首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Plasma membranes were isolated from two types of squid nerves which have morphologically, different ratios of axolemma/Schwannlemma (A/S). These membranes were studied by means of differential and density gradient centrifugation.Thoroughly dissected giant axons were used as membrane source having low A/S ratio. Retinal fibers were used as membrane source with high A/S ratio. A similar procedure for the isolation of the plasma membranes was used for both types of squid axons.Differential centrifugation showed that at 1,500×g, the yield of membrane enzymes (Na, K-ATPase and NADH-ferricyanide oxidoreductase) from giant axon homogenates was 2 to 5 times greater than from retinal nerve homogenates, but at 105,000×g the opposite was the case, the yield from retinal axons being about two times greater. Thus, the major part of the membrane material from the retinal nerve seems to be less dense than the membrane material from giant axons.The behavior of the 105,000×g fraction from both types of fibers was studied by determining protein Na, K-ATPase, and NADH-oxidoreductase along a lineal sucrose gradient (10 to 40%; centrifuged at 40,600×g for 90 min). By any of the three measurements, retinal axons yielded a greater amount (2:1) of plasma membranes sedimenting at low sucrose concentration (16 to 25%) as compared to that observed at high sucrose concentration (35 to 38%). Giant axons, on the contrary, yielded a higher proportion of membranes (2.5:1) sedimenting at high sucrose concentrations (over 40%).The experimental data indicate that a different cellular origin can account for the behavior of nerve membranes along lineal gradient centrifugation. The membranes floating at low sucrose concentration (light membranes) can be tentatively ascribed to the axolemma; the membranes found at high sucrose concentration (heavy membranes) to the Schwannlemma and basement membranes.In accord with their high A/S morphological ratio, squid retinal axons yielded 5 times more light membranes (axolemma) than dissected giant axons.  相似文献   

3.
4.
5.
6.
Canthaxanthin (β,β-carotene 4,4' dione) used widely as a drug or as a food and cosmetic colorant may have some undesirable effects on human health, caused mainly by the formation of crystals in the macula lutea membranes of the retina of an eye. Experiments show the exceptional molecular organization of canthaxanthin and a strong effect of this pigment on the physical properties of lipid membranes. The most striking difference between canthaxanthin and other macular pigments is that the effects of canthaxanthin at a molecular level are observed at much lower concentration of this pigment with respect to lipid (as low as 0.05 mol%). An analysis of the molecular interactions of canthaxanthin showed molecular mechanisms such as: strong van der Waals interactions between the canthaxanthin molecule and the acyl chains of lipids, restrictions to the segmental molecular motion of lipid molecules, modifications of the surface of the lipid membranes, effect on the membrane thermotropic properties and finally interactions based on the formation of the hydrogen bonds. Such interactions can lead to a destabilization of the membrane and loss of membrane compactness. In the case of the retinal vasculature, it can lead to an increase in the permeability of the retinal capillary walls and the development of retinopathy.  相似文献   

7.
8.
A nomenclature for the organization of biological membranes is proposed. The terms primary (composition), secondary (transverse and lateral distribution), tertiary (membrane stacking/unstacking), and quaternary (membrane-membrane, cell-cell interactions) levels of organization are used by analogy with protein structure, but at each level the membrane organization is more complex and dynamic than protein structure.  相似文献   

9.
10.
11.
12.
13.
Melatonin is a hormone that has been shown to have protective effects in several diseases that are associated with cholesterol dysregulation, including cardiovascular disease, Alzheimer's disease, and certain types of cancers. We studied the interaction of melatonin with model membranes made of dimyristoylphosphatidylcholine (DMPC) at melatonin concentrations ranging from 0.5 mol% to 30 mol%. From 2-dimensional X-ray diffraction measurements, we find that melatonin induces a re-ordering of the lipid membrane that is strongly dependent on the melatonin concentration. At low melatonin concentrations, we observe the presence of melatonin-enriched patches in the membrane, which are significantly thinner than the lipid bilayer. The melatonin molecules were found to align parallel to the lipid tails in these patches. At high melatonin concentrations of 30 mol%, we observe a highly ordered melatonin structure that is uniform throughout the membrane, where the melatonin molecules align parallel to the bilayers and one melatonin molecule associates with 2 lipid molecules. Understanding the organization and interactions of melatonin in membranes, and how these are dependent on the concentration, may shed light into its anti-amyloidogenic, antioxidative and photoprotective properties and help develop a structural basis for these properties.  相似文献   

14.
15.
16.
The molecular organization of tight junctions   总被引:17,自引:12,他引:5       下载免费PDF全文
  相似文献   

17.
18.
19.
Theoretical considerations show that the presence of the polar group regions in bimolecular lipid membranes will produce a small (2–3%) dispersion of the bimolecular lipid membrane capacitance at low frequencies (0.1–100 Hz).A dispersion in conductance will also result. Calculations are given of the resolution of phase angle and impendance amplitude required to detect this dispersion and a new measuring technique is described which can achieve this. From the experimental result presented for lecithin bimolecular lipid membranes a determination was made of the individual capacitances and conductances of both the hydrocarbon and polar groups regions. The polar group conductance was found to vary from 700 μΩ?1 · cm?2 (in 1 mM KCl) to 2000 μΩ?1 · cm?2 (in 1 M KCl).The polar group capacitances were found to be approx.30 μF · cm?2 and not systematically dependent on the concentration of the external electrolyte.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号