首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effects of climate change and forest management scenarios on net climate impacts (radiative forcing) of production and utilization of energy biomass, in a Norway spruce forest area over an 80‐year simulation period in Finnish boreal conditions. A stable age‐class distribution was used in model‐based analyses to identify purely the management effects under the current and changing climate (SRES B1 and A2 scenarios). The radiative forcing was calculated based on an integrated use of forest ecosystem model simulations and a life cycle assessment (LCA) tool. In this work, forest‐based energy was used to substitute coal, and current forest management (baseline management) was used as a reference management. In alternative management scenarios, the stocking was maintained 20% higher in thinning compared to the baseline management, and nitrogen fertilization was applied. Intensity of energy biomass harvest (e.g. logging residues, coarse roots and stumps) was varied in the final felling of the stands at the age of 80 years. Also, the economic profitability (NPV, 3% interest rate) of integrated production of timber and energy biomass was calculated for each management scenario. Our results showed that compared to the baseline management, climate benefits could be increased by maintaining higher stocking in thinning over rotation, using nitrogen fertilization and harvesting logging residues, stumps and coarse roots in the final felling. Under the gradually changing climate (in both SRES B1 and A2), the climate benefits were lower compared to the current climate. Trade‐offs between NPV and net climate impacts also existed.  相似文献   

2.
The study describes an integrated impact assessment tool for the net carbon dioxide (CO2) exchange in forest production. The components of the net carbon exchange include the uptake of carbon into biomass, the decomposition of litter and humus, emissions from forest management operations and carbon released from the combustion of biomass and degradation of wood‐based products. The tool enables the allocation of the total carbon emissions to the timber and energy biomass and to the energy produced on the basis of biomass. In example computations, ecosystem model simulations were utilized as an input to the tool. We present results for traditional timber production (pulpwood and saw logs) and integrated timber and bioenergy production (logging residues, stumps and roots) for Norway spruce, in boreal conditions in Finland, with two climate scenarios over one rotation period. The results showed that the magnitude of management related emissions on net carbon exchange was smaller when compared with the total ecosystem fluxes; decomposition being the largest emission contributor. In addition, the effects of management and climate were higher on the decomposition of new humus compared with old humus. The results also showed that probable increased biomass growth, obtained under the changing climate (CC), could not compensate for decomposition and biomass combustion related carbon loss in southern Finland. In our examples, the emissions allocated for the energy from biomass in southern Finland were 172 and 188 kg CO2 MW h?1 in the current climate and in a CC, respectively, and 199 and 157 kg CO2 MW h?1 in northern Finland. This study concludes that the tool is suitable for estimating the net carbon exchange of forest production. The tool also enables the allocation of direct and indirect carbon emissions, related to forest production over its life cycle, in different environmental conditions and for alternative time periods and land uses. Simulations of forest management regimes together with the CC give new insights into ecologically sustainable forest bioenergy and timber production, as well as climate change mitigation options in boreal forests.  相似文献   

3.
We investigated how the initial age structure of a managed, middle boreal (62°N), Norway spruce-dominated (Picea abies L. Karst.) forest area affects the net climate impact of using forest biomass for energy. The model-based analysis used a gap-type forest ecosystem model linked to a life cycle assessment (LCA) tool. The net climate impact of energy biomass refers to the difference in annual net CO2 exchange between the biosystem using forest biomass (logging residues from final felling) and the fossil (reference) system using coal. In the simulations over the 80-year period, the alternative initial age structures of the forest areas were (i) skewed to the right (dominated by young stands), (ii) normally distributed (dominated by middle-aged stands), (iii) skewed to the left (dominated by mature stands), and (iv) evenly distributed (same share of different age classes). The effects of management on net climate impacts were studied using current recommendations as a baseline with a fixed rotation period of 80 years. In alternative management scenarios, the volume of the growing stock was maintained 20% higher over the rotation compared to the baseline, and/or nitrogen fertilization was used to enhance carbon sequestration. According to the results, the initial age structure of the forest area affected largely the net climate impact of using energy biomass over time. An initially right-skewed age structure produced the highest climate benefits over the 80-year simulation period, in contrast to the left-skewed age structure. Furthermore, management that enhanced carbon sequestration increased the potential of energy biomass to replace coal, reducing CO2 emissions and enhancing climate change mitigation.  相似文献   

4.
In this work, we studied the potentials offered by managed boreal forests and forestry to mitigate the climate change using forest‐based materials and energy in substituting fossil‐based materials (concrete and plastic) and energy (coal and oil). For this purpose, we calculated the net climate impacts (radiative forcing) of forest biomass production and utilization in the managed Finnish boreal forests (60°–70°N) over a 90‐year period based on integrated use forest ecosystem model simulations (on carbon sequestration and biomass production of forests) and life‐cycle assessment (LCA) tool. When studying the effects of management on the radiative forcing in a system integrating the carbon sink/sources dynamics in both biosystem and technosystem, the current forest management (baseline management) was used a reference management. Our results showed that the use of forest‐based materials and energy in substituting fossil‐based materials and energy would provide an effective option for mitigating climate change. The negative climate impacts could be further decreased by maintaining forest stocking higher over the rotation compared to the baseline management and by harvesting stumps and coarse roots in addition to logging residues in the final felling. However, the climate impacts varied substantially over time depending on the prevailing forest structure and biomass assortment (timber, energy biomass) used in substitution.  相似文献   

5.
We used ecosystem model simulations to study the timber and energy biomass potential offered by intensively managed cloned Norway spruce stands. More specifically, we analysed how the use of cloned trees compared with non‐cloned trees, together with thinning, nitrogen (N) fertilisation and rotation length (from 60 to 100 years), affects the annual mean production of timber (i.e., saw logs, pulpwood) and energy biomass (i.e., stumps and harvesting residuals in the final felling) and its economic profitability [annual mean of net present value (NPV) with a 2% interest rate]. Furthermore, we employed a life cycle analysis/emission calculation tool to assess the total net CO2 emissions per unit of energy (kg CO2 MW h?1) produced based on energy biomass. We found that both the annual mean production of timber and the NPV increased substantially, regardless of the management regime, if cloned trees with an annual growth increase of up to 30% compared with non‐cloned trees were used in regeneration. In general, the use of a short rotation with N fertilisation clearly increased the annual mean of the NPV. Consequently, the use of cloned trees also clearly increased the annual mean production of energy biomass and decreased the total net CO2 emissions per unit of energy produced based on energy biomass. However, the total annual net CO2 emissions were the lowest if a long rotation was used with N fertilisation. To conclude, the use of cloned trees together with intensive management could potentially be highly beneficial for the cost‐efficient and sustainable production of timber and energy biomass in an integrated way.  相似文献   

6.
The aim of this study was to analyze the effects of forest management on the total biomass production (t ha-1a-1) and CO2 emissions (kg CO2 MWh-1) from use of energy biomass of Norway spruce and Scots pine grown on a medium fertile site. In this context, the growth of both species was simulated using an ecosystem model (SIMA) under different management regimes, including various thinning and fertilization treatments over rotation lengths from 40 to 120 years in different pre-commercial stand densities. A Life Cycle Analysis/Emission calculation tool was employed to assess the CO2 emissions per unit of energy from the use of biomass in energy production. Furthermore, the overall balance between the CO2 uptake and emission (carbon balance) was studied, and the carbon neutrality (CN) factor was calculated to assess environmental effects of the use of biomass in energy production; i.e., how much CO2 would be emitted per unit of energy when considering direct and indirect emissions from forest ecosystem and energy production. In general, the total annual biomass production for both species was highest when management with fertilization and high pre-commercial stand density (4000–6000 trees ha-1) was used. In the case of Norway spruce, the highest annual biomass production was obtained with a rotation length of 80–100 years, while for Scots pine a rotation length of 40–60 years gave the highest annual production. In general, the CO2 emissions decreased along with an increasing rotation length. The reduction was especially large if the rotation length was increased from 40 years to 60 years. Scots pine produced remarkably smaller net CO2 emissions per year (on average 29%) than Norway spruce over all different densities and rotation lengths. The value of the CN factor was highest if a rotation of 100 years was used for Norway spruce stands and a rotation of 120 years for Scots pine. The CO2 emission per energy unit was substantially less than that from the use of coal, which was used as reference to assess environmental effects of the use of biomass in energy production. The use of higher density of pre-commercial stand than that currently recommended in the Finnish forestry, together with timely thinning and fertilization, could increase the total biomass production, but also simultaneously decrease the net CO2 emissions from the use of energy wood.  相似文献   

7.
Owing to the peculiarities of forest net primary production humans would appropriate ca. 60% of the global increment of woody biomass if forest biomass were to produce 20% of current global primary energy supply. We argue that such an increase in biomass harvest would result in younger forests, lower biomass pools, depleted soil nutrient stocks and a loss of other ecosystem functions. The proposed strategy is likely to miss its main objective, i.e. to reduce greenhouse gas (GHG) emissions, because it would result in a reduction of biomass pools that may take decades to centuries to be paid back by fossil fuel substitution, if paid back at all. Eventually, depleted soil fertility will make the production unsustainable and require fertilization, which in turn increases GHG emissions due to N2O emissions. Hence, large‐scale production of bioenergy from forest biomass is neither sustainable nor GHG neutral.  相似文献   

8.
The aim of this work was to study the sensitivity of carbon dioxide (CO2) emissions from wood energy to different forest management regimes when aiming at an integrated production of timber and energy biomass. For this purpose, the production of timber and energy biomass in Norway spruce [Picea abies (L.) Karst] and Scots pine (Pinus sylvestris L.) stands was simulated using an ecosystem model (SIMA) on sites of varying fertility under different management regimes, including various thinning and fertilization treatments over a fixed simulation period of 80 years. The simulations included timber (sawlogs, pulp), energy biomass (small‐sized stem wood) and/or logging residues (top part of stem, branches and needles) from first thinning, and logging residues and stumps from final felling for energy production. In this context, a life cycle analysis/emission calculation tool was used to assess the CO2 emissions per unit of energy (kg CO2 MWh?1) which was produced based on the use of wood energy. The energy balance (GJ ha?1) of the supply chain was also calculated. The evaluation of CO2 emissions and energy balance of the supply chain considered the whole forest bioenergy production chain, representing all operations needed to grow and harvest biomass and transport it to a power plant for energy production. Fertilization and high precommercial stand density clearly increased stem wood production (i.e. sawlogs, pulp and small‐sized stem wood), but also the amount of logging residues, stump wood and roots for energy use. Similarly, the lowest CO2 emissions per unit of energy were obtained, regardless of tree species and site fertility, when applying extremely or very dense precommercial stand density, as well as fertilization three times during the rotation. For Norway spruce such management also provided a high energy balance (GJ ha?1). On the other hand, the highest energy balance for Scots pine was obtained concurrently with extremely dense precommercial stands without fertilization on the medium‐fertility site, while on the low‐fertility site fertilization three times during the rotation was needed to attain this balance. Thus, clear differences existed between species and sites. In general, the forest bioenergy supply chain seemed to be effective; i.e. the fossil fuel energy consumption varied between 2.2% and 2.8% of the energy produced based on the forest biomass. To conclude, the primary energy use and CO2 emissions related to the forest operations, including the production and application of fertilizer, were small in relation to the increased potential of energy biomass.  相似文献   

9.
Bioenergy makes up a significant portion of the global primary energy pie, and its production from modernized technology is foreseen to substantially increase. The climate neutrality of biogenic CO2 emissions from bioenergy grown from sustainably managed biomass resource pools has recently been questioned. The temporary change caused in atmospheric CO2 concentration from biogenic carbon fluxes was found to be largely dependent on the length of biomass rotation period. In this work, we also show the importance of accounting for the unutilized biomass that is left to decompose in the resource pool and how the characterization factor for the climate impact of biogenic CO2 emissions changes whether residues are removed for bioenergy or not. With the case of Norwegian Spruce biomass grown in Norway, we found that significantly more biogenic CO2 emissions should be accounted towards contributing to global warming potential when residues are left in the forest. For a 100‐year time horizon, the global warming potential bio factors suggest that between 44 and 62% of carbon‐flux, neutral biogenic CO2 emissions at the energy conversion plant should be attributed to causing equivalent climate change potential as fossil‐based CO2 emissions. For a given forest residue extraction scenario, the same factor should be applied to the combustion of any combination of stem and forest residues. Life cycle analysis practitioners should take these impacts into account and similar region/species specific factors should be developed.  相似文献   

10.
Bioenergy from forest residues can be used to avoid fossil carbon emissions, but removing biomass from forests reduces carbon stock sizes and carbon input to litter and soil. The magnitude and longevity of these carbon stock changes determine how effective measures to utilize bioenergy from forest residues are to reduce greenhouse gas (GHG) emissions from the energy sector and to mitigate climate change. In this study, we estimate the variability of GHG emissions and consequent climate impacts resulting from producing bioenergy from stumps, branches and residual biomass of forest thinning operations in Finland, and the contribution of the variability in key factors, i.e. forest residue diameter, tree species, geographical location of the forest biomass removal site and harvesting method, to the emissions and their climate impact. The GHG emissions and the consequent climate impacts estimated as changes in radiative forcing were comparable to fossil fuels when bioenergy production from forest residues was initiated. The emissions and climate impacts decreased over time because forest residues were predicted to decompose releasing CO2 even if left in the forest. Both were mainly affected by forest residue diameter and climatic conditions of the forest residue collection site. Tree species and the harvest method of thinning wood (whole tree or stem‐only) had a smaller effect on the magnitude of emissions. The largest reduction in the energy production climate impacts after 20 years, up to 62%, was achieved when coal was replaced by the branches collected from Southern Finland, whereas the smallest reduction 7% was gained by using stumps from Northern Finland instead of natural gas. After 100 years the corresponding values were 77% and 21%. The choice of forest residue biomass collected affects significantly the emissions and climate impacts of forest bioenergy.  相似文献   

11.
British Columbia (BC) forests are estimated to have become a net carbon source in recent years due to tree death and decay caused primarily by mountain pine beetle (MPB) and related post‐harvest slash burning practices. BC forest biomass has also become a major source of wood pellets, exported primarily for bioenergy to Europe, although the sustainability and net carbon emissions of forest bioenergy in general are the subject of current debate. We simulated the temporal carbon balance of BC wood pellets against different reference scenarios for forests affected by MPB in the interior BC timber harvesting area using the Carbon Budget Model of the Canadian Forest Sector (CBM‐CFS3). We evaluated the carbon dynamics for different insect‐mortality levels, at the stand‐ and landscape level, taking into account carbon storage in the ecosystem, wood products and fossil fuel displacement. Our results indicate that current harvesting practices, in which slash is burnt and only sawdust used for pellet production, require between 20–25 years for beetle‐impacted pine and 37–39 years for spruce‐dominated systems to reach pre‐harvest carbon levels (i.e. break‐even) at the stand‐level. Using pellets made from logging slash to replace coal creates immediate net carbon benefits to the atmosphere of 17–21 tonnes C ha?1, shortening these break‐even times by 9–20 years and resulting in an instant carbon break‐even level on stands most severely impacted by the beetle. Harvesting pine dominated sites for timber while using slash for bioenergy was also found to be more carbon beneficial than a protection reference scenario on both stand‐ and landscape level. However, harvesting stands exclusively for bioenergy resulted in a net carbon source unless the system contained a high proportion of dead trees (>85%). Systems with higher proportions of living trees provide a greater climate change mitigation if used for long lived wood products.  相似文献   

12.
The net CO2 exchange of forests was investigated to study net atmospheric impact of forest bioenergy production (BP) and utilization in Finnish boreal conditions. Net CO2 exchange was simulated with a life cycle assessment tool over a 90‐year period and over the whole Finland based on National Forest Inventory data. The difference in the net exchanges between the traditional timber production (TP) and BP regime was considered the net atmospheric impact of forest bioenergy utilization. According to the results, forests became net sources of CO2 after about 20 years of simulation, and the net exchange was higher in the BP regime than in the TP regime until the middle of the simulation period. From 2040 onwards, the net exchange started to decrease in both regimes and became higher in the TP regime, excluding the last decade of the simulation. The shift of forests to becoming a CO2 source reflected the decrease in CO2 sequestration due to the increasing share of recently harvested and seedling stands that are acting as sources of CO2, and an increase of emissions from degradation of wood products. When expressed in terms of radiative forcing, the net atmospheric impact was on average 19% less for bioenergy compared with that for coal energy over the whole simulation period. The results show the importance of time dependence when considering dynamic forest ecosystems in BP and climate change mitigation. Furthermore, the results emphasize the dualistic role and possibilities of forest management in controlling the build and release of carbon into and from the stocks and in controlling the rate of the build speed, i.e. growth. This information is needed in identifying the capability and possibilities of ecosystems to produce biomass for energy, alongside other products and ecosystem services (e.g. pulp wood and timber), and simultaneously to mitigate climate change.  相似文献   

13.
Prairies used for bioenergy production have potential to generate marketable products while enhancing environmental quality, but little is known about how prairie species composition and nutrient management affect the suitability of prairie biomass for bioenergy production. We determined how functional‐group identity and nitrogen fertilization affected feedstock characteristics and estimated bioenergy yields of prairie plants, and compared those prairie characteristics to that of corn stover. We tested our objectives with a field experiment that was set up as a 5 × 2 incomplete factorial design with C3 grasses, C4 grasses, legumes, and multi‐functional‐group mixtures grown with and without nitrogen fertilizer; a fertilized corn treatment was also included. We determined cell wall, hemicellulose, cellulose, and ash concentrations; ethanol conversion ratios; gross caloric ratios; aboveground biomass production; ethanol yields; and energy yields for all treatments. Prairie functional‐group identity affected the biomass feedstock characteristics, whereas nitrogen fertilization did not. Functional group and fertilization had a strong effect on aboveground biomass production, which was the major predictor of ethanol and energy yields. C4 grasses, especially when fertilized, had among the most favorable bioenergy characteristics with high estimated ethanol conversion ratios and nongrain biomass production, relatively high gross caloric ratios, and low ash concentrations. The bioenergy characteristics of corn stover, from an annual C4 grass, were similar to those of the biomass of perennial C4 grasses. Both functional‐group composition and nitrogen fertility management were found to be important in optimizing bioenergy production from prairies.  相似文献   

14.
The notion that biomass combustion is carbon neutral vis‐a‐vis the atmosphere because carbon released during biomass combustion is absorbed during plant regrowth is inherent in the greenhouse gas accounting rules in many regulations and conventions. But this ‘carbon neutrality’ assumption of bioenergy is an oversimplification that can result in major flaws in emission accounting; it may even result in policies that increase, instead of reduce, overall greenhouse gas emissions. This commentary discusses the systemic feedbacks and ecosystem succession/land‐use history issues ignored by the carbon neutrality assumption. Based on recent literature, three cases are elaborated which show that the C balance of bioenergy may range from highly beneficial to strongly detrimental, depending on the plants grown, the land used (including its land‐use history) as well as the fossil energy replaced. The article concludes by proposing the concept of GHG cost curves of bioenergy as a means for optimizing the climate benefits of bioenergy policies.  相似文献   

15.
Here we analyse the radiative forcing implications of forest fertilization and biomass substitution, with explicit consideration of the temporal patterns of greenhouse gas (GHG) emissions to and removals from the atmosphere (net emissions). We model and compare the production and use of biomass from a hectare of fertilized and non-fertilized forest land in northern Sweden. We calculate the annual net emissions of CO2, N2O and CH4 for each system, over a 225-year period with 1-year time steps. We calculate the annual atmospheric concentration decay of each of these emissions, and calculate the resulting annual changes in instantaneous and cumulative radiative forcing. We find that forest fertilization can significantly increase biomass production, which increases the potential for material and energy substitution. The average carbon stock in tree biomass, forest soils and wood products all increase when fertilization is used. The additional GHG emissions due to fertilizer production and application are small compared to increases in substitution benefits and carbon stock. The radiative forcing of the 2 stands is identical for the first 15?years, followed by 2?years during which the fertilized stand produces slightly more radiative forcing. After year 18 the instantaneous and cumulative radiative forcing are consistently lower for the fertilized forest system. Both stands result in long-term negative radiative forcing, or cooling of the earth system. By the end of the 225-year simulation period, the cumulative radiative forcing reduction of the fertilized stand is over twice that of the non-fertilized stand. This suggests that forest fertilization and biomass substitution are effective options for climate change mitigation, as climate change is a long term issue.  相似文献   

16.
This study examines the effects of supplying forest biomass on forest ecosystem services and goods with a dynamic systems model. This unique analysis models dynamic trade and investments in forestry, thereby capturing price changes from increased forest biomass demand on current and future flows of forest ecosystem services and natural capital stocks. Forests across the globe are interconnected through timber and forest biomass markets, which influence forest management decisions, land rents, and policy responses. Results indicate that expanding forest biomass consumption, even at relatively low levels, will have important impacts on ecosystem services, particularly the benefits of terrestrial carbon sequestration and timber outputs. Increased forest biomass production can be achieved with smaller impacts on ecosystem services through policies targeting natural forest preservation. However, policies that encourage residual biomass use for energy or discourage forest plantation expansion could potentially compromise carbon benefits.  相似文献   

17.
Land‐based solutions are indispensable features of most climate mitigation scenarios. Here we conduct a novel cross‐sectoral assessment of regional carbon mitigation potential by running an ecosystem model with an explicit representation of forest structure and climate impacts for Bavaria, Germany, as a case study. We drive the model with four high‐resolution climate projections (EURO‐CORDEX) for the representative concentration pathway RCP4.5 and present‐day land‐cover from three satellite‐derived datasets (CORINE, ESA‐CCI, MODIS) and identify total mitigation potential by not only accounting for carbon storage but also material and energy substitution effects. The model represents the current state in Bavaria adequately, with a simulated forest biomass 12.9 ± 0.4% lower than data from national forest inventories. Future land‐use changes according to two ambitious land‐use harmonization scenarios (SSP1xRCP2.6, SSP4xRCP3.4) achieve a mitigation of 206 and 247 Mt C (2015–2100 period) via reforestation and the cultivation and burning of dedicated bioenergy crops, partly combined with carbon capture and storage. Sensitivity simulations suggest that converting croplands or pastures to bioenergy plantations could deliver a carbon mitigation of 40.9 and 37.7 kg C/m2, respectively, by the year 2100 if used to replace carbon‐intensive energy systems and combined with CCS. However, under less optimistic assumptions (including no CCS), only 15.3 and 12.2 kg C/m2 are mitigated and reforestation might be the better option (20.0 and 16.8 kg C/m2). Mitigation potential in existing forests is limited (converting coniferous into mixed forests, nitrogen fertilization) or even negative (suspending wood harvest) due to decreased carbon storage in product pools and associated substitution effects. Our simulations provide guidelines to policy makers, farmers, foresters, and private forest owners for sustainable and climate‐benefitting ecosystem management in temperate regions. They also emphasize the importance of the CCS technology which is regarded critically by many people, making its implementation in the short or medium term currently doubtable.  相似文献   

18.
Forest bioenergy opportunities may be hindered by a long greenhouse gas (GHG) payback time. Estimating this payback time requires the quantification of forest‐atmosphere carbon exchanges, usually through process‐based simulation models. Such models are prone to large uncertainties, especially over long‐term carbon fluxes from dead organic matter pools. We propose the use of whole ecosystem field‐measured CO2 exchanges obtained from eddy covariance flux towers to assess the GHG mitigation potential of forest biomass projects as a way to implicitly integrate all field‐level CO2 fluxes and the inter‐annual variability in these fluxes. As an example, we perform the evaluation of a theoretical bioenergy project that uses tree stems as bioenergy feedstock and include multi‐year measurements of net ecosystem exchange (NEE) from forest harvest chronosequences in the boreal forest of Canada to estimate the time dynamics of ecosystem CO2 exchanges following harvesting. Results from this approach are consistent with previous results using process‐based models and suggest a multi‐decadal payback time for our project. The time for atmospheric carbon debt repayment of bioenergy projects is highly dependent on ecosystem‐level CO2 exchanges. The use of empirical NEE measurements may provide a direct evaluation of, or at least constraints on, the GHG mitigation potential of forest bioenergy projects.  相似文献   

19.
The aim of this study was to analyze the effects of intensive management and forest landscape structure (in terms of age class distribution) on timber and energy wood production (m3?ha?1), net present value (NPV, ? ha?1) with implications on net CO2 emissions (kg CO2 MWh?1 per energy unit) from energy wood use of Norway spruce grown on medium to fertile sites. This study employed simulations using a forest ecosystem model and the Emission Calculation Tool, considering in its analyses: timber (saw logs, pulp) and energy wood (small-sized stem wood and/or logging residuals for top part of stem, branches, and needles) from the first thinning and harvesting residuals and stumps from the final felling. At the stand level, both fertilization and high pre-commercial stand density clearly increased timber production and the amount of energy wood. Short rotation length (40 and 60?years) outputted, on average, the highest annual stem wood production (most fertile and medium fertile sites), the 60?year rotation also outputted the highest average annual net present value (NPV with interest rates of 1?C4%). On the other hand, even longer rotation lengths, up to 80 and 100?years, were needed to output the lowest net CO2 emissions per year in energy wood use. At the landscape level, the largest productivity (both for timber and energy wood) was obtained using rotation lengths of 60 and 80?years with an initial forest landscape structure dominated by older mature stands (a right-skewed age-class distribution). If the rotation length was 120?years, the initial forest landscape dominated by young stands (a left-skewed age-class distribution) provided the highest productivity. However, the NPV with interest rate of 2% was, on average, the highest with a right-skewed distribution regardless of the rotation length. If the rotation length was 120?years, normal age class distribution provided, on average, the highest NPV. On the other hand, the lowest emissions (kg CO2 MWh?1a?1) were obtained with the left-skewed age-class distribution using the rotation lengths of 60 and 80?years, and with the normal age-class distribution using the rotation length of 120?years. Altogether, the management regimes integrating both timber and energy wood production and using fertilization provided, on average, the lowest emissions over all management alternatives considered.  相似文献   

20.
We compare sustainably managed with unmanaged forests in terms of their contribution to climate change mitigation based on published data. For sustainably managed forests, accounting of carbon (C) storage based on ecosystem biomass and products as required by the United Nations Framework Convention on Climate Change is not sufficient to quantify their contribution to climate change mitigation. The ultimate value of biomass is its use for biomaterials and bioenergy. Taking Germany as an example, we show that the average removals of wood from managed forests are higher than stated by official reports, ranging between 56 and 86 mill. m3 year?1 due to the unrecorded harvest of firewood. We find that removals from one hectare can substitute 0.87 m3 ha?1 year?1 of diesel, or 7.4 MWh ha?1 year?1, taking into account the unrecorded firewood, the use of fuel for harvesting and processing, and the efficiency of energy conversion. Energy substitution ranges between 1.9 and 2.2 t CO2 equiv. ha?1 year?1 depending on the type of fossil fuel production. Including bioenergy and carbon storage, the total mitigation effect of managed forest ranges between 3.2 and 3.5 t CO2 equiv. ha?1 year?1. This is more than previously reported because of the full accounting of bioenergy. Unmanaged nature conservation forests contribute via C storage only about 0.37 t CO2 equiv.  ha?1 year?1 to climate change mitigation. There is no fossil fuel substitution. Therefore, taking forests out of management reduces climate change mitigation benefits substantially. There should be a mitigation cost for taking forest out of management in Central Europe. Since the energy sector is rewarded for the climate benefits of bioenergy, and not the forest sector, we propose that a CO2 tax is used to award the contribution of forest management to fossil fuel substitution and climate change mitigation. This would stimulate the production of wood for products and energy substitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号