bax, Bcl-2, Apaf-1, AIF, caspases, XIAP, Smac/DIABLO, and cytochrome c. Furthermore, these results indicate that apoptosis occurs not only in slow-twitch soleus muscle but also in the mixed-fiber (predominately fast fibered) gastrocnemius muscle. Our data are consistent with the hypothesis that apoptotic signaling differs in young adult and aged gastrocnemius muscles during HS.  相似文献   

3.
APRIL (a proliferation-inducing ligand) is a newly identified member of the tumor necrosis factor (TNF) family. Tumor growth-promoting as well as apoptosis-inducing effects of APRIL have been described. Here, we report that five of 12 human malignant glioma cell lines express APRIL. APRIL gene transfer experiments revealed that malignant glioma cells are refractory to growth-promoting activity of APRIL in vitro and in vivo. Interestingly, ectopic expression of APRIL confers minor protection from apoptotic cell death induced by the death ligands, CD95 ligand (CD95L) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2 ligand (Apo2L). This antiapoptotic activity is specific for death ligand/receptor-mediated apoptosis since APRIL does not protect glioma cells from the cytotoxicity of the drugs, teniposide, vincristine, lomustine or cisplatin. Ectopic expression of APRIL is associated with the upregulation of X-linked inhibitor of apoptosis protein (XIAP), providing a possible explanation for the antiapoptotic activity observed here. In contrast, APRIL does not regulate the expression levels of the antiapoptotic proteins FLICE-inhibitory protein (FLIP), Bcl-2 or Bcl-X(L). These findings suggest that APRIL is involved in the regulation of death ligand-induced apoptotic signaling in malignant glioma cells.  相似文献   

4.
Death receptor-associated pro-apoptotic signaling in aged skeletal muscle   总被引:3,自引:0,他引:3  
Tumor necrosis factor-alpha (TNF-α) is elevated in the serum as a result of aging and it promotes pro-apoptotic signaling upon binding to the type I TNF receptor. It is not known if activation of this apoptotic pathway contributes to the well-documented age-associated decline in muscle mass (i.e. sarcopenia). We tested the hypothesis that skeletal muscles from aged rodents would exhibit elevations in markers involved in the extrinsic apoptotic pathway when compared to muscles from young adult rodents, thereby contributing to an increased incidence of nuclear apoptosis in these muscles. The plantaris (fast) and soleus (slow) muscles were studied in young adult (5–7 mo, n=8) and aged (33 mo, n=8) Fischer344 × Brown Norway rats. Muscles from aged rats were significantly smaller while exhibiting a greater incidence of apoptosis. Furthermore, muscles from aged rats had higher type I TNF receptor and Fas associated death domain protein (FADD) mRNA, protein contents for FADD, BCL-2 Interacting Domain (Bid), FLICE-inhibitory protein (FLIP), and enzymatic activities of caspase-8 and caspase-3 than muscles from young adult rats. Significant correlations were observed in the plantaris muscle between caspase activity and muscle weight and the apoptotic index, while similar relationships were not found in the soleus. These data demonstrate that pro-apoptotic signaling downstream of the TNF receptor is active in aged muscles. Furthermore, our data extend the previous demonstration that type II fibers are preferentially affected by aging and support the hypothesis that type II fiber containing skeletal muscles may be more susceptible to muscle mass loses via the extrinsic apoptotic pathway.  相似文献   

5.
6.
In this report, we demonstrate that soleus muscle of spontaneously hypertensive rats (SHR) had significantly lower protein levels of apoptosis repressor with caspase recruitment domain (ARC) and X-linked inhibitor of apoptosis protein (XIAP) as well as significantly higher protein levels of second mitochondria-derived activator of caspase (Smac) and procaspase-8 compared to normotensive Wistar-Kyoto (WKY) rats. In addition, soleus muscle from hypertensive rats had significantly increased caspase-8 proteolytic enzyme activity as well as significantly elevated reactive oxygen species (ROS) generation and higher hydrogen peroxide (H2O2) content. There was no change in the protein levels of the antioxidant enzymes, catalase, copper-zinc superoxide dismutase (CuZnSOD), and manganese superoxide dismutase (MnSOD). Interestingly, ARC protein migrated at approximately 32 kDa in SHR but at 30 kDa in WKY rat muscle; possibly indicating a post-translational modification. These results demonstrate that soleus muscle of hypertensive rats display a pro-apoptotic phenotype and augmented ROS generation.  相似文献   

7.
The replication of viruses involves control of some aspects of host cell homeostasis by modification of target cell metabolism and regulation of the apoptotic machinery. It is not well known whether molecules involved in apoptotic pathways affect human immunodeficiency virus type 1 (HIV-1) replication and regulate viral yields. Using the susceptible Jurkat cell line, we studied the relationship of apoptosis-associated molecules with HIV-1 virus production using a sensitive real-time RT-PCR assay. Here, we found that expression of proapoptotic proteins, including Fas ligand (FasL), FADD, or p53 significantly increased HIV-1 virus production. In contrast, the expression of antiapoptotic molecules, such as FLIP, Bcl-XL, and XIAP, decreased HIV-1 virus production. Knockdown of Bax with siRNA and FADD with expression of its antisense mRNA also inhibited viral replication and the caspase-3 inhibitor, Z-DEVD, and decreased virus production. These data indicate that HIV-1 infection regulates the apoptosis process to facilitate viral replication and inhibition of apoptosis may inhibit HIV-1 replication and cytopathogenesis. We also discuss the effects of MAPK signaling pathways and apoptosis on HIV-1 replication.  相似文献   

8.
Apoptosis and autophagy are critical in normal skeletal muscle homeostasis; however, dysregulation can lead to muscle atrophy and dysfunction. Lipotoxicity and/or lipid accumulation may promote apoptosis, as well as directly or indirectly influence autophagic signaling. Therefore, the purpose of this study was to examine the effect of a 16-week high-fat diet on morphological, apoptotic, and autophagic indices in oxidative and glycolytic skeletal muscle of female rats. High-fat feeding resulted in increased fat pad mass, altered glucose tolerance, and lower muscle pAKT levels, as well as lipid accumulation and reactive oxygen species generation in soleus muscle; however, muscle weights, fiber type-specific cross-sectional area, and fiber type distribution were not affected. Moreover, DNA fragmentation and LC3 lipidation as well as several apoptotic (ARC, Bax, Bid, tBid, Hsp70, pBcl-2) and autophagic (ATG7, ATG4B, Beclin 1, BNIP3, p70 s6k, cathepsin activity) indices were not altered in soleus or plantaris following high-fat diet. Interestingly, soleus muscle displayed small increases in caspase-3, caspase-8, and caspase-9 activity, as well as higher ATG12-5 and p62 protein, while both soleus and plantaris muscle showed dramatically reduced Bcl-2 and X-linked inhibitor of apoptosis protein (XIAP) levels. In conclusion, this work demonstrates that 16 weeks of high-fat feeding does not affect tissue morphology or induce a global autophagic or apoptotic phenotype in skeletal muscle of female rats. However, high-fat feeding selectively influenced a number of apoptotic and autophagic indices which could have implications during periods of enhanced muscle stress.  相似文献   

9.
The present study was designed to examine the acute and chronic effects of endurance treadmill training on citrate synthase (CS) gene expression and enzymatic activity in rat skeletal and cardiac muscles. Adult rats were endurance trained for 8 wk on a treadmill. They were killed 1 h (T(1), n = 8) or 48 h (T(48), n = 8) after their last bout of exercise training. Eight rats were sedentary controls (C) during the training period. CS mRNA levels and enzymatic activities of the soleus and ventricle muscles were determined. Training resulted in higher CS mRNA levels in both the soleus muscles (21% increase in T(1); 18% increase in T(48), P < 0.05) and ventricle muscles (23% increase in T(1); 17% increase in T(48), P < 0.05) when compared with the C group. The CS enzyme activities were 42 (P < 0.01) and 25% (P < 0.01) greater in the soleus muscles of T(1) and T(48) groups, respectively, when compared with that of the C group. Soleus CS enzyme activity was significantly greater in the T(1) vs. T(48) groups (P < 0.05). However, no appreciable alterations in CS enzyme activities were observed in the ventricle muscles in both training groups. These findings suggest differential responses of skeletal and cardiac muscles in CS enzymatic activity but similar responses in CS gene expression at 1 and 48 h after the last session of endurance training. Moreover, our data support the existence of an acute effect of exercise on the training-induced elevation in CS activity in rat soleus but not ventricle muscles.  相似文献   

10.
The inhibitor-of-apoptosis (IAP) proteins are a novel family of antiapoptotic proteins that are thought to inhibit cell death via direct inhibition of caspases. Here, we report that human malignant glioma cell lines express XIAP, HIAP-1 and HIAP-2 mRNA and proteins. NAIP was not expressed. IAP proteins were not cleaved during CD95 ligand (CD95L)-induced apoptosis, and loss of IAP protein expression was not responsible for the potentiation of CD95L-induced apoptosis when protein synthesis was inhibited. LN-18 cells are highly sensitive to CD95-mediated apoptosis, whereas LN-229 cells require co-exposure to CD95L and a protein synthesis inhibitor, CHX, to acquire sensitivity to apoptosis. Adenoviral XIAP gene transfer blocked caspase 8 and 3 processing in both cell lines in the absence of CHX. Apoptosis was blocked in the absence and in the presence of CHX. However, XIAP failed to block caspase 8 processing in LN-229 cells in the presence of CHX. There was considerable overlap of the effects of XIAP on caspase processing with those of BCL-2 and the viral caspase inhibitor crm-A. These data define complex regulatory mechanisms for CD95-mediated apoptosis in glioma cells and indicate that there may be a distinct pathway of death receptor-mediated apoptosis that is readily activated when protein synthesis is inhibited. The constitutive expression of natural caspase inhibitors may play a role in the resistance of these cells to apoptotic stimuli that directly target caspases, including radiochemotherapy and immune-mediated tumor cell lysis.  相似文献   

11.
Sendai virus (SeV) infection causes apoptosis, which is manifested only late after infection; however, inhibition of phosphatidylinositol 3-kinase (PI3K) dramatically accelerates the process. We report here that rapid apoptosis uses the same mitochondrial apoptotic pathway as slow apoptosis. Cytoplasmic cytochrome c (cyt c) was released early in both cases, but the antiapoptotic protein XIAP prevented early activation of the caspases in cells with active PI3K. When the enzyme was inhibited, XIAP was degraded rapidly in infected cells, allowing cyt c to cause caspase activation and early apoptosis. Thus, SeV infection-mediated apoptosis is temporally regulated by the prevention of XIAP degradation by PI3K.  相似文献   

12.
Neonatal rat ventricular myocytes (NRVM) grown in normoxic environment are not susceptible to Fas-induced apoptosis. In the present work, we tested the hypothesis that free radical injury represented by transient exposure to H2O2 sensitizes NRVM to Fas-mediated apoptosis. NRVM were treated with H2O2 (0.5 mM) for 2-4 h and thereafter exposed for 7 h to recombinant Fas ligand (rFasL, 10 ng/ml) plus an enhancing antibody (1 microg/ml). Apoptotic cardiomyocytes were counted and apoptosis-related proteins were measured by Western blot. H2O2 alone induced apoptosis (9.4+/-1.0%) that was preceded by activation of caspases-8 and -3, and PARP degradation. Incubation of NRVM with H2O2, followed by exposure to rFasL, increased the apoptotic index to 13.8+/-2.0%, but did not change caspase-8 or PARP activation. To investigate the mechanism underlying the sensitizing affect of H2O2 towards Fas-induced apoptosis, we studied the effects of H2O2 on the expression of key apoptosis signaling proteins. Incubation with H2O2 for 2-4 h decreased Fas expression and the expression of the Fas-related antiapoptotic proteins FLIP(L) and ARC, and increased the expression of the antiapoptotic proteins bcl-2 and xIAP. FADD expression was unchanged. Next, we tested the effect of H2O2 on the apoptosis-inducing, Fas-dependent Daxx-ASK-1-JUN kinase pathway. H2O2 dramatically increased ASK-1 expression and JUN kinase activation, but did not effect Daxx expression. Based on these findings we concluded that H2O2 sensitizes NRVM to Fas-mediated apoptosis by activating the Daxx-ASK-1-JUN kinase pathway, and by shifting the balance between proapoptotic and antiapoptotic proteins towards the former.  相似文献   

13.
Li Q  Ren J 《Aging cell》2007,6(6):799-806
A fall in circulating levels of cardiac survival factor insulin-like growth factor 1 (IGF-1) contributes to cardiac aging. To better understand the role of IGF-1 in cardiac aging, we examined the influence of cardiac IGF-1 overexpression on lifespan, cardiomyocyte intracellular Ca2+ homeostasis, protein damage, apoptosis and expression of pro- and anti-apoptotic proteins in young and old mice. Mouse survival rate was constructed by the Kaplan–Meier curve. Intracellular Ca2+ was evaluated by fura-2 fluorescence. Protein damage was determined by protein carbonyl formation. Apoptosis was assessed by caspase-8 expression, caspase-3 and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) assay. Pro- and anti-apoptotic proteins including Bax, p53, pp53, Bcl2, Omi/HtrA2, apoptosis repressor with caspase recruitment domain (ARC) and X-linked inhibitor of apoptosis protein (XIAP) were assessed by Western blot. Aging decreased plasma in IGF-1 levels, elevated myocyte resting intracellular Ca2+ levels, reduced electrically stimulated rise in intracellular Ca2+ and delayed intracellular Ca2+ decay associated with enhanced protein carbonyl formation, caspase-8 expression and caspase-3 activity in FVB mice, all of which with the exception of elevated resting intracellular Ca2+ were attenuated by IGF-1. Aging up-regulated expression of Bax, Bcl2 and ARC, down-regulated XIAP expression and did not affect p53, pp53 and Omi/HtrA2. The IGF-1 transgene attenuated or nullified aging-induced changes in Bax, Bcl2 and XIAP. Our data suggest a beneficial role for IGF-1 in aging-induced survival, cardiac intracellular Ca2+ homeostasis, protein damage and apoptosis possibly related to pro- and anti-apoptotic proteins.  相似文献   

14.
15.
Deregulation of apoptotic pathways plays a central role in cancer pathogenesis. X-linked inhibitor of apoptosis protein (XIAP), is an antiapoptotic molecule, whose elevated expression has been observed in tumor specimens from patients with prostate carcinoma. Studies in human cancer cell culture models and xenograft tumor models have demonstrated that loss of XIAP sensitizes cancer cells to apoptotic stimuli and abrogates tumor growth. In view of these findings, XIAP represents an attractive antiapoptotic therapeutic target for prostate cancer. To examine the role of XIAP in an immunocompetent mouse cancer model, we have generated transgenic adenocarcinoma of the mouse prostate (TRAMP) mice that lack XIAP. We did not observe a protective effect of Xiap deficiency in TRAMP mice as measured by tumor onset and overall survival. In fact, there was an unexpected trend toward more aggressive disease in the Xiap-deficient mice. These findings suggest that alternative mechanisms of apoptosis resistance are playing a significant oncogenic role in the setting of Xiap deficiency. Our study has implications for XIAP-targeting therapies currently in development. Greater understanding of these mechanisms will aid in combating resistance to XIAP-targeting treatment, in addition to optimizing selection of patients who are most likely to respond to such treatment.  相似文献   

16.
17.
Brain and Reproductive Organ Expressed (BRE), or BRCC45, is a death receptor-associated antiapoptotic protein, which is also involved in DNA-damage repair, and K63-specific deubiquitination. BRE overexpression attenuates both death receptor- and stress-induced apoptosis, promotes experimental tumor growth, and is associated with human hepatocellular and esophageal carcinoma. How BRE mediates its antiapoptotic function is unknown. Here we report based on the use of a mouse Lewis lung carcinoma cell line D122 that BRE has an essential role in maintaining the cellular protein level of XIAP, which is the most potent endogenous inhibitor of the caspases functioning in both extrinsic and intrinsic apoptosis. shRNA-mediated exhaustive depletion of BRE sensitized D122 cells to apoptosis induced not only by etopoxide, but also by TNF-α even in the absence of cycloheximide, which blocks the synthesis of antiapoptotic proteins by TNF-α-activated NF-κB pathway. In BRE-depleted cells, protein level of XIAP was downregulated, but not the levels of other antiapoptotic proteins, cIAP-1, 2, and cFLIP, regulated by the same NF-κB pathway. Reconstitution of BRE restored XIAP levels and increased resistance to apoptosis. XIAP mRNA level was also reduced in the BRE-depleted cells, but the level of reduction was less profound than that of the protein level. However, BRE could not delay protein turnover of XIAP. Depletion of BRE also increased tumor cell apoptosis, and decreased both local and metastatic tumor growth. Taken together, these findings indicate that BRE and its XIAP-sustaining mechanism could represent novel targets for anti-cancer therapy.  相似文献   

18.
We compared the changes in monocarboxylate transporter 1 (MCT1) and 4 (MCT4) proteins in heart and skeletal muscles in sedentary control and streptozotocin (STZ)-induced diabetic rats (3 wk) and in trained (3 wk) control and STZ-induced diabetic animals. In nondiabetic animals, training increased MCT1 in the plantaris (+51%; P < 0.01) but not in the soleus (+9%) or the heart (+14%). MCT4 was increased in the plantaris (+48%; P < 0.01) but not in the soleus muscles of trained nondiabetic animals. In sedentary diabetic animals, MCT1 was reduced in the heart (-30%), and in the plantaris (-31%; P < 0.01) and soleus (-26%) muscles. MCT4 content was also reduced in sedentary diabetic animals in the plantaris (-52%; P < 0.01) and soleus (-25%) muscles. In contrast, in trained diabetic animals, MCT1 and MCT4 in heart and/or muscle were similar to those of sedentary, nondiabetic animals (P > 0.05) but were markedly greater than in the sedentary diabetic animals [MCT1: plantaris +63%, soleus +51%, heart +51% (P > 0.05); MCT4: plantaris +107%, soleus +17% (P > 0.05)]. These studies have shown that 1) with STZ-induced diabetes, MCT1 and MCT4 are reduced in skeletal muscle and/or the heart and 2) exercise training alleviated these diabetes-induced reductions.  相似文献   

19.
Apoptosis plays a critical role for the development of a variety of cardiac diseases. Cardiomyocytes are enriched in mitochondria, while mitochondrial fission can regulate apoptosis. The molecular mechanism governing cardiomyocyte apoptosis remain to be fully elucidated. Our results showed that Smac/DIABLO is necessary for apoptosis in cardiomyocytes, and it is released from mitochondria into cytosol in response to apoptotic stimulation. Smac/DIABLO release is a consequence of mitochondrial fission mediated by dynamin-related protein-1 (Drp1). Upon release Smac/DIABLO binds to X-linked inhibitor of apoptosis protein (XIAP), resulting in the activation of caspase-9 and caspase-3. Their activation is a prerequisite for the initiation of apoptosis because the administration of z-LEHD-fmk and z-DQMD-fmk, two relatively specific inhibitors for caspase-9, and caspase-3, respectively, could significantly attenuate apoptosis. Smac/DIABLO release could not be blocked by these caspase inhibitors, indicating that it is an event upstream of caspase activation. ARC (apoptosis repressor with caspase recruitment domain), an abundantly expressed apoptotic repressor in cardiomyocytes, could inhibit mitochondrial fission and Smac/DIABLO release. Our data reveal that Smac/DIABLO is a target of ARC in counteracting apoptosis.  相似文献   

20.
The mechanisms of apoptosis in the loss of myocytes in skeletal muscle with age and the role of mitochondrial and sarcoplasmic reticulum-mediated pathways of apoptosis are unknown. Moreover, it is unknown whether lifelong calorie restriction prevents apoptosis in skeletal muscle and reverses age-related alterations in apoptosis signaling. We investigated key apoptotic regulatory proteins in the gastrocnemius muscle of 12 and 26 month old ad libitum fed and 26 month old calorie-restricted male Fischer-344 rats. We found that apoptosis increased with age and that calorie-restricted rats showed less apoptosis compared with their age-matched cohorts. Moreover, pro- and cleaved caspase-3 levels increased significantly with age and calorie-restricted rats had significantly lower levels than the aged ad libitum group. Neither age nor calorie restriction had any effect on muscle caspase-3 enzyme activity, but the levels of X-linked inhibitor of apoptosis, particularly an inhibitor of caspase-3, increased with age and were reduced significantly in the 26 month old calorie-restricted cohort. The apoptotic inhibitor apoptosis repressor with a caspase recruitment domain (ARC), which inhibits cytochrome c release, underwent an age-associated decline in the cytosol but increased with calorie restriction. In contrast, mitochondrial ARC levels increased with age and were lower in calorie-restricted rats than in age-matched controls, suggesting a translocation of this protein to attenuate oxidative stress. The translocation of ARC may explain the reduction in cytosolic cytochrome c levels observed with age and calorie restriction. Moreover, we found a striking approximately 350% increase in the expression of procaspase-12 (caspase located at the sarcoplasmic reticulum) with age which was significantly lower in the 26 month old calorie-restricted group. The total protein level of apoptosis-inducing factor in the plantaris muscle increased with age and was reduced calorie-restricted rats compared with age-matched controls, but there were no significant changes in this pro-apoptotic protein in the isolated nuclei. Calorie restriction is able to lower the apoptotic potential in aged skeletal muscle by altering several key apoptotic proteins toward cellular survival, thereby reducing the potential for sarcopenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号