首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cu2+ and Co2+ complexes of adriamycin (ADM) in aqueous solutions have been examined using EPR spectroscopy. An appreciable amount of Cu2+ and Co2+ complexes formed in the solutions were found to be in the EPR silent associated form, where the metal ions are antiferromagnetically coupled. The associated form of the Cu2+ complex may be neither a simple dimer nor coordination polymer but aggregates of a stacked type. Formation of a complex having Cu2+-ADM stoichiometry of 1:2 was observed for the solutions containing excess of ADM as an EPR observable species. The complex having Cu2+-ADM stoichiometry of 1:1 was not observed directly by EPR, but the presence of the complex is undeniable, especially at low pH range so far as large excessive ADM is not present. The Co2+ complex of ADM observed by EPR is in the high-spin (S = 3/2) state and may have a coordination structure of tetragonal symmetry. The EPR spectra of these complexes apparently show that the Cu2+ and Co2+ ions are bound at the carbonyl and phenolate oxygen in the 1,4-dihydroxyanthraquinone moiety and the amino nitrogen in the sugar part does not seem to participate in the coordination to the metal ions.  相似文献   

2.
Two series of ruthenium(II) polypyridyl complexes [Ru(bipy)(2)(phpytr)](+) and [Ru(bipy)(2)(phpztr)](+) (where Hphpytr = 2-(5-phenyl-1H-[1,2,4]triazol-3-yl)-pyridine and Hphpztr = 2-(5-phenyl-1H-[1,2,4]triazol-3-yl)-pyrazine) are examined by electrochemistry, UV/Vis, emission, resonance Raman, transient resonance Raman and transient absorption spectroscopy, in order to obtain a more comprehensive understanding of their excited state electronic properties. The interpretation of the results obtained is facilitated by the availability of several isotopologues of each of the complexes examined. For the pyridine-1,2,4-triazolato based complex the lowest emissive excited state is exclusively bipy based, however, for the pyrazine based complexes excited state localisation on particular ligands shows considerable solvent and pH dependency.  相似文献   

3.
The zinc(II)-L-carnosine system was investigated at different pH and metal/ligand ratios by Raman and IR spectroscopy. The Raman and IR spectra present some marker bands useful to identify the sites involved in metal chelation at a specific pH value. In particular, the neutral imidazole group gives rise to some Raman bands, such as the nu C(4)===C(5) band, that change in wave number, depending on whether the imidazole ring takes the tautomeric form I or II. Even if tautomer I is predominant in the free ligand, metal coordination can upset tautomeric preference and N(tau)- and N(pi)-ligated complexes can be identified. Although weak compared to those of aromatic residues, these Raman marker bands may be useful in analyzing metal-histidine interaction in peptides and proteins. On the basis of the vibrational results, conclusions can be drawn on the species existing in the system. Depending on the available nitrogen atoms, various complexes can be formed and the prevalent form of the species depends mainly on the pH. At basic pH carnosine gives rise to two different neutral complexes: a water-insoluble polymeric species, [ZnH(-1)L](0)(n), and a dimer, [Zn(2)H(-2)L(2)](0). The first is predominant and involves the tautomeric I form of the imidazole ring in metal chelation; the second contains tautomer II and increases its percentage by going from a 2 to 0.25 metal/ligand ratio. Conversely, the dimeric species dominates at pH 7, whereas two charged species, [ZnHL](2+) and [ZnL](+), are formed under slightly acidic conditions. In the [ZnHL](2+) complex the imidazole ring takes part in the Zn(II) coordination in the tautomeric I form, whereas in [ZnL](+) the ring is protonated and not bound to the Zn(II) ion. In addition, the curve fitting analysis of the 1700-1530 cm(-1) Raman region was helpful in indicating the predominant species at each pH.  相似文献   

4.
5.
Mononuclear copper(II) complexes of the alloferon 1 His-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly, alloferon 2 Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly, Ac-alloferon 1 Ac-His-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly and Ac-alloferon 2 Ac-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly have been studied by potentiometric, UV-vis, CD and EPR spectroscopic methods. The potentiometric and spectroscopic data shows that acetylation of the amino terminal group induces significant changes in the coordination properties of the Ac-alloferons 1 and 2 compared to the alloferons 1 and 2, respectively. The presence of four (Ac-alloferon 1) or three (Ac-alloferon 2) histidyl residues provides a high possibility for the formation of macrochelates via the exclusive binding of imidazole-N donor atoms. The macrochelation suppresses, but cannot preclude the deprotonation and metal ion coordination of amide functions and the CuH−3L species with {NIm, 3N} bonding mode at pH above 8 are formed. The N-terminal amino group of the alloferons 1 and 2 takes part in the coordination of the metal ion and the 4N complex with {NH2, 3NIm} coordination mode dominates at physiological pH 7.4 for alloferon 1 and the 3N {NH2, CO, 2NIm} binding mode for alloferon 2. However, at higher pH values sequential amide nitrogens are deprotonated and coordinated to copper(II) ions.  相似文献   

6.
Copper reconstituted hemoglobin (CuHb), copper containing T-state hybrid hemoglobins like alpha2(Ni)beta2(Cu), and alpha2(Cu)beta2(Ni), and intermediate R-state hybrids like alpha2(CO-Fe)beta2(Cu) and alpha2(Cu)beta2(Fe-CO) are studied using resonance Raman (RR) spectroscopy at two different excitation wavelengths. The high frequency RR region in CuHb indicates the presence of both 4- and 5-coordinate forms of Cu(II). In hybrid Hbs, the presence of two distinct metal ion environments within one particular subunit is evident. This is also consistent with previous findings using EPR spectroscopy and sulfydryl reactivity studies on these hybrid Hbs. The low frequency RR region on these copper derivatives of HbA further suggests the existence of two different heme moieties within the subunit.  相似文献   

7.
Torreggiani A  Tamba M  Fini G 《Biopolymers》2000,57(3):149-159
A comparative Raman and FTIR study of carnosine, a dipeptide present in several mammalian tissues, and its complexes with copper(II) at different pH values was carried out. The neutral imidazole ring gives rise to some bands that appear at different wavenumbers, depending on whether the imidazole ring is in the tautomeric form II or I. At pH 7 and 9 the molecule exists in equilibrium between the two tautomeric forms; tautomer I is predominant. Metal coordination is a factor that affects the tautomeric equilibrium, and the copper(II) coordination site can be monitored by using some Raman marker bands such as the vC(4)=C(5) band. On the basis of the vibrational results, conclusions can be drawn on the functional groups involved in the Cu(II) chelation and on the species existing in the Cu(II)-carnosine system. At neutral and basic pH the most relevant species formed when the Cu(II)/carnosine molar ratio is not very different from unity is a dimer, [Cu(2)L(2)H(-2)](0). In this complex the ligand coordinates the metal via the N (amino), O (carboxylate), and N (amide) donor atoms while the N(tau) nitrogen atoms of the imidazole rings (tautomer II) bridge the copper(II) ions. At a slightly acidic pH the two monomeric complexes [CuLH](2+) and [CuL](+) were present. In the former the imidazole ring takes part in the Cu(II) coordination in the tautomeric I form whereas in the latter it is protonated and not bound to Cu(II).  相似文献   

8.
J B Dunn  D F Shriver  I M Klotz 《Biochemistry》1975,14(12):2689-2695
Resonance Raman spectroscopy has been used as a probe of the structure of ligands at the active site of hemerythrin. Molecularly revealing insights have been obtained with oxyhemerythrin and with metazidohemerythrin. This spectroscopic technique has also facilitated a comparison of oxygen carrier within erythrocytes with that in solution. The electronic state of the bound O2 is the same in the natural environment as in the artificial one.  相似文献   

9.
10.
The interactions of three bis(amide) ligands derived from tartaric acid with copper (II) were investigated in aqueous solution by a combination of potentiometry, UV-vis spectrophotometry, electron paramagnetic resonance (EPR), and mass spectrometry. The formation constants of the complexes were measured and their relative structures were reported. The sites of complexation of these ligands are investigated based mostly on their electronic and EPR spectra and on the comparison with the behaviour of some analog compounds.  相似文献   

11.
Three hexaaza macrocyclic copper (II) complexes with different functional groups have been synthesized and characterized by elemental analysis and infrared spectra. Absorption and fluorescence spectral, cyclic voltammetric and viscometric studies have been carried out on the interaction of [CuL(1)]Cl(2) (L(1)[double bond]3,10-bis(2-methylpyridine)-1,3,5,8,10,12-hexaazacyclotetradecane), [CuL(2)]Cl(2) (L(2)[double bond]3,10-bis(2-propionitrile)-1,3,5,8,10,12-hexaazacyclotetradecane) and [CuL(3)]Cl(2) (L(3)=3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane) with calf thymus DNA. The results suggest that three complexes can bind to DNA by different binding modes. The spectroscopic studies together with viscosity experiments and cyclic voltammetry suggest that [CuL(1)](2+) could bind to DNA by partial intercalation via pyridine ring into the base pairs of DNA. [CuL(2)](2+) may bind to DNA by hydrogen bonding and hydrophobic interaction while [CuL(3)](2+) may be by weaker hydrogen bonding. The functional groups on the side chain of macrocycle play a key role in deciding the mode and extent of binding of complexes to DNA. Noticeably, the three complexes have been found to cleave double-strand pUC18 DNA in the presence of 2-mercaptoethanol and H(2)O(2).  相似文献   

12.
Reaction of [Pd(1-3-η-allyl)Cl]2 with lithium triazenide (triazenide = p-XC6H4NN-NC6H4X-p; X = Cl, H, CH3) affords dimeric complexes of the type [Pd(1-3-η-allyl)(triazenide)]2. In the solid state the triazenido ligands are bridging two palladium atoms with their terminal nitrogen atoms, as shown by a preliminary X-ray determination of the complex with X = CH3. The allyl groups are stereochemically equivalent. 1H NMR spectra demonstrate the presence of two conformers in solution. The major component has the same configuration found in the solid. The other conformer has stereochemically non equivalent allyl groups. The concentration ratio of the two conformers is independent of the temperature, suggesting the absence of intramolecular processes and of palladium- triazenido bond breaking. This point is discussed also by comparing the (1-3-η-allyl)(triazenide)palladium (II) dimers with the closely related(1-3-η-allyl)(acetate)palladium(II) complexes.  相似文献   

13.
14.
The DNA binding behavior of [Cu(4,7-dmp)(phen-dione)Cl]Cl (1) and [Cu(2,9-dmp)(phen-dione)Cl]Cl (2) where dmp and phen-dion stand for dimethyl-1,10-phenanthroline and 1,10-phenanthroline-5,6-dion, respectively, was studied with a series of techniques including Viscometry, UV–Vis absorption, circular dichroism and fluorescence spectroscopy. Cytotoxicity effect was also investigated. Thermodynamic parameters, enthalpy and entropy changes were calculated according to Van’t Hoff equation, which indicated that both reactions are predominantly enthalpically driven. However, these two complexes show different behavior in fluorescence, circular dichroism and viscometry methods which indicate the Cu(II) complexes interact with calf-thymus DNA by different mode of binding. These have further been verified by competition studies using Hoechst as a distinct groove binder. All these results indicate that these two complexes (1) and (2) interact with CT-DNA via groove binding and partially intercalative mode, respectively and the binding affinity of the complex 1 is higher than that of complex 2. Finally, our findings suggest that the type of ligands and structure of complexes have marked effect on the binding affinity of complexes involving CT-DNA. Also, these new complexes showed excellent antitumor activity against human T lymphocyte carcinoma-Jurkat cell line.  相似文献   

15.
Carnosine complexes with copper(II) ions were studied with magnetic resonance techniques over a wide range of ligand to metal ratios at various pH values. Water proton relaxation rates increased with decreasing carnosine to copper ratios until a molar ratio of 48 was reached. Over the ratio range of 48–2 carnosine molecules per copper ion, the relaxation rate decreased so that in the 2:1 carnosine-copper(II) complex, the water-copper(II) distance was estimated to be 1.92 Å. Proton NMR studies revealed the broadening of imidazole proton lines at high mole ratios followed by other histidyl protons as the ratio decreased. The β-alanyl methylene protons were the last to be broadened by the addition of copper(II) ions. Carbon to copper(II) distances were determined for the carnosine to copper mole ratios of 500:1 and 5000:1. EPR spectra obtained at 93°K revealed the probable existence of four carnosine imidazoles as the sole coordinated ligands to copper(II) at high dipeptide-to-metal ratios (>10). At mole ratios below four, nuclear hyperfine lines characteristic of both monomeric and dimeric carnosine-copper(II) forms were observed. These results reveal that imidazole from carnosine is the sole ligand contributed to copper(II) for coordination over the pH range 5 to 7 at high carnosine to copper(II) ratios  相似文献   

16.
The interaction of Cu(II) with human lactoferrin has been studied as a function of pH, using electronic and electron spin resonance spectroscopy. Specific Cu(II) binding, with bicarbonate as the co-anion, occurs over the pH range 6 to 9. In the presence of a fiftyfold molar excess of oxalate, a monocopper(II) lactoferrin oxalate complex forms when the Cu(II) to protein is 1:1. If this ratio is increased to 2:1, a hybrid complex forms, in which the second copper utilizes bicarbonate as the co-anion, thus demonstrating, as for serum transferrin, a difference in the anion binding sites. The quenching of the intrinsic fluorescence of apolactoferrin is significantly less in the presence of oxalate than bicarbonate. The interaction of Cu(II) with apolactoferrin in the presence of the malonate, glycolate, thioglycolate, glycinate, and ethylenediaminetetraacetate ions has been examined.  相似文献   

17.
New bis benzimidazole diamide ligands, N,N′-bis(benzimidazolyl-2-methyl)-2,2′-thiadiethanamide (GBTAA), and N,N′-bis(benzimidazolyl-2-methyl)-3,3′-thiadipropanamide (GBTPA) have been synthesised and utilised to prepare copper(II) complexes with inner sphere ligands like Cl and . One of the ligands, GBTAA, has been structurally characterised, while the other GBTPA is characterised via an unusual tetrabenzoate bridged dicopper polymeric structure wherein the ligand GBTPA bridges the two dicopper benzoate units. The coordination environment about each copper is five coordinate, while τ value is found to be 0.32 indicating a distorted square pyramidal geometry. The copper(II) complexes catalyse the quenching of superoxide radical generated electrochemically.  相似文献   

18.
Copper(II) complexes of general empirical formula, CuX(Hagpa) · nH2O and Cu(agpa) · 2H2O (H2agpa = aminoguanizone of pyruvic acid, X = Cl, Br, , CH3COO, , n = 0, 1, 1.5, 2), have been synthesized and characterized by IR, EPR spectroscopy and X-ray crystallography. The IR spectra of the complexes showed the ONN coordination of the ligand to copper(II) ion. The crystal structures of H2agpa · H2O and complexes [Cu(Hagpa)Br] and [Cu2(Hagpa)2(H2O)2(SO4)] · DMSO showed an invariable conformation and coordination mode for the uninegatively charged tridentate ligand and revealed the formation of linear polymers in which bromide or sulfate anions bridge the copper(II) ions. The EPR spectra for complexes CuX(Hagpa) · nH2O are described by spin Hamiltonian for S = 1/2, without hyperfine structure. The g-tensor is symmetrical for Cu(agpa) · 2H2O, has tri-axial anisotropy for sulfate complexes, and exhibits axial symmetry for the other compounds investigated.  相似文献   

19.
Recent progress in generating and stabilizing reactive heme protein enzymatic intermediates by cryoradiolytic reduction has prompted application of a range of spectroscopic approaches to effectively interrogate these species. The impressive potential of resonance Raman spectroscopy for characterizing such samples has been recently demonstrated in a number of studies of peroxo- and hydroperoxo-intermediates. While it is anticipated that this approach can be productively applied to the wide range of heme proteins whose reaction cycles naturally involve these peroxo- and hydroperoxo-intermediates, one limitation that sometimes arises is the lack of enhancement of the key intraligand ν(O-O) stretching mode in the native systems. The present work was undertaken to explore the utility of cobalt substitution to enhance both the ν(Co-O) and ν(O-O) modes of the CoOOH fragments of hydroperoxo forms of heme proteins bearing a trans-axial histidine linkage. Thus, having recently completed RR studies of hydroperoxo myoglobin, attention is now turned to its cobalt-substituted analogue. Spectra are acquired for samples prepared with 16O2 and 18O2 to reveal the ν(M-O) and ν(O-O) modes, the latter indeed being observed only for the cobalt-substituted proteins. In addition, spectra of samples prepared in deuterated solvents were also acquired, providing definitive evidence for the presence of the hydroperoxo-species.  相似文献   

20.
Synthesis, structure and spectroscopic characterization of 2-thiophenealdehyde-N(4)-napthylthiosemicarbazone and its complexes with biologically important Zn(II) and toxic Hg(II) metal ions have been reported. The crystal structure of the complexes reveals that both are distorted tetrahedral. In the Hg(II) complex the ligand is neutral and mondented where as in Zn(II) complex the ligand is bidented and anionic. Whereas conductivity measurement study shows both the complexes are molecular species. The beautiful changes in absorption spectra along with isosbestic points upon addition of respective metal salts to the ligand solution convincingly support the formation of metal complexes in solution phase. The other spectroscopic studies also show good correlation with their solid state structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号