首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Muslin AJ  Xing H 《Cellular signalling》2000,12(11-12):703-709
14-3-3 family of proteins plays a key regulatory role in signal transduction, checkpoint control, apoptotic, and nutrient-sensing pathways. 14-3-3 proteins act by binding to partner proteins, and this binding often leads to the altered subcellular localization of the partner. 14-3-3 proteins promote the cytoplasmic localization of many binding partners, including the pro-apoptotic protein BAD and the cell cycle regulatory phosphatase Cdc25C, but they can also promote the nuclear localization of other partners, such as the catalytic subunit of telomerase (TERT). In some cases, 14-3-3 binding has no effect on the subcellular localization of a partner. 14-3-3 may affect the localization of a protein by interfering with the function of a nearby targeting sequence, such as a nuclear localization sequence (NLS) or a nuclear export sequence (NES), on the binding partner.  相似文献   

3.
4.
5.
6.
7.
8.
Nucleocytoplasmic trafficking of histone deacetylase 4 (HDAC4) plays an important role in regulating its function, and binding of 14-3-3 proteins is necessary for its cytoplasmic retention. Here, we report the identification of nuclear import and export sequences of HDAC4. While its N-terminal 118 residues modulate the nuclear localization, residues 244 to 279 constitute an authentic, strong nuclear localization signal. Mutational analysis of this signal revealed that three arginine-lysine clusters are necessary for its nuclear import activity. As for nuclear export, leucine-rich sequences located in the middle part of HDAC4 do not function as nuclear export signals. By contrast, a hydrophobic motif (MXXLXVXV) located at the C-terminal end serves as a nuclear export signal that is necessary for cytoplasmic retention of HDAC4. This motif is required for CRM1-mediated nuclear export of HDAC4. Furthermore, binding of 14-3-3 proteins promotes cytoplasmic localization of HDAC4 by both inhibiting its nuclear import and stimulating its nuclear export. Unlike wild-type HDAC4, a point mutant with abrogated MEF2-binding ability remains cytoplasmic upon exogenous expression of MEF2C, supporting the notion that direct MEF2 binding targets HDAC4 to the nucleus. Therefore, HDAC4 possesses intrinsic nuclear import and export signals for its dynamic nucleocytoplasmic shuttling, and association with 14-3-3 and MEF2 proteins affects such shuttling and thus directs HDAC4 to the cytoplasm and the nucleus, respectively.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Gao C  Li X  Lam M  Liu Y  Chakraborty S  Kao HY 《FEBS letters》2006,580(21):5096-5104
CRM1, 14-3-3 proteins, and CaMK play important roles in trafficking of HDAC7, but the interplay between these proteins in this process is not clearly understood. Here, we show that CRM1 is capable of promoting cytoplasmic localization of wild-type and mutant HDAC7 (S178A/S344A/S479A), which is normally found in the nucleus. Using phospho-specific antibodies to HDAC7, we demonstrate that CaMK I promotes phosphorylation of S178, S344, and S479 of HDAC7. We also show that endogenous S178-phosphorylated HDAC7 is localized in both the nucleus and the cytoplasm, whereas S344- and S479-phosphorylated HDAC7 are exclusively localized in the nucleus. An HDAC7 mutant, S178E/S344E/S479E, which lost the ability to bind 14-3-3s, is localized in both the nucleus and the cytoplasm. Furthermore, the nuclear export of S178E/S344E/S479E is inhibited by LMB, but is enhanced by the CRM1. Taken together, these results strongly suggest that CRM1 mediated-nuclear export of HDAC7 is independent of HDAC7 phosphorylation and its association with 14-3-3s.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号