首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of stereochemical variants at C-8, C-12 and C-15 of 9a-homo-9,11-epoxy prostaglandins (PGs) have been examined for in vivo activity on blood pressure, bronchial resistance, tracheal segment pressure, heart rate and on intestinal and uterine contractility in artificially respired anaesthetised guinea-pigs; and on blood pressure and blood platelet aggregation in rats (using the extra-corporeal filter-aorta loop technique). In vitro tests for smooth muscle activity were carried out on the isolated rat fundus strip, the guinea-pig tracheal chain and the rat uterus. The following was found:
1. In the guinea-pig, in vivo, all the homo-epoxy PGs were vasopressor and bronchoconstrictor following bolus injections of 250 μg i.v. The effects on heart rate, and intestinal and uterine contractility were equivocal. The configurations at the chiral centres, C-8, C-12 and C-15 play an important role in determining potency. The 15-(S)-hydroxy derivatives were the most potent in stimulating vascular and respiratory muscle. The 8-iso configuration appeared to enhance potency amongst the 15-(S)-hydroxy compounds. The 15-(R)-hydroxy configuration markedly reduced constrictor potency. The same pattern of activity was seen on rat blood pressure, in vivo. The 15-(S)-hydroxy configuration combined with the 8-iso configuration had the most potent constrictor activity, while the 15-(R)-hydroxy group negated this and even led, in the case of the natural configuration at C-8 and C-12, to vasodepression.
2. In vitro, the activity on the rat fundus and guinea-pig tracheal chain followed the same pattern. The 15-(S)-hydroxy derivatives were very much more potent than the 15-(R)-hydroxy derivatives at contracting the smooth muscle preparations. Uterine muscle appeared to be relaxed by the PGs with the natural configuration at C-8 and C-12, with the 15-(R)-hydroxy compound exhibiting greater activity.
3. Inhibition of ADP-induced rat blood platelet aggregation after “intra-arterial” administration was shown only by the derivatives with a single change in the natural configuration either at C-8 or at C-15. Additional changes either resulted in inactivity or, in the case of the 8,12-di-iso-15-(S)-hydroxy compound, even reversed the effect to aggregation.
The inhibition of aggregation was long lasting with both the 8-iso-15-(S)-hydroxy derivative and the 8,12-nat-15-(R)-hydroxy derivative. In the case of the latter compound, GBR-30731, activity increased during the 30 min after administration. GBR-30731 deserves further investigation as a platelet aggregation inhibitor because of its relatively low smooth muscle stimulant (sometimes even relaxant effects) and its long lasting platelet aggregation inhibiting activity./lt  相似文献   

2.
A newly synthesized 9 alpha-homo-9,11-epoxy-5,13-prostadienoic acid analogue, SQ 26, 536, (8(R)9(S)11(R)12(S)-9 alpha-homo-9,11-epoxy-5(Z), 13(E)-15S-hydroxyprostadienoic acid) inhibited arachidonic acid (AA)-induced platelet aggregation with an I50 value of 1.7 microM. SQ 26,536 did not inhibit prostaglandin (PG) synthetase activity of bovine seminal vesicle microsomes or thromboxane (Tx) synthetase activity of lysed human blood platelets. SQ 26,536 also inhibited platelet aggregation induced by epinephrine (secondary phase), 9,11-azoPGH2 and collagen but did not inhibit the primary phase of epinephrine-induced aggregation or ADP-induced platelet aggregation. SQ 26,538 (8(R)9(S)11(R)12(S)-9 alpha-homo-9,11-epoxy-5(Z),13(E)-15R-hydroxyprostadienoic acid), a 15-epimer of SQ 26,536, induced platelet aggregation with an A50 value of 2.5 microM. SQ 26,536 competitively inhibited SQ 26,538-induced platelet aggregation with a Ki value of 3 microM. Neither indomethacin, a PG synthetase inhibitor, nor SQ 80,338 (1-(3-phenyl-2-propenyl)-1H-imidazole), a Tx synthetase inhibitor, inhibited SQ 26,538- or 9,11-azoPGH2-induced platelet aggregation. These data indicate that SQ 26,536 and SQ 26,538 are stable antagonist and agonist, respectively, of the human blood platelet thromboxane receptor.  相似文献   

3.
8(S),9(R)-epoxyeicosatrienoic acid, a major product of the renal cortex, was found to be a substrate for cyclooxygenase from human platelets and ram seminal vesicles. 11(R)-hydroxy-8(S),9(R)-epoxyeicosatrienoic acid was the sole metabolic product. The 8(R),9(S)-enantiomer formed both C-11 and C-15 hydroxylated metabolites. These novel findings suggest that the cyclooxygenase-dependent renal vasoconstrictor activity of 8(S),9(R)-epoxyeicosatrienoic acid may be due to the 11(R)-hydroxy metabolite.  相似文献   

4.
The effect of a synthetic pair of enantiomeric cannabinoids on platelet function was evaluated. The nonpsychotropic enantiomer, the 1,1-dimethylheptyl homolog of (+)-(3S,4S)-7-hydroxy-delta-6-tetrahydrocannabinol (HU-211), was found to be more active in inhibiting ADP-induced platelet aggregation than the highly psychotropic (-)-enantiomer (HU-210). The related (+)-(3R,4R) cannabinoid, HU-213, which lacks the 7-hydroxy moiety, exerted its inhibitory effect within a wider range of concentrations. The results indicate a differentiation between psychotropic activity and inhibition of platelet aggregation in the cannabinoid group of compounds.  相似文献   

5.
A newly synthesized 9α-homo-9,11-epoxy-5,13-prostadienoic acid analogue, SQ 26,536, (8(R)9(S)11(R)12(S)-9α-homo-9,11-epoxy-5(Z), 13(E)-15S-hydroxyprostadienoic acid) inhibited arachidonic acid (AA)-induced platelet aggregation with an I50 value of 1.7 μ . SQ 26,536 did not inhibit prostaglandin (PG) synthetase activity of bovine seminal vesicle microsomes or thromboxane (Tx) synthetase activity of lysed human blood platelets. SQ 26,536 also inhibited platelet aggregation induced by epinephrine (secondary phase), 9,11-azoPGH2 and collagen but did not inhibit the primary phase of epinephrine-induced aggregation or ADP-induced platelet aggregation. SQ 26,538 (8(R)9(S)11(R)12(S)-9α-homo-9-, 11-epoxy-5(Z),13(E)-15R-hydroxyprostadienoic acid), a 15-epimer of SQ 26,536, induced platelet aggregation with an A50 value of 2.5 μ . SQ 26,536 competitively inhibited SQ 26,538-induced platelet aggregation with a Ki value of 3 μ . Neither indomethacin, a PG synthetase inhibitor, nor SQ 80,338 (1-(3-phenyl-2-propenyl)-1H-imidazole), a Tx synthetase inhibitor, inhibited SQ 26,538- or 9,11-azoPGH2-induced platelet aggregation. These data indicate that SQ 26,536 and SQ 26,538 are stable antagonist and agonist, respectively, of the human blood platelet thromboxane receptor.  相似文献   

6.
20-Isopropylidene-PGE1 (Isop-PGE1) was about 10 times more potent than PGE1 in inhibition of thrombin-induced aggregation of rabbit washed platelets. Likewise, 20-isopropylidene-17(R)-methyl-carbacyclin (CS-570), a stable PGI2 analogue, was more potent than carbacyclin in the anti-aggregatory activity. In order to define the platelet-prostaglandin interactions, a binding assay was done using platelet membranes with [3H]-PGE1 as a radioligand. Isop-PGE1 (IC50 = 0.18 microM) bound to the PG receptors more potently than PGE1 (IC50 = 2.1 microM). CS-570 (IC50 = 0.39 microM) was more potent than carbacyclin (IC50 = 1.9 microM). These indicate that introduction of an isopropylidene group to the carbon 20 of PGs increases the binding ability to the receptors. These PGE1 and PGI2 analogues activated platelet membrane adenyl cyclase and increased intracellular cAMP levels with the same potency series obtained in the binding experiments. All these results suggest that the binding to the receptors by these PGs is coupled to the activation of adenyl cyclase, followed by the increase in cAMP levels in platelets and the inhibition of platelet aggregation. Thus, the increased anti-aggregatory activity of 20-isop-PGs may be explained by their increased affinity for the PG receptors and stimulation of adenyl cyclase. 15-Epimeric-20-isopropylidene-PGE1 (15-Epi-isop-PGE1), which has an unnatural configuration of the 15-hydroxyl group, was much less potent than isop-PGE1 in the binding experiment and the other three investigations. This indicates that the configuration of the 15-hydroxyl group is important for the binding to the PG receptors and the consequent activities in platelets.  相似文献   

7.
The bioactivity of 25-hydroxybrassinolide, (25S)- and (25R)-26-hydroxybrassinolide, (25S)- and (25R)-25,26-dihydroxybrassinolide, and of (25R)-25,26-epoxybrassinolide was tested in the rice leaf lamina inclination assay. The 25- and (25S)-26-hydroxy derivatives are known metabolites of the naturally-occurring phytohormone brassinolide, whereas the other compounds are novel, but closely related, congeners. When tested alone, all showed either no activity or only weak activity at relatively high doses. When coapplied with indole-3-acetic acid (IAA), an auxin that synergizes the effects of brassinosteroids, enhanced bioactivity was observed for each compound. However, even when applied together with IAA, none of the compounds proved more bioactive than brassinolide with or without IAA. We conclude from these results that enzymatic hydroxylation of endogenous brassinolide at C-25 and/or C-26 does not enhance brassinosteroid activity, and so does not comprise an activation pathway in brassinolide biosynthesis. Instead, these hydroxylations result in modest to appreciable metabolic deactivation.  相似文献   

8.
The aim of this work is to evaluate the anti-thromboxane activity of two pure enantiomers of (R,S)-BM-591, a nitrobenzene sulfonylurea chemically related to torasemide, a loop diuretic. The drug affinity for thromboxane A2 receptor (TP) of human washed platelets has been determined. In these experiments, (R)-BM-591 (IC50 = 2.4+/-0.1 nM) exhibited a significant higher affinity than (S)-BM-591 (IC50 = 4.2+/-0.15 nM) for human washed platelets TP receptors. Both enantiomers were stronger ligands than SQ-29548 (IC50 = 21.0+/-1.0 nM) and sulotroban (IC50 = 930+/-42 nM), two reference TXA2 receptor antagonists. Pharmacological characterisations of (S)-BM-591 and (R)-BM-591 were compared in several models. Thus, (R)-BM-591 strongly prevented platelet aggregation induced by arachidonic acid (AA) (600 microM) and U-46619 (1 microM) while (S)-BM-591 showed a lower activity. On isolated tissues pre-contracted by U-46619, a stable TXA2 agonist, (S)-BM-591 was more potent in relaxing guinea-pig trachea (EC50 = 0.272+/-0.054 microM) and rat aorta (EC50 = 0.190+/-0.002 microM) than (R)-BM-591 (EC50 of 9.60+/-0.63 microM and 0.390+/-0.052 microM, respectively). Moreover, at 1 microM, (R)-BM-591 totally inhibited TXA2 synthase activity, expressed as TXB2 production from human platelets, while at the same concentration, (S)-BM-591 poorly reduced the TXB2 synthesis (22%). Finally, in rats, both enantiomers lost the diuretic activity of torasemide. In conclusion, (R)-BM-591 exhibits a higher affinity and antagonism on human platelet TP receptors than (S)-BM-591 as well as a better thromboxane synthase inhibitory potency. In contrast, (S)-BM-591 is more active than the (R)-enantiomer in relaxing smooth muscle contraction of rat aorta and trachea guinea pig. Consequently, (R)-BM-591 represents the best candidate for further development in the field of thrombosis disorders.  相似文献   

9.
Certain epoxyeicosatrienoic acids (EETs) that were not cyclooxygenase substrates were effective cyclooxygenase inhibitors. Both (+/-)-14,15-cis-EET and (+/-)-8,9-cis-EET inhibited purified enzyme at concentrations from 1 to 50 microM; (+/-)-11,12-cis-EET was ineffective at concentrations below 100 microM. For the case of 14,15-cis-EET, only the (14R,15S)-stereoisomer was active. Other isomers including (14S,15R)-cis-EET, (14R,15R)-trans-EET, (14S,15S)-trans-EET, and the erythro and threo vicinal 14,15-diols were inactive. In addition to their effects on isolated enzyme preparations, cyclooxygenase activity in platelet suspensions, reflected by thromboxane B2 formation, was also inhibited by (14R,15S)-cis-EET and (+/-)-8,9-cis-EET but not by the other isomers. Thus potency and stereospecificity requirements were maintained for cyclooxygenase within intact platelets. Unlike the stereospecific inhibition of the cyclooxygenase enzyme, platelet aggregation induced by arachidonic acid was inhibited by all EET isomers at concentrations from 1 to 10 microM with no evident stereospecificity. Inhibition of aggregation was not uniformly associated with inhibition of thromboxane B2 formation; ordinarily, these two parameters correlate closely. This dissociation was not maintained for another biochemical process involved in platelet activation. For instance, there was a uniform correlation between inhibition of phosphorylation of a 40-kDa platelet protein and inhibition of aggregation. Our results suggest that effects of EET may originate from either stereospecific or nonspecific mechanisms. Definition of such mechanisms may be important to appreciate any physiological relevance of these substances.  相似文献   

10.
A series of 11-deoxy prostaglandin derivatives and some naturally occurring prostaglandins have been investigated in the anaesthetized artificially respired guinea-pig for their effect on blood pressure, bronchial resistance (overflow pressure at constant volume), tracheal segment pressure, and on intestinal and uterine smooth muscle. The compounds were administered intravenously. Prostaglandins E1, E2 and F produced responses that were qualitatively similar to those in the literature. Prostaglandin A2 (100 μg) was a bronchoconstrictor, although it decreased tracheal segment pressure and blood pressure. Prostaglandin B2 (100 μg) caused double elevations in blood pressure, tracheal segment pressure and bronchial resistance. The intensity of bronchoconstriction produced by PGB2 was of the same order as with PGF. A number of structure-activity relationships were found. 11-Deoxygenation lowered the biological activity of the natural prostaglandins PGE1 and PGF. The vasodepressor and bronchodilator responses of 11-deoxy PGE1 were converted to vasopressor and bronchoconstrictor by epimerisation at C-15. Introduction of a methyl group at C-15 of 11-deoxy PGF both increased and prolonged vasopressor and bronchoconstrictor activity. At C-9 both the keto and β-hydroxy group imparted vasodepressor and bronchodilator activity, while the α-hydroxy led to vasopressor and bronchoconstrictor activity. Extension of the omega sidechain by two methylene groups radically reduced the activity of 11-deoxy PGF and its derivatives.These experiments indicate that steric differences in the prostaglandin structures studied can result in diametrically opposed profiles of biological activity. Further, small variations in the prostaglandin molecule can lead to differences in potency and/or profile of activity in the guinea-pig.  相似文献   

11.
Mexiprostil is a new gastroprotective 16-methoxy-16-methyl-PGE1 methyl ester. To assign the absolute configuration at C-15, a crystalline high-melting C-1 ester analog 5 11,15-dihydroxy-16-methoxy-16-methyl-9-oxoprost-13-en-1-oic acid 4-(4-bromobenzamide)phenyl ester (15R, 16R) was prepared and submitted to single crystal X-ray analysis. Since C-8, C-11, C-12 and C-16 are shown to have R configurations, the X-ray diffraction results established that the configuration at C-15 is also R.  相似文献   

12.
Anti-12(S)-hydroxyeicosatetraenoic acid (12-HETE)-antibody and anti-thromboxane B2 (TXB2)-antibody were generated and applied to the radioimmunoassay. The detection limit for 12-HETE was 16 pg. The cross-reactivities of anti-12-HETE-antibody were 4.6% for 15-HETE, 0.18% for 5-HETE and below 0.15% for leukotrienes and prostaglandins (PGs). 12-HETE and TXB2 released from guinea pig platelets were measured by radioimmunoassay. Platelet activating factor (PAF) at 10(-9) M induced the aggregation of platelets, the releases of immunoreactive-12-HETE (1.8 +/- 1.2 ng/10(8) platelets, mean +/- S.D.) and immunoreactive-TXB2 (18.5 +/- 17.3 ng/10(8) platelets). Collagen at 1 microgram/ml also evoked platelet aggregation, the releases of immunoreactive-12-HETE (2.7 +/- 1.1 ng/10(8) platelets) and immunoreactive-TXB2 (11.8 +/- 4.6 ng/10(8) platelets). By the stimulation with these compounds, TXB2 was produced in a greater amount than 12-HETE from guinea pig platelets. Although 10(-7) M and 10(-6) M U46619, a TXA2 mimetic, caused platelet aggregation, arachidonic acid metabolites were not released. These data suggest the presence of different mechanisms of platelet activation depending on each stimulus.  相似文献   

13.
Monohydroxy fatty acids (MHFAs) were isolated from homogenates of the barnacle Balanus balanoides and identified by gas chromatography-mass spectrometry (GC-MS) as 14- and 17-hydroxy docosahexaenoic acids, 8-, 11-, 12-, 15- and 18-hydroxy eicosapentaenoic acids, 13- and 16-hydroxyoctadecatrienoic acids and 9-, 13- and 15-hydroxyoctadecadienoic acids. Each monohydroxy fatty acid was tested for egg hatching activity in a bioassay using Elminius modestus egg masses, but 8-hydroxy-5, 9, 11, 14, 17-eicosapentaenoic acid (8-HEPE) was the only MHFA with barnacle egg hatching activity. Studies on the egg hatching activity of MHFAs prepared from the oxidation of polyunsaturated fatty acids showed that activity was confined to the 8-hydroxy isomer of eicosapentaenoic acid and arachidonic acid, and that unsaturation at C5 and C14, but not C17, was essential for activity. In addition, the 8(R) conformation is necessary for activity, as 8(R)-HEPE caused egg hatching at 10(-7) M whereas the enantiomer 8(S)-HEPE was inactive.  相似文献   

14.
Four isomers of 8,15-diHETE as well as 14,15-diHETEs are isolated and characterized after exposure of 15-HPETE to hemoglobin. It is found that 83% of the C-8 oxygen atoms in 8(R), 15(S)-diHETE and 8(S), 15(S)-diHETE, and 41% of the C-8 oxygen atoms in 8(R), 15(S)-11Z-diHETE and 8(S), 15(S)-11Z-diHETE are derived from H2(18)O. These results suggest that hemoglobin catalyzes the transformation of 15-HPETE into these products via a free radical process, possibly involving the intermediacy of 14,15-LTA. Intact human leukocytes contain a distinct enzyme system for catalyzing the conversion of 15-HPETE into 14,15-LTA. This enzyme activity is inhibited by ETYA and is rapidly denatured upon homogenization of the intact leukocytes.  相似文献   

15.
The cyclooxygenase (COX) reaction of prostaglandin (PG) biosynthesis begins with the highly specific oxygenation of arachidonic acid in the 11R configuration and ends with a 15S oxygenation to form PGG2. To obtain new insights into the mechanisms of stereocontrol of oxygenation, we mutated active site residues of human COX-2 that have potential contacts with C-11 of the reacting substrate. Although the 11R oxygenation was not perturbed, changing Leu-384 (into Phe, Trp), Trp-387 (Phe, Tyr), Phe-518 (Ile, Trp, Tyr), and Gly-526 (Ala, Ser, Thr, Val) impaired or abrogated PGG2 synthesis, and typically 11R-HETE was the main product formed. The Gly-526 and Leu-384 mutants formed, in addition, three novel products identified by LC-MS, NMR, and circular dichroism as 8,9-11,12-diepoxy-13R-(or 15R)-hydro(pero)xy derivatives of arachidonic acid. Mechanistically, we propose these arise from a free radical intermediate in which a C-8 carbon radical displaces the 9,11-endoperoxide O-O bond to yield an 8,9-11,12-diepoxide that is finally oxygenated stereospecifically in the 13R or 15R configuration. Formation of these novel products signals an arrest in the normal course of prostaglandin synthesis just prior to closing of the 5-membered carbon ring, and points to a crucial role for Leu-384 and Gly-526 in the correct positioning of the reacting fatty acid intermediate. Some of the Gly-526 and Leu-384 mutants catalyzed both formation of PGG2 (with the normal 15S configuration) and the 13R- or 15R-oxygenated diepoxides. This result suggests that oxygenation specificity can be determined by the orientation of the reacting fatty acid radical and is not a predetermined outcome based solely on the structure of the cyclooxygenase active site.  相似文献   

16.
A convenient synthesis of inokosterone has been accomplished. Inokosterone exists as two C-25 epimers, which could be separated from each other through their diacetonide derivatives. The absolute configuration of these compounds was determined. Two C-25 epimers of 26-chloroponasterone A were synthesized from the respective C-25 epimeric inokosterone. Two epimeric 26-bromo and 26-iodoponasterone A compounds were also synthesized. Moulting activity of these compounds was evaluated using the Musca bioassay, and it was found that the (25S)-26-halo analogues were more active than the corresponding (25R)-26-halo analogues. Among the 25S series, an increase in activity with an increase in size of the halogen atom was observed, indicating that the steric factor was more important than the electronic factor in binding of these ecdysteroid analogues to the receptor. On the other hand, a decrease in activity with an increase in size of the halogen atom was noted in the 25R series, suggesting that the steric factor was less important than the electronic factor. The results indicated that the configuration at C-25 and the substituent at C-26 have significant influences on the interaction of ecdysteroids with their receptor.  相似文献   

17.
In a series of 5-acyl-6-phenyl-2,4-substituted-3(2H)-pyridazinones the derivative 1a , with a sulfur stereogenic center, had the most potent activity as human platelet aggregation inhibitor. The resolution of rac- 1a was successfully performed by chiral chromatography on Chiralcel OD-R, OD-H, and Chiralpak AD columns and scaled up to a preparative level. The absolute configuration of (−)-(S)- 1a was determined by X-ray crystallographic analysis. In vitro human platelet aggregation inhibitory activity was evaluated. Both the enantiomers showed IC50 values in the same micromolar range, but the (−)-(S) isomer was slightly more potent [(S)/(R) potency ratio was 4/1]. Chirality 9:681–685, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
Acyclic nucleoside phosphonate derivatives containing a pyrimidine base preferably bearing amino groups at C-2 and C-4 (DAPym), and linked at the C-6 position to (S)-[3-hydroxy-2-(phosphonomethoxy)propoxy] (HPMPO), 2-(phosphonomethoxy) ethoxy (PMEO) or (R)-[2-(phosphonomethoxy)propoxy] (PMPO), display an antiviral sensitivity spectrum that closely mimic that of the parental (S)-HPMP-, PME- and (R)-PMP-purine derivatives. Several PMEO-DAPym derivatives proved as potent as PMEA (adefovir) and (R)-PMPA (tenofovir) in inhibiting Moloney murine sarcoma virus (MSV)-induced tumor formation in newborn NMRI mice. The HPMPO-, PMEO- and PMPO-DAPym derivatives represent a novel well-defined subclass among the acyclic nucleoside phosphonates endowed with potent and selective antiviral activity.  相似文献   

19.
1. Synthetic analogues of prostaglandins E2 or F2a (monocyclic bisenoic prostaglandins), like the endogenous prostaglandin endoperoxides (prostaglandins G2 and H2) from platelets, and like synthetic analogues of prostaglandin H2 (bicyclic bisenoic prostaglandins), can induce aggregation of human platelets, although prostaglandins E2 and F2a themselves are inactive. 2. All the prostanoid compounds that induce platelet aggregation release 5-hydroxytryptamine from platelet dense bodies, but do not release beta-N-acetylglucosaminidase from lysosomal granules. Arachidonic acid evokes a similar response. 3. All endoperoxide analogues tested (bicyclic compounds) were powerful platelet stimulants, and all active compounds (whether mono- or bi-cyclid) apparently acted via the same receptor as the endogenous prostaglandin endoperoxides. 4. The nature and stereospecificity of substituents at positions 11 and 15 (or 16) on prostaglandin E2 are critical determinants for platelet-stimulating activity: deoxy substitution at position 11 plus methylation at position 15 (or 16) produces a potent stimulant, particularly if the groups around C-15 are in the S configuration. 5. The effects of these structural modifications are apparently due to, at least in part, a change in side-chain conformation.  相似文献   

20.
(1R,2R)-1-Phenyl-1-alkyl/arylamino-2-(N-alkylamino)propane hydrochloride salts have been synthesized with high degree of enantiomeric purity from (1S,2R)-(+)-1-phenyl-2-(N-alkylamino)-1-propanol through the corresponding chloro derivatives. This reaction sequence involves three inversions with overall inversion of configuration at C-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号