首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Mercuric chloride (HgCl2) induces acute renal failure associated to tubular impairment in experimental animals and humans. Stress proteins are a superfamily of proteins, comprising heat- shock proteins (HSP) and glucose-regulated proteins (GRP), enhanced or induced in the kidney in response to stress. They act as molecular chaperones that protect organelles and repair essential proteins which have been denatured during adverse conditions. The involvement of stress proteins in mercury-nephrotoxicity has not yet been well clarified. This study was undertaken to detect the tubular distribution of four stress proteins (HSP25, HSP60, GRP75, HSP72) in the rat kidney injected with HgCl2 and to quantify lysosomal and mitochondrial changes in straight proximal tubules, the main mercury target. Sprague-Dawley rats were administered i.p. with progressive sublethal doses of HgCl2 (0.25 mg/kg, 0.5 mg/kg, 1 mg/kg and 3.5 mg/kg) or saline (as controls) and sacrificed after 24 h. In dosages over 0.50 mg/kg, stress proteins increased and changed localization in a dose-dependent manner. HSP25 was focally expressed in altered proximal tubules at 1 mg/kg but in the macula densa it was at 3.5 mg/kg. HSP60 and GRP75 were intense in the nucleus and cytoplasm of proximal tubules but moderate in distal tubules. HSP72 was induced in distal tubules after low exposures but in proximal tubules it happened at the highest dose. Moreover, a significant increase in lysosomal and total mitochondria (normal and with broken cristae) area and density were progressively found after HgCl2 treatments. Stress proteins could represent sensitive biomarkers that strongly correlate with the degree of oxidative injury induced by HgCl2 in the rat proximal tubules.  相似文献   

2.
Effects of age and sex on hexachloro-1,3-butadiene (HCBD) nephrotoxicity were determined 24 hours after a single dose (0, 25, 50, 100 or 200 mg/kg) in 28- and 63-day-old Fischer 344 rats. HCBD treatment significantly increased the kidney to body weight ratio but had little effect on the liver to body weight ratio. The 28-day-old rats were more susceptible to HCBD nephrotoxicity judged by elevated blood urea nitrogen, decreased renal cortical accumulation of p-aminohippurate tetraethylammonium. Adult female rats (63-day-old) appeared to be more susceptible to HCBD nephrotoxicity than males at the low dose (50 mg/kg).  相似文献   

3.
Cis-diamminedichloroplatinum (II) (cisplatin), an inorganic platinum salt used in cancer chemotherapy, is characterized by a renal toxicity recognized both in experimental animals and in patients treated with the compound. The purpose of the present study was to explore by both light and electron microscopy the morphological alterations induced in the rat kidney by cisplatin administration and, in particular, to analyse the tissue repair reaction following nephrotoxic injury. Experimental animals (four rats per group) were treated i.p. with 2, 4 or 8 mg/kg cisplatin administered in four consecutive daily injections. The rats were sacrificed 4 days after the last injection. In addition, the persistence of renal lesions and the duration of the repair reaction were determined in rats given 8 mg/kg cisplatin and killed 4, 7, 14 or 21 days after the last injection. The cell proliferation associated with tissue repair was estimated both quantitatively (rate of DNA synthesis) and qualitatively (histoautoradiography and electron microscopy examination) 1 h after in vivo exposure to [3H] thymidine. Renal tissue alterations and the repair reaction were minimal after the administration of 2 or 4 mg/kg cisplatin. In contrast, 8 mg/kg cisplatin caused a spectrum of morphological abnormalities affecting proximal, distal and collecting tubules, and ranging from sublethal cell alterations to tubular necrosis and cystic dilatation. The latter degenerative change primarily involved the straight portion of proximal tubules and seemed to develop over the weeks following cisplatin administration. Concomitantly with the tissue lesions, a burst of cell proliferation, associated with stimulation of DNA synthesis, was apparent in the renal cortex and outer medulla. Whereas a very high incidence of S-phase cells was encountered in seemingly undifferentiated tubules, they also appeared in differentiated proximal, distal and collecting tubules, but were infrequent in cystic tubules. Proliferation of fibroblasts was also stimulated in the renal interstitium. The proliferative response persisted for the whole duration of the experiment, indicating incomplete tissue repair. The long-lasting tubular injury and the slowness of repair are consistent with the chronic renal dysfunction (polyuria and hypomagnesemia) that cisplatin is known to induce in both man and experimental animals.  相似文献   

4.
The role of the kidney tubules in the renal formation of erythropoietin is incompletely understood. Therefore, the capability to produce erythropoietin in response to hypoxia was studied in rats with tubular lesions. Nephron damage was induced in two different ways. First, rats were treated with the nephrotoxic aminoglycoside gentamicin (67.5 mg/kg and day) for 14 days. The animals were then subjected to simulated altitude (6,800 m) for 6 h. The resulting plasma erythropoietin concentration was significantly lower (0.5 IU/ml) than in saline treated control rats exposed to hypoxia (1.0 IU/ml). Second, unilateral hydronephrosis was induced by ureteral ligation. The contralateral kidney was removed immediately before the animals were exposed to simulated altitude for 6 h. The plasma erythropoietin concentration in the ureter-ligated rats did not increase above the value (0.3 IU/ml) in hypoxia exposed anephric rats. These results indicate that the production of erythropoietin is reduced following tubular injury. Tubule cells may directly produce the hormone or interfere with the O2-sensing mechanisms controlling its synthesis. The latter hypothesis would seem to be supported by our failure to demonstrate in vitro erythropoietin production by the two established kidney tubule cell lines, LLC-PK1 and PK-15.  相似文献   

5.
Male Wistar rats were randomly divided into three groups - A, B and C. A dose of 5 mg and 10 mg of cadmium chloride/kg body weight/day was orally administered to groups B and C, respectively. Rats from group A served as control. Rats were sacrificed on 1st, 2nd, 4th, 6th, and 8th week after initiation of the experiment. Kidneys were removed immediately, fixed in Bouin's fixative, routinely processed and stained with hematoxylin and eosin. The present study showed that the histopathological changes were caused in kidney of rats by cadmium exposure. The changes noticed were mainly - the glomerular swelling (at initial stage), the shrinkage of glomerulus (at later stage), the tubular dilatation, hypertrophy of tubular epithelium, degeneration of glomerulus and renal tubules and deposition of eosin-positive substances in the glomerulus and renal tubules. However, lesions were depended upon the doses and duration of the treatment.  相似文献   

6.
Clarke H  Ryan MP 《Life sciences》1999,64(15):1295-1306
The immunosuppressive drug cyclosporine A (CsA) exhibits significant nephrotoxicity. Disturbance of magnesium (Mg) homeostasis may be an important component of this nephrotoxicity. It has been suggested that transmigration of Mg from plasma to tissues may be an important component of CsA-induced alterations in Mg homeostasis. In this study, CsA nephrotoxicity in male Wistar rats was investigated and alterations in Mg homeostasis along with other indices of toxicity were assessed. Animals were dosed daily for 14 days i.p. with CsA (20 mg/kg body weight). Control animals received vehicle alone. CsA toxicity was evidenced by i) lower gain in body weight, ii) reduced thymus/body weight ratio, iii) increased blood urea nitrogen and creatinine, iv) a tendency for reduced plasma magnesium and v) increased urinary Mg excretion and greatly increased fractional excretion of Mg. Tissue Mg analysis did not reveal any changes in thymus or skeletal muscle Mg while Mg in kidney tissue tended to be reduced. Electron microscopy revealed some damage in renal tubules of rats treated with cyclosporine including translucent cytoplasm, vacuolization, rounded and swollen mitochondria, damage to brush border and disruption of basal infoldings. These results indicate that direct renal tubular damage may result from CsA exposure. No evidence was found for CsA-induced movement of Mg from plasma to tissues. CsA-induced altered renal handling of Mg and this renal Mg wasting may be an important consequence of the nephrotoxicity.  相似文献   

7.
Using diabetes mellitus as a model of oxidative damage, this study investigated whether subacute treatment (10 mg/kg/day, intraperitoneally for 14 days) with the compound piperine would protect against diabetes-induced oxidative stress in 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione (GSH and GSSG, respectively) content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Piperine treatment of normal rats enhanced hepatic GSSG concentration by 100% and decreased renal GSH concentration by 35% and renal glutathione reductase activity by 25% when compared to normal controls. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Treatment with piperine reversed the diabetic effects on GSSG concentration in brain, on renal glutathione peroxidase and superoxide dismutase activities, and on cardiac glutathione reductase activity and lipid peroxidation. Piperine treatment did not reverse the effects of diabetes on hepatic GSH concentrations, lipid peroxidation, or glutathione peroxidase or catalase activities; on renal superoxide dismutase activity; or on cardiac glutathione peroxidase or catalase activities. These data indicate that subacute treatment with piperine for 14 days is only partially effective as an antioxidant therapy in diabetes.  相似文献   

8.
Ultrastructural alterations in the cortical, distal and collecting tubules have been examined in female Sprague-Dawley rats treated with various aminoglycosides in clinical use. Gentamicin, dibekacin (10 mg/kg X day), netilmicin, tobramycin (4 or 10 mg/kg X day) or amikacin (37.5 mg/kg X day) were administered intraperitoneally twice a day over different periods of time, extending from 4 to 14 days. The kidney cortex was examined after 4, 7, 10 or 14 days of aminoglycoside administration by light (semithin sections) and electron microscopy. After 7 or more days of treatment, lysosomes in collecting tubular cells (and to a lesser extent in distal tubular cells) contained concentric lamellar material (myeloid bodies), an ultrastructural alteration typical of drug-induced lysosomal phospholipidosis. Although this alteration appeared qualitatively similar to that observed in proximal tubular cells, it was less conspicuous and occurred later during treatment. In addition, distal tubular cells occasionally showed marked vacuolization and disruption of the basal cell architecture. The possible relationship between these alterations and the urine hypo-osmolality characteristic of aminoglycoside-induced renal dysfunction is discussed.  相似文献   

9.
A considerable number of studies were carried out on patients receiving Cyclosporin A (CSA) after bone marrow, heart and kidney transplants. More recently this drug has been used as an immunosuppressive agent in the management of type 1 diabetes. Moreover the increase of creatinine levels in CSA-treated patients and animals has led the researchers to believe that this drug may be responsible for irreversible nephrotubular side effects.Our aim was, therefore, to study the hispathological effects of CSA on kidneys of bio breeding (BB) rats, which develop diabetes spontaneously.Animals were treated for 30 and 60 days with daily injections of 8 mg/kg body wt of CSA, dissolved in 2 ml of Intralipid 10% (Pierrel), given intraperitoneally (control animals received only Intralipid). At the end of the experiments animals were sacrificed under ether anaesthesia and the kidneys removed and processed for light microscopy, using standard procedures. After a 30-day administration of CSA, the tubular and glomerular structures appeared unchanged or, in some cases, only a few cells, in the proximal tubules, showed slight vacuolation. After 60 days of CSA administration, the elements of the proximal profiles showed a considerable degree of cytoplasmic vacuolation. These vacuoles resulted positive to PFABB, Sudan Black B, PAS and alkaline tetrazolium reactions. Distal tubular profiles, loops of Henle and glomeruli were unaffected.Our morphological findings demonstrate that CSA causes nephrotubular modifications, when administered in therapeutic doses of only 10 mg/kg body wt, as in many clinical schedules. Moreover data could be consistent with a possible reversion to the normal structural appearance.  相似文献   

10.
The unprecedented ability of cyclosporin A, when given for six days at a dose of 25 mg/kg/d or 50 mg/kg/d, to cause a marked and sustained increase in renal glutathione (GSH) concentration in rat kidney is described. This response was particular to the kidney insofar as the GSH concentration in the liver was not increased in response to a lower dose of cyclosporin and was decreased in the liver of animals treated with the higher dose of the drug. The increase in kidney GSH concentration did not appear to be due to an increased rate of production or to an inhibition of the degradation of the tripeptide. This suggestion is based on the finding that the activities of the GSH synthesis pathways, GSSG-reductase and γ-glutamylcysteine synthetase, were unchanged or decreased, respectively, and those of the catabolic enzymes, GSH-peroxidase and γ-glutamyltranspeptidase, were unchanged or increased, respectively. It is suggested that the elevation of renal GSH content in the face of diminished synthetic capacity and an apparent increased utilization may result from an enhanced uptake of GSH as the result of alterations caused by cyclosporin in the renal transport system.  相似文献   

11.
It has been recently postulated from our laboratory that Arabic gum (AG) offers a protective effect in the kidney of rats against nephrotoxicity induced by gentamicin via inhibiting lipid peroxidation. It has also recently shown a powerful antioxidant effect through scavenging superoxide anions. In this study we utilized a rat model of cisplatin (CP)-induced nephrotoxicity to determine its peak time following (1, 2, 5, and 7 days) of a single CP (7.5 mg/kg, i.p.) injection. Also, a possible protective effect of cotreatment with AG (7.5 g/kg/day p.o.) on CP-induced nephrotoxicity was investigated. Biochemical as well as histological assessments were carried out. CP-induced nephrotoxicity was manifested by significant elevations of the functional parameters blood urea, serum creatinine, and kidney/body weight ratio. Maximum toxic effects of CP were observed 5 days after its injection, while it started after day 1 in the biochemical parameters, such as glutathione depletion in the kidney tissue with concomitant increases in lipid peroxides and platinum content. Additionally, severe necrosis and desquamation of tubular epithelial cells in renal cortex as well as interstitial nephritis were observed after 5 days in CP-treated animals. Five days after AG cotreatment with CP did not protect the kidney from the damaging effects of CP. However, it significantly reduced CP-induced lipid peroxidation. These findings suggest that lipid peroxidation is not the main cause of CP-induced nephrotoxicity but it is rather more dependent on other factors such as platinum disposition in renal interstitial tubules.  相似文献   

12.
Taxol is a microtubule inhibitor drug widely used in treatment of many types of cancer. Nephrotoxicity is the most hazardous effect complicating chemotherapy in general and kidney functions must be monitored early during any chemotherapeutic course. The main objective of the present study was to investigate the effect of acute Taxol nephrotoxicity in mice. In the present study Taxol at different doses; MD, ID and MTD (0.6, 1.15 and 1.7 mg/kg), respectively, was given by intra-peritoneal route to 54 adult male mice with an average body weight of 20–25 g. Kidney samples was taken 6, 24, 48 h following administration, fixed in 10% neutral buffered formalin, paraffin sections 5 μm thick were stained by haematoxylin and eosin and PAS and then examined for histological changes. Samples from animals treated by the maximum dose (MTD = 1.7 mg/kg) for 48 h were fixed in 3% gluteraldehyde in phosphate buffer (pH 7.4) and processed for transmission electron microscope. Taxol given for short duration was found to produce marked degenerative changes in kidney parenchyma even in minimum tolerated dose (MD = 0.6 mg/kg). Individual variations were observed regarding the degree of nephrotoxicity. There was marked loss of renal tubules epithelial lining, damage of brush border and formation of hyaline casts within the damaged tubules. The alterations were in the form of both necrotic and apoptotic changes in the kidney tubules. Focal atrophy of glomerular tufts was also observed. Vascular congestion and degenerative changes in renal blood vessels were occasionally evident in some samples. Ultrastructure study revealed damage of glomerular membrane. Proximal tubule showed loss of basal infoldings, damage of brush border, mitochondrial degeneration and nuclear changes. Distal tubules also showed demarked degenerative changes. Increased frequency of micronuclei proved that Taxol had genotoxic effects in mice bone marrow cells. In conclusion Taxol had nephrotoxic effect on mice kidney that must be considered during its use as a chemotherapeutic agent in human.  相似文献   

13.
Mitigation of lindane induced toxicity in testis of Swiss mice by combined treatment with vitamin C, vitamin E and alpha-lipoic acid has been evaluated. Male healthy mice (40), 8-10 weeks old were randomly selected and divided into 4 groups, control (C); lindane (L); antioxidant (A) and antioxidant plus lindane (A+L). Group C animals were administered only the vehicle (olive oil); in group L lindane was administered orally at a dose of 40 mg/kg body wt.; in group A combination of antioxidants at a dose of 125 mg/kg body wt.(vitamin C: 50 mg/kg body wt., vitamin E: 50 mg/kg body wt. and alpha-lipoic acid: 25 mg/kg body wt.) was administered orally; in group A+L both antioxidants (125 mg/kg body wt.) and lindane (40 mg/kg body wt.) were administered at their respective doses. In group A+L antioxidants were administered 1 h prior to lindane administration. All treatments were continuously given for 60 days. Histopathological changes due to lindane intoxication indicated shrunken and distorted seminiferous tubules, sparse Leydig cells and blood vessels and atrophy in the tissue. The testis weight also decreased significantly. Lindane treated group showed increased lipid peroxidation, whereas glutathione, glutathione peroxidase, superoxide dismutase, catalase and protein were significantly decreased compared to control. Lindane induced damage was minimized by administration of antioxidants. Results suggest that combined pretreatment with antioxidants can alleviate the damage caused to testis by lindane.  相似文献   

14.
Cephaloridine and gentamicin are selectively accumulated in renal cortex and produce necrosis of proximal tubular cells. However, the mechanisms responsible for renal cortical accumulation of these two antibiotics are quite different; therefore the early pathogenetic processes may not be the same. In the present study, effects of two cephalosporins (cephaloridine and cephalothin) and an aminoglycoside (gentamicin) on rat renal cortical glutathione were determined. Cephaloridine produced a dose-related depletion of renal cortical glutathione one hour following a single administration of the drug. In contrast, cephalothin in equivalent doses did not reduce renal cortical glutathione. Gentamicin had no effect on renal cortical glutathione, even when an acutely lethal dose (1000 mg/kg) was used. Pretreatment of rats with diethyl maleate (0.4 ml/kg) markedly depleted renal cortical glutathione and this pretreatment also potentiated cephaloridine nephrotoxicity. These results suggest that glutathione may play a protective role against cephaloridine but not gentamicin nephrotoxicity.  相似文献   

15.
Arsenic (As) is an environmental and industrial pollutant that affects various organs in human and experimental animals. Silibinin is a naturally occurring plant bioflavonoid found in the milk thistle of Silybum marianum, which has been reported to have a wide range of pharmacological properties. A body of evidence has accumulated implicating the free radical generation with subsequent oxidative stress in the biochemical and molecular mechanisms of As toxicity. Since kidney is the critical target organ of chronic As toxicity, we carried out this study to investigate the effects of silibinin on As-induced toxicity in the kidney of rats. In experimental rats, oral administration of sodium arsenite [NaAsO2, 5?mg/(kg?day)] for 4?weeks significantly induced renal damage which was evident from the increased levels of serum urea, uric acid, creatinine with a significant (p?<?0.05) decrease in creatinine clearance. As also significantly decreased the levels of urea, uric acid and creatinine in urine. A markedly increased levels of lipid peroxidation markers (thiobarbituric acid reactive substances and lipid hydroperoxides) and protein carbonyl contents with significant (p?<?0.05) decrease in non-enzymatic antioxidants (total sulfhydryl groups, reduced glutathione, vitamin C and vitamin E) and enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase and glutathione S-transferase), Glutathione metabolizing enzymes (glutathione reductase and glutathione-6-phosphate dehydrogenase) and membrane bound ATPases were also observed in As treated rats. Co-administration of silibinin (75?mg/kg?day) along with As resulted in a reversal of As-induced biochemical changes in kidney accompanied by a significant decrease in lipid peroxidation and an increase in the level of renal antioxidant defense system. The histopathological and immunohistochemical studies in the kidney of rats also shows that silibinin (75?mg/kg?day) markedly reduced the toxicity of As and preserved the normal histological architecture of the renal tissue, inhibited the caspase-3 mediated tubular cell apoptosis and decreased the NADPH oxidase, iNOS and NF-κB over expression by As and upregulated the Nrf2 expression in the renal tissue. The present study suggests that the nephroprotective potential of silibinin in As toxicity might be due to its antioxidant and metal chelating properties, which could be useful for achieving optimum effects in As-induced renal damage.  相似文献   

16.
Ganglioside GM3 is particularly abundant in the kidney tissue and is thought to play an important role in the maintenance of the charge-selective filtration barrier of glomeruli. Altered expression of ganglioside GM3 was pathologically related with glomerular hypertrophy occurring in diabetic human and rat kidneys. Considering the role of GM3 ganglioside in kidney function, the aim of this study was to determine the difference in expression of GM3 ganglioside in glomeruli and tubules using immunofluorescence microscopy both in rat models of types 1 and 2 diabetes mellitus. Diabetes was induced with streptozotocin (55 mg/kg for type 1 diabetes and 35 mg/kg for type 2 diabetes) injection to male Sprague–Dawley rats which were fed with normal pellet diet (type 1 diabetes) or high-fat diet (type 2 diabetes). Rats were sacrificed 2 weeks after diabetes induction, frozen renal sections were stained with primary antibody GM3(Neu5Ac) and visualized by secondary antibody coupled with Texas red. In addition, renal gangliosides GM3 were analyzed by high-performance thin-layer chromatography followed by GM3 immunostaining. Immunofluorescent microscopy detected 1.7-fold higher GM3 expression in tubules and 1.25-fold higher GM3 in glomeruli of type 1 diabetes mellitus compared with control group. Type 2 diabetes mellitus rats showed slight GM3 increase in whole kidney, unchanged GM3 in glomeruli, but significant higher GM3 expression in tubules, compared with control animals. Taking into consideration increased tubular GM3 content in both types of diabetes, we could hypothesize the role of GM3 in early pathogenesis of diabetic nephropathy.  相似文献   

17.
To determine the renal effects of cadmium (Cd) in older animals, we administered subcutaneously a single dose of cadmium, 3.0 mg/kg/BW, to Syrian hamsters aged 16 wk (“young”) and 60 wk (“old”). Marked morphologic changes in the kidney and renal dysfunction were observed, especially in the older animals. The concentration of MDA in the renal cortex was significantly increased only in young hamsters treated with cadmium. Concentrations of glutathione (GSH) in the renal cortex were increased in the old hamsters on d 6. Increased levels of renal MDA after cadmium treatment may induce the production of GSH in the kidney thus preventing renal damage. Aging can increase the susceptibility to the renal effects of cadmium.  相似文献   

18.
Endosulfan administration (po, 15 and 30 days at 7.5 and 10 mg/kg body wt respectively) inhibited the activity of microsomal mixed function oxidases in kidney tissue of male rats. Microsomal and cytosolic protein contents of kidney were significantly increased following 30 days endosulfan exposures. Profound induction in the activity profiles of alcohol dehydrogenase and cytosolic glutathione s-transferase was noticed, however, no such change was apparent in the activity of aldehyde dehydrogenase. Microsomal preparations from treated animals showed a dose and duration dependent increase in spontaneous lipid peroxidation. The observed biochemical changes persisted even after 7 days normalcy allowance provided after the endosulfan (10 mg/kg body wt) withdrawl. The results suggest a substantial renal toxicity of endosulfan to male rats in relation to microsomal mixed function oxidases and associated functions which possibly resulted from lipid peroxidative damage of microsomal membrane in treated animals.  相似文献   

19.
Therapeutic effect of ethanolic extract of Hygrophila spinosa in gentamicin-induced nephrotoxic model of kidney injury in male Sprague-Dawley rats was studied. Rats were administered with gentamicin at a dose of 80 mg/kg intraperitoneally (ip) to induce nephrotoxicity. Kidney function was assessed by measuring serum creatinine and urea. Kidney superoxide dismutase, lipid peroxidation, catalase and reduced glutathione were also measured in control and treated rats. H. spinosa extract showed free radical scavenging activities at doses of 50 and 250 mg/kg with a predominant activity at 250 mg/kg. The ethanolic extract also caused a reduction in serum creatinine and urea levels. Histopathological studies were conducted to confirm the therapeutic action of the plant extract. The results demonstrated that the ethanolic extract of whole plant of H. spinosa evinced the therapeutic effect and inhibited gentamicin-induced proximal tubular necrosis.  相似文献   

20.
The critical period for increased neonatal mortality induced by perfluorooctane sulfonate (PFOS) exposure was evaluated in the rat. Timed-pregnant Sprague-Dawley rats were treated by oral gavage with 25 mg/kg/d PFOS/K(+) on four consecutive days (gestation days (GD) 2-5, 6-9, 10-13, 14-17, or 17-20) or with 0, 25, or 50 mg/kg/d PFOS/K(+) on GD 19-20. Controls received vehicle (10 ml/kg 0.5% Tween-20) on these days. Maternal weight gain was reduced in treated animals during dosing, as were food and water consumption. Following a 4-day treatment, litter size at birth was unaffected while pup weight was similarly reduced in the three earliest PFOS groups. All PFOS groups experienced decreases in survival while controls remained near 100%. Neonatal survival decreased in groups dosed later during gestation, approaching 100% with dosing on GD 17-20. Most deaths occurred before postnatal day (PND) 4, with the majority in the first 24 hours. Maternal serum PFOS levels on GD 21 were higher in groups exhibiting higher mortality. Following a 2-day treatment, PFOS groups experienced significant pup mortality by PND 1. Neonatal mortality continued through PND 5, when survival was 98, 66, and 3% for the 0, 25, and 50 mg/kg groups, respectively. Pup weight was reduced in treated groups with surviving litters. Gross dissection and histological examination of lungs revealed differences in maturation between control and treated animals on PND 0. We conclude that exposure to PFOS late in gestation is sufficient to induce 100% pup mortality and that inhibition of lung maturation may be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号