共查询到20条相似文献,搜索用时 15 毫秒
1.
《Bioscience, biotechnology, and biochemistry》2013,77(7):1378-1383
α-Amylase (EC 3.2.1.1) hydrolyzes an internal α-1,4-glucosidic linkage of starch and related glucans. Alkalophilic liquefying enzymes from Bacillus species are utilized as additives in dishwashing and laundry detergents. In this study, we found that Bacillus sp. AAH-31, isolated from soil, produced an alkalophilic liquefying α-amylase with high thermostability. Extracellular α-amylase from Bacillus sp. AAH-31 (AmyL) was purified in seven steps. The purified enzyme showed a single band of 91 kDa on SDS–PAGE. Its specific activity of hydrolysis of 0.5% soluble starch was 16.7 U/mg. Its optimum pH and temperature were 8.5 and 70 °C respectively. It was stable in a pH range of 6.4–10.3 and below 60 °C. The calcium ion did not affect its thermostability, unlike typical α-amylases. It showed 84.9% of residual activity after incubation in the presence of 0.1% w/v of EDTA at 60 °C for 1 h. Other chelating reagents (nitrilotriacetic acid and tripolyphosphate) did not affect the activity at all. AmyL was fully stable in 1% w/v of Tween 20, Tween 80, and Triton X-100, and 0.1% w/v of SDS and commercial detergents. It showed higher activity towards amylose than towards amylopectin or glycogen. Its hydrolytic activity towards γ-cyclodextin was as high as towards short-chain amylose. Maltotriose was its minimum substrate, and maltose and maltotriose accumulated in the hydrolysis of maltooligosaccharides longer than maltotriose and soluble starch. 相似文献
2.
Toshiyuki Suzuki Takeshi Uozumi Teruhiko Beppu 《Bioscience, biotechnology, and biochemistry》2013,77(10):2939-2947
NADH-dependent soluble l-α-hydroxyglutarate dehydrogenase (l-2-hydroxyglutarate: NAD+ 2-oxidoreductase) was found in a bacterium belonging to the genus Alcaligenes obtained from soil by citrate enrichment culture. A mutant with about 2.5-fold higher activity of the enzyme was derived from the bacterium and used as the enzyme source. High level of the enzyme was produced at the late stage of cultivation in the presence of citrate and with limited aeration. The enzyme was purified from the cells to homogeneity to give crystals, and its enzymatic properties were studied. The enzyme strongly reduced α-ketoglutarate to stereochemically pure l-α-hydroxyglutarate with NADH as a coenzyme, but it oxidized d-α-hydroxyglutarate with about 1/10 of the rate for l-form oxidation. 相似文献
3.
An actinomycete strain 7326 producing cold-adapted α-amylase was isolated from the deep sea sediment of Prydz Bay, Antarctic.
It was identified as Nocardiopsis based on morphology, 16S rRNA gene sequence analysis, and physiological and biochemical characteristics. Sodium dodecyl sulfate-polyacrylamide
gel electrophoresis and zymogram activity staining of purified amylase showed a single band equal to a molecular mass of about
55 kDa. The optimal activity temperature of Nocardiopsis sp. 7326 amylase was 35°C, and the activity decreased dramatically at temperatures above 45°C. The enzyme was stable between
pH 5 and 10, and exhibited a maximal activity at pH 8.0. Ca2+, Mn2+, Mg2+, Cu2+, and Co2+ stimulated the activity of the enzyme significantly, and Rb2+, Hg2+, and EDTA inhibited the activity. The hydrolysates of soluble starch by the enzyme were mainly glucose, maltose, and maltotriose.
This is the first report on the isolation and characterization of cold-adapted amylase from Nocardiopsis sp. 相似文献
4.
An agar-degrading Thalassomonas bacterium, strain JAMB-A33, was isolated from the sediment off Noma Point, Japan, at a depth of 230 m. A novel -agarase from the isolate was purified to homogeneity from cultures containing agar as a carbon source. The molecular mass of the purified enzyme, designated as agaraseA33, was 85 kDa on both SDS-PAGE and gel-filtration chromatography, suggesting that it is a monomer. The optimal pH and temperature for activity were about 8.5 and 45°C, respectively. The enzyme had a specific activity of 40.7 U/mg protein. The pattern of agarose hydrolysis showed that the enzyme is an endo-type -agarase, and the final main product was agarotetraose. The enzyme degraded not only agarose but also agarohexaose, neoagarohexaose, and porphyran. 相似文献
5.
Kohei Imai Tohru Kikuta Mikihiko Kobayashi Kazuo Matsuda 《Bioscience, biotechnology, and biochemistry》2013,77(8):1339-1346
An α-l,3-glucanase was detected in the culture supernatant of a micro-organism, which was isolated from soil on agar medium containing α-l,3-glucan as sole carbon source. The isolated strain was characterized as a strain of Streptomyces, tentatively named KI-8. This enzyme required α-l,3-glucosidic linkage as an inducer. The optimum conditions for enzyme production were studied.The enzyme was purified by (NH4)2SO4 precipitation, column chromatography on DEAE-cellulose and P(phospho)-cellulose. To eliminate the concomitant β-l,3-glucanase activity, partially purified enzyme preparation was passed through a column packed with pachyman. Final purification was accomplished by the adsorption chromatography using Sephadex G-150 from which the α-l,3-glucanase was eluted with a solution of α-1,3-linked gluco-oligo-saccharides. The purified enzyme was electrophoretically homogeneous and had a molecular weight of approximately 78,000 by SDS-polyacrylamide gel electrophoresis. 相似文献
6.
《Journal of Fermentation and Bioengineering》1990,69(2):129-131
Cellulomonas sp. isolated from soil produces a high level of α-mannosidase (α-mannanase) inductively in culture fluid. The enzyme had two different molecular weight forms, and the properties of the high-molecular-weight form were reported previously (Takegawa, K. et al.: Biochim. Biophys. Acta, 991, 431–437, 1989). The low-molecular-weight α-mannosidase was purified to homogeneity by polyacrylamide gel electrophoresis. The molecular weight of the enzyme was over 150,000 by gel filtration. Unlike the high-molecular-weight form, the low-molecular-weight enzyme readily hydrolyzed α-1,2- and α-1,3-linked mannose chains. 相似文献
7.
In order to screen novel β-glucosidase producing strains from environment, one targeted novel strain PJD-1-1 producing β-glucosidase were isolated from putrefied sugarcane leaves with screening and spreading plate. 16S rDNA analysis revealed it was a novel Agrobacterium sp. When the strain was incubated at initial pH 7.0, 20 ℃ with lactose as carbon and NaNO3 as nitrogen sources, the maximum enzyme activity was 3.92 U/mg. β-glucosidase from this strain was purified using (NH4)2SO4 precipitation followed by dextran gel filtration chromatography and ion exchange chromatography. A purifying fold of 4.85 with gaining rate of 8.0% was obtained. SDA-PAGE analysis of the purified enzyme showed that it was a clear and pure band with molecular mass of ca. 40 kDa. The most optimum activity of the enzyme was at 50 ℃ and pH at 8.0. The enzyme could maintain stability under the conditions below 50 ℃. Hg2+ and Ag+ heavily inhibited the enzyme activity suggesting that the active catalytic sites of the enzymes might possess thiol radical. Ba2+, Ca2+, Pb2+, Co2+, Zn2+, Mn2+, Na+, K+, EDTA, and urea had no obvious effects on the enzyme activity. It is concluded that the novel strain Agrobacterium sp. PJD-1-1 producing β-glucosidase was successfully screened from putrefied sugar cane leaves. The produced enzyme had thermal stability, alkaline feature and metal ions tolerance made it useful in the food and broad potential applications in other fields. 相似文献
8.
《Bioscience, biotechnology, and biochemistry》2013,77(5):708-711
γ-Glutamylmethylamide synthetase [L-glutamate: methylamine ligase (ADP-forming), EC 6.3.4.12] was purified about 70-fold from a cell-free extract of Methylophaga sp. AA-30 by ammonium sulfate fractionation, Octyl-Sepharose column chromatography, and Sephacryl S-300 gel filtration. Only a single protein band was detected after SDS-polyacrylamide gel electrophoresis of the purified preparation; the band was at a position corresponding to a molecular weight of 56,000. The molecular weight of the enzyme was calculated to be 440,000 by Superose 6HR gel filtration, so we suggest that the enzyme is an octomer of identical subunits. The enzyme had maximum activity at pH 7.5 and 40°C. It could use ethylamine and propylamine instead of methylamine as the substrate, but it could not use D-glutamate or L-glutamine instead of L-glutamate. 相似文献
9.
T. Iembo R. da Silva F. C. Pagnocca E. Gomes 《Applied Biochemistry and Microbiology》2002,38(6):549-552
-Glucosidase and -xylosidase production by a yeastlike Aureobasidium sp. was carried out during solid-state and submerged fermentation using different carbon sources and crude enzymes were characterized. -Glucosidase and -xylosidase exhibited optimum activities at pH 2.0–2.5 and 3.0, respectively. These enzymes had the maximum activities at 65°C and were stable in a wide pH range and at high temperatures. 相似文献
10.
《Bioscience, biotechnology, and biochemistry》2013,77(12):1949-1954
A new polypeptide inhibitor, AI-409, that inhibits human salivary α-Amylase, was purified from a fermentation broth of Streptomyces chartreusis strain No. 409. This protein consists of a single-chain polypeptide of 78 amino acid residues, and includes two disulfide bridges. The primary structure of AI-409 and the locations of the disulfide bridges were identified by enzymatic digestion and the automatic Edman technique. Enzymatic digestion was done with trypsin, carboxypeptidase Y, and chymotrypsin. One of the disulfide bridges was between Cys(10) and Cys(26), and the other between Cys(44) and Cys(71). 相似文献
11.
Pratibha Dheeran Sachin Kumar Yogesh K. Jaiswal Dilip K. Adhikari 《Applied microbiology and biotechnology》2010,86(6):1857-1866
A newly isolated Geobacillus sp. IIPTN (MTCC 5319) from the hot spring of Uttarakhand's Himalayan region produced a hyperthermostable α-amylase. The microorganism
was characterized by biochemical tests and 16S rRNA gene sequencing. The optimal temperature and pH were 60°C and 6.5, respectively,
for growth and enzyme production. Although it was able to grow in temperature ranges from 50 to 80°C and pH 5.5–8.5. Maximum
enzyme production was in exponential phase with activity 135 U ml−1 at 60°C. Assayed with cassava as substrate, the enzyme displayed optimal activity 192 U ml−1 at pH 5.0 and 80°C. The enzyme was purified to homogeneity with purification fold 82 and specific activity 1,200 U mg−1 protein. The molecular mass of the purified enzyme was 97 KDa. The values of K
m
and V
max were 36 mg ml−1 and 222 μmol mg−1 protein min−1, respectively. The amylase was stable over a broad range of temperature from 40°C to 120°C and pH ranges from 5 to 10. The
enzyme was stimulated with Mn2+, whereas it was inhibited by Hg2+, Cu2+, Zn2+, Mg2+, and EDTA, suggesting that it is a metalloenzyme. Besides hyperthermostability, the novelty of this enzyme is resistance
against protease. 相似文献
12.
13.
Jun-ichi Tamura Hiroaki Takagi Kiyoshi Kadowaki 《Bioscience, biotechnology, and biochemistry》2013,77(10):2475-2484
The endo α-1,4 polygalactosaminidase from Pseudomonas sp. 881 was purified from the culture nitrate by ethanol precipitation and sequential column chromatographies on CM-Sephadex C-25, Sephadex G-50 and Phenyl-Sepharose CL-4B. The purified enzyme was electrophoretically homogeneous and its molecular weight and isoelectric point were 31,000 and 6.7, respectively. The optimum pH and temperature for hydrolysis of polygalactosamine were 5.0 and 55°C, respectively. The enzyme was stable up to 45°C for 15min and from pH 4.0 to 7.6 at 37°C for 1 hr.The Km value was 0.05% α-1,4 polygalactosamine and the V was 0.154μmol reducing sugar (galactosamine)/min/μg protein. This polygalactosaminidase was inhibited by Sn2+ , Fe2+ , Fe3+ , Hg2+, Cu2+ ions and SDS. The enzyme did not hydrolyze oligo galactosamines (n < tetramer) or N-acetyl-polygalactosamines. It acted only on oligo galactosamine (n > trimer) and polygalactosamine endogeneously so far tested. 相似文献
14.
Zhoukun Li Jiale Wu Biying Zhang Fei Wang Xianfeng Ye Yan Huang Qiang Huang Zhongli Cui 《Applied and environmental microbiology》2015,81(6):1977-1987
A novel α-amylase, AmyM, was purified from the culture supernatant of Corallococcus sp. strain EGB. AmyM is a maltohexaose-forming exoamylase with an apparent molecular mass of 43 kDa. Based on the results of matrix-assisted laser desorption ionization–time of flight mass spectrometry and peptide mass fingerprinting of AmyM and by comparison to the genome sequence of Corallococcus
coralloides DSM 2259, the AmyM gene was identified and cloned into Escherichia coli. amyM encodes a secretory amylase with a predicted signal peptide of 23 amino acid residues, which showed no significant identity with known and functionally verified amylases. amyM was expressed in E. coli BL21(DE3) cells with a hexahistidine tag. The signal peptide efficiently induced the secretion of mature AmyM in E. coli. Recombinant AmyM (rAmyM) was purified by Ni-nitrilotriacetic acid (NTA) affinity chromatography, with a specific activity of up to 14,000 U/mg. rAmyM was optimally active at 50°C in Tris-HCl buffer (50 mM; pH 7.0) and stable at temperatures of <50°C. rAmyM was stable over a wide range of pH values (from pH 5.0 to 10.0) and highly tolerant to high concentrations of salts, detergents, and various organic solvents. Its activity toward starch was independent of calcium ions. The Km and Vmax of recombinant AmyM for soluble starch were 6.61 mg ml−1 and 44,301.5 μmol min−1 mg−1, respectively. End product analysis showed that maltohexaose accounted for 59.4% of the maltooligosaccharides produced. These characteristics indicate that AmyM has great potential in industrial applications. 相似文献
15.
Tsusaki K Watanabe H Yamamoto T Nishimoto T Chaen H Fukuda S 《Bioscience, biotechnology, and biochemistry》2012,76(4):721-731
Highly branched α-glucan molecules exhibit low digestibility for α-amylase and glucoamylase, and abundant in α-(1→3)-, α-(1→6)-glucosidic linkages and α-(1→6)-linked branch points where another glucosyl chain is initiated through an α-(1→3)-linkage. From a culture supernatant of Paenibacillus sp. PP710, we purified α-glucosidase (AGL) and α-amylase (AMY), which were involved in the production of highly branched α-glucan from maltodextrin. AGL catalyzed the transglucosylation reaction of a glucosyl residue to a nonreducing-end glucosyl residue by α-1,6-, α-1,4-, and α-1,3-linkages. AMY catalyzed the hydrolysis of the α-1,4-linkage and the intermolecular or intramolecular transfer of maltooligosaccharide like cyclodextrin glucanotransferase (CGTase). It also catalyzed the transfer of an α-1,4-glucosyl chain to a C3- or C4-hydroxyl group in the α-1,4- or α-1,6-linked nonreducing-end residue or the α-1,6-linked residue located in the other chains. Hence AMY was regarded as a novel enzyme. We think that the mechanism of formation of highly branched α-glucan from maltodextrin is as follows: α-1,6- and α-1,3-linked residues are generated by the transglucosylation of AGL at the nonreducing ends of glucosyl chains. Then AMY catalyzes the transfer of α-1,4-chains to C3- or C4-hydroxyl groups in the α-1,4- or α-1,6-linked residues generated by AGL. Thus the concerted reactions of both AGL and AMY are necessary to produce the highly branched α-glucan from maltodextrin. 相似文献
16.
Zhang Weibin Xu Jingnan Liu Dan Liu Huan Lu Xinzhi Yu Wengong 《Applied microbiology and biotechnology》2018,102(5):2203-2212
Applied Microbiology and Biotechnology - It has been a long time since the first α-agarase was discovered. However, only two α-agarases have been cloned and partially characterized so far... 相似文献
17.
《Insect Biochemistry》1991,21(3):303-311
α-Amylase was purified from adults of the lesser grain borer, Rhyzopertha dominica (F.), by ammonium sulfate precipitation, glycogen complex formation, and gel filtration chromatography. Specific activity increased from 16 AU/mg protein in the crude extract to 705 AU/mg protein in the final sample (1 AU = 1 mg maltose hydrate/min at 30°C). Two major protein bands, active in starch zymograms, were present at Rm 0.71 and 0.79 when the sample was examined by polyacrylamide gel electrophoresis (PAGE) on 7.5% gels. In addition, several minor proteins that had α-amylase activity were also present. Molecular masses of the two major allozymes were estimated to be 57 and 55 kDa under dissociating conditions. Isoelectric points of the allozymes were at pH 3.4 and 3.5. The amylases were most active at pH 7 and the presence of 20 mM NaCl resulted in a 10.7-fold increase in Vmax. Km for soluble starch was 0.127%.Saline extracts of wheat (“Florida 302”) were 2- and 3-fold more inhibitory on a weight basis towards the amylases from R. dominica than were extracts prepared from two cultivars of triticale, “Morrison” and “CT-4161”, respectively. Interaction of purified α-amylase inhibitors from wheat, inhibitor-0.28 and a sample of the inhibitor-0.19 family of isoinhibitors, with the α-amylases from R. dominica was studied. Complex formation between the amylases and inhibitor-0.28 was demonstrated by PAGE, although the protein-protein complexes that formed were not completely stable during electrophoresis. Ki values were estimated to be 2.6 nM for inhibitor-0.28 and 2.9 nM for inhibitor-0.19. Binding of these inhibitors to α-amylases from R. dominica was not as tight compared with the interaction of these inhibitors with amylases from Sitophilus weevils and Tenebrio molitor. 相似文献
18.
Summary
Aspergillus sp NCIM 508 produced 22 U/L of extracellular -mannosidase activity in a medium containing 8 % brewer's yeast cells. The optimum period and pH range for maximum production of the enzyme were 7 days and 4.0–6.0, respectively. The optimum pH and temperature for enzyme activity were 6.0 and 50°C, respectively. The enzyme was stable for 24 h at 28°C, in the pH range 6.0–7.0. The enzyme retained 100 and 65 % of its original activity after heating for 15 min at 45 and 55°C, respectively. The Km and Vmax for p-nitrophenyl--D- mannoside (PNPM) were 71M and 7.5 × 10–2 moles/min/mg, respectively. The enzyme was strongly inhibited by 1 mM Hg++ and Cu++ and partially by Co.++
(NCL Communication No.; 5780) 相似文献
19.
-Mannanase produced by Bacillus sp. W-2, isolated from decayed commercial konjak cake, was purified from the culture supernatant by (NH4)2 SO4 precipitation, adsorption to konjak gel, and column chromatography with DEAE-cellulose, Sephadex G-100 and Sephacryl S-200. Its molecular size was estimated by SDS-PAGE as 40 kDa, and by gel filtration as 36 kDa. The enzyme was most active at pH 7 and 70°C and was stable for at least 1 h between pH 5 and 10 and below 60°C. Its activity was completely inhibited by Hg2+. The enzyme hydrolysed galactomannan better than glucomannan and mainly produced mannose and mannobiose.The authors are with the Department of Bioproductive Science, Faculty of Agriculture, Utsunomiya University. Utsunomiya, Tochigi 321, Japan 相似文献
20.
Summary
Clostridium thermohydrosulfuricum 39E produced a cell-bound -glucosidase. It was partially purified 140-fold by solubilizing with Triton X-100, ammonium sulfate treatment, DEAE-Sepharose CL-6B, octyl-Sepharose and acarbose-Sepharose affinity chromatography. The optimum temperature for the action of the enzyme was at 75°C. It had a half-life of 35 min at 75°C, 110 min at 70°C and 46 h at 60°C. The enzyme was stable at pH 5.0–6.0 and had an optimum pH at 5.0–5.5. It hydrolyzed the -1,4-linkages in maltose, maltotriose, maltotetraose and maltohexaose, the rate decreasing in order of higher-sized oligosaccharides. The enzyme preparation also hydrolyzed the -1,6 linkages in isomaltose and isomaltotriose. It rapidly hydrolyzed p-nitrophenyl -d-glucoside (pNPG). The K
m values for maltose, isomaltose, panose, maltotriose, and pNPG were 1.85, 2.95, 1.72, 0.58, and 0.31 mm, respectively, at pH 5.5 and 60°C. The enzyme produced glucose from all these substrates. The enzyme preparation did not require any metal ion for activity. The -glucosidase activity was inhibited by acarbose.
Offprint requests to: B. C. Saha 相似文献