首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Roles of jasmonate and ethylene signalling and their interaction in yeast elicitor-induced biosynthesis of a phytoalexin, beta-thujaplicin, were investigated in Cupressus lusitanica cell cultures. Yeast elicitor, methyl jasmonate, and ethylene all induce the production of beta-thujaplicin. Elicitor also stimulates the biosynthesis of jasmonate and ethylene before the induction of beta-thujaplicin accumulation. The elicitor-induced beta-thujaplicin accumulation can be partly blocked by inhibitors of jasmonate and ethylene biosynthesis or signal transduction. These results indicate that the jasmonate and ethylene signalling pathways are integral parts of the elicitor signal transduction leading to beta-thujaplicin accumulation. Methyl jasmonate treatment can induce ethylene production, whereas ethylene does not induce jasmonate biosynthesis; methyl jasmonate-induced beta-thujaplicin accumulation can be partly blocked by inhibitors of ethylene biosynthesis and signalling, while blocking jasmonate biosynthesis inhibits almost all ethylene-induced beta-thujaplicin accumulation. These results indicate that the ethylene and jasmonate pathways interact in mediating beta-thujaplicin production, with the jasmonate pathway working as a main control and the ethylene pathway as a fine modulator for beta-thujaplicin accumulation. Both the ethylene and jasmonate signalling pathways can be regulated upstream by Ca(2+). Ca(2+) influx negatively regulates ethylene production, and differentially regulates elicitor- or methyl jasmonate-stimulated ethylene production.  相似文献   

2.
Methyl jasmonate (JA-Me) at 10–3 M completely inhibited Amaranthus caudatus seed germination. Exogenous ethylene could totally reverse this inhibition. The inhibitor of ethylene action, 2,5-norbornadiene (NBD), increased the sensitivity of seeds to JA-Me. Methyl jasmonate inhibited ethylene production and also decreased both 1-aminocyclopropane-1-carboxylic acid (ACC) and malonyl ACC (MACC) content. Likewise, ACC oxidase activity in vivo was decreased by jasmonate. Similarly ACC oxidase activity in vitro isolated from seeds incubated in the presence of JA-Me was lower than that isolated from untreated seeds.The inhibitory JA-Me action on seed germination seems to be mainly associated with the inhibition of ethylene biosynthesis. Both inhibition of ACC synthase and ACC oxidase activity and/or synthesis can be involved.  相似文献   

3.
4.
The effect of atmospheric methyl jasmonate on the oxylipin pathway was investigated in leaves of tobacco (Nicotiana tabacum L.), cucumber (Cucumis sativa L.), and Arabidopsis thaliana (L.). Differential sensitivities of test plants to methyl jasmonate were observed. Thus, different concentrations of methyl jasmonate were required for induction of changes in the oxylipin pathway. Arabidopsis was the least and cucumber the most sensitive to methyl jasmonate. Methyl jasmonate induced the accumulation of lipoxygenase protein and a corresponding increase in extractable lipoxygenase activity. Atmospheric methyl jasmonate additionally induced hydroperoxide lyase activity and the enhanced production of several volatile six-carbon products. It is interesting that lipid hydroperoxidase activity, which is a measure of hydroperoxide lyase plus allene oxide synthase plus possibly other lipid hydroperoxide-metabolizing activities, was not changed by methyl jasmonate treatment. Methyl jasmonate selectively altered the activity of certain enzymes of the oxylipin pathway (lipoxygenase and hydroperoxide lyase) and increased the potential of leaves for greatly enhanced six-carbon-volatile production.  相似文献   

5.
Methyl jasmonate (MeJA) was found to reduce spore germination, hyphal and mycelial growth in Alternaria alternata (Fr.) Keissl. The addition of ethephon or 1-aminocyclopropane-1-carboxylic acid (ACC), ethylene precursor, together with MeJA to the culture medium resulted in a promotion of all developmental stages of the fungus; these compounds partially or completely reversed the inhibition due to MeJA depending on the concentrations applied. MeJA alone had no effect on ethylene production by mycelium, but after 6 days of incubation in the presence of ACC, emanation of this gas increased significantly. Ethylene is involved in reversing the inhibition of A. alternata due to MeJA.  相似文献   

6.
Methyl jasmonate (JA-Me) inhibited the germination of cocklebur (Xanthium pennsylvanicum Wallr.) seeds. The inhibition of the germination of cocklebur seeds treated with JA-Me at concentrations less than 300 μm was nullified by ethylene applied exogenously, although the inhibitory effect of 1,000 μm JA-Me was not recovered completely even by high concentrations of ethylene (10,000 μL/liter). JA-Me inhibited ethylene production before seed germination. The level of 1-aminocyclopropane-1-carboxylic acid (ACC) in the cotyledonary tissues treated with JA-Me decreased but not the level of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC). JA-Me inhibited the conversion of ACC to ethylene in the tissues. These results suggested that JA-Me inhibits ethylene production by prevention of ACC oxidation in addition to ACC synthesis. We believe that the inhibition of ethylene production by JA-Me results in the retardation of the germination of cocklebur seeds. Received June 4, 1997; accepted October 23, 1997  相似文献   

7.
Torulaspora delbrueckii alone and in combination with methyl jasmonate was applied to the control of Penicillium expansum. For evaluation of direct effect of Methyl jasmonate on mycelial growth of pathogen, it was added to potato dextrose agar culture at different concentrations. Effect of methyl jasmonate on population of yeast in nutrient yeast dextrose broth media was determined after 24 and 48 h. Results showed that methyl jasmonate had no significant direct effect on pathogen and yeast. Also, evaluation of methyl jasmonate effect on the population of yeast in apple wounds indicated that methyl jasmonate at different concentrations increased population growth of yeast at 20°C, 8 and 15 days after inoculation in toward the control and it had no significant effect on population dynamics of yeast at 4°C. In vivo, the results indicated that combination of methyl jasmonate with antagonistic yeast reduced the blue mould of apples better than methyl jasmonate and yeast alone.  相似文献   

8.
Bufler G 《Plant physiology》1984,75(1):192-195
Apples (Malus sylvestris Mill, cv Golden Delicious) were treated before harvest with aminoethoxyvinylglycine (AVG). AVG is presumed to reversibly inhibit 1-aminocyclopropane-1-carboxylic acid (ACC) activity, but not the formation of ACC synthase. AVG treatment effectively blocked initiation of autocatalytic ethylene production and ripening of harvested apples. Exogenous ethylene induced extractable ACC synthase activity and ripening in AVG-treated apples. Removal of exogenous ethylene caused a rapid decline in ACC synthase activity and in CO2 production. The results with ripened, AVG-treated apples indicate (a) a dose-response relationship between ethylene and enhancement of ACC synthase activity with a half-maximal response at approximately 0.8 μl/l ethylene; (b) reversal of ethylene-enhanced ACC synthase activity by CO2; (c) enhancement of ACC synthase activity by the ethylene-activity analog propylene.

Induction of ACC synthase activity, autocatalytic ethylene production, and ripening of preclimacteric apples not treated with AVG were delayed by 6 and 10% CO2, but not by 1.25% CO2. However, each of these CO2 concentrations reduced the rate of increase of ACC synthase activity.

  相似文献   

9.
Methyl jasmonate (JA-Me), applied to dendrobium and petunia flowers either as an aqueous solution through the cut stem or stigma, or as a gas, accelerated senescence. The rate of appearance of wilting symptoms was directly related to the amount of JA-Me applied to the flowers. JA-Me increased ethylene production by the flowers, irrespective of application method, and this effect was also proportional to the dose of the compound. In both dendrobium and petunia flowers, the JA-Me induced increases in ethylene production and 1-aminocyclopropane-1-carboxylic acid content followed similar patterns. Aminooxyacetic acid, an inhibitor of ACC-synthase, and silver-thiosulfate, an inhibitor of ethylene action, completely inhibited the effects of JA-Me. It is concluded that JA-Me enhances petunia and dendrobium flower senescence via the promotion of ACC and ethylene production.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AOA aminooxyacetic acid - Fl flower - JA jasmonic acid - JA-Me jasmonic acid methyl ester - LOX lipoxygenase - PLase A A-type phospholipase - STS silver-thiosulfate  相似文献   

10.
Four of five apple cultivars (Golden Delicious, Red Delicious, McIntosh, Macoun, and Melrose) inoculated with Escherichia coli O157:H7 promoted growth of the bacterium in bruised tissue independent of the date of harvest (i.e., degree of apple ripening) or the source of the apple (i.e., tree-picked or dropped fruit). Apple harvest for this study began 4 September 1998 and ended 9 October, with weekly sampling. Throughout this study, freshly picked (<2 days after harvest) McIntosh apples usually prevented the growth of E. coli O157:H7 for 2 days. Growth of E. coli O157:H7 did occur following 6 days of incubation in bruised McIntosh apple tissue. However, the maximum total cell number was approximately 80-fold less than the maximum total cell number recovered from Red Delicious apples. When fruit was stored for 1 month at 4 degrees C prior to inoculation with E. coli O157:H7, all five cultivars supported growth of the bacterium. For each apple cultivar, the pH of bruised tissue was significantly higher and degrees Brix was significantly lower than the pH and degrees Brix of undamaged tissue regardless of the source. In freshly picked apples, changes in the pH did not occur over the harvest season. Bruised Golden Delicious, McIntosh, and Melrose apple tissue pHs were not significantly different (tree-picked or dropped), and the degrees Brix values of McIntosh, Macoun, and Melrose apple tissue were not significantly different. Single-cultivar preparations of cider did not support growth of E. coli, and the cell concentration of inoculated cider declined over an 11-day test period. The rate of decline in E. coli cell concentration in the McIntosh cider was greater than those in the other ciders tested. The findings of this study suggested that the presence of some factor besides, or in addition to, pH inhibited E. coli growth in McIntosh apples.  相似文献   

11.
Bufler G 《Plant physiology》1986,80(2):539-543
Internal ethylene concentration, ability to convert 1-amino-cyclopropane-1-carboxylic acid (ACC) to ethylene (ethylene-forming enzyme [EFE] activity) and ACC content in the peel of apples (Malus domestica Borkh., cv Golden Delicious) increased only slightly during fruit maturation on the tree. Treatment of immature apples with 100 microliters ethylene per liter for 24 hours increased EFE activity in the peel tissue, but did not induce an increase in ethylene production. This ability of apple peel tissue to respond to ethylene with elevated EFE activity increased exponentially during maturation on the tree. After harvest of mature preclimacteric apples previously treated with aminoethoxyvinyl-glycine, 0.05 microliter per liter ethylene did not immediately cause a rapid increase of development in EFE activity in peel tissue. However, 0.5 microliter per liter ethylene and higher concentrations did. The ethylene concentration for half-maximal promotion of EFE development was estimated to be approximately 0.9 microliter per liter. CO2 partially inhibited the rapid increase of ethylene-promoted development of EFE activity. It is suggested that ethylene-promoted CO2 production is involved in the regulation of autocatalytic ethylene production in apples.  相似文献   

12.
Hairy roots were induced by infecting stems and leaves of Glycyrrhiza inflata with Agrobacterium rhizogenes ATCC 15834. The optimization of growth and glycyrrhizin accumulation of G. inflata hairy roots was studied. Sucrose (6%, w/v) was optimal for growth and glycyrrhizin accumulation in G. inflata hairy roots. Effects of elicitors like chitosan, methyl jasmonate, and yeast extract on glycyrrhizin production were studied. Methyl jasmonate (100 microM) was most efficient in enhancing glycyrrhizin production up to almost 109 microg/g dry weight on day 5 of elicitation. These results indicate that application of elicitors can enhance the capacity of G. inflata hairy roots to produce glycyrrhizin.  相似文献   

13.
Aminooxyacetic acid (AOA), an inhibitor of ACC biosynthesis, applied together with methyl jasmonate (JA-Me) to mature green and light-green tomatoes cv. Venture greatly inhibited ethylene production stimulated by JA-Me, when analyzed in ripe and overripe stages. AOA applied alone did not affect ethylene production in the same conditions of treatment and analysis. It is suggested that after JA-Me treatment of tomatoes the turnover rate of ACC is higher (JA-Me stimulates EFE activity) in comparison to control tissues, and, consequently, AOA inhibited ethylene production stimulated by methyl jasmonate.  相似文献   

14.
Determining the molecular mechanism of fruit tree architecture is important for tree management and fruit production. An apple mutant ‘McIntosh Wijcik’, which was discovered as a bud mutation from ‘McIntosh’, exhibits a columnar growth phenotype that is controlled by a single dominant gene, Co. In this study, the mutation and the Co gene were analyzed. Fine mapping narrowed the Co region to a 101 kb region. Sequence analysis of the Co region and the original wild-type co region identified an insertion mutation of an 8202 bp long terminal repeat (LTR) retroposon in the Co region. Segregation analysis using a DNA marker based on the insertion polymorphism showed that the LTR retroposon was closely associated with the columnar growth phenotype. RNA-seq and RT-PCR analysis identified a promising Co candidate gene (91071-gene) within the Co region that is specifically expressed in ‘McIntosh Wijcik’ but not in ‘McIntosh’. The 91071-gene was located approximately 16 kb downstream of the insertion mutation and is predicted to encode a 2-oxoglutarate-dependent dioxygenase involved in an unknown reaction. Overexpression of the 91071-gene in transgenic tobaccos and apples resulted in phenotypes with short internodes, like columnar apples. These data suggested that the 8202 bp retroposon insertion in ‘McIntosh Wijcik’ is associated with the short internodes of the columnar growth phenotype via upregulated expression of the adjacent 91071-gene. Furthermore, the DNA marker based on the insertion polymorphism could be useful for the marker-assisted selection of columnar apples.  相似文献   

15.
Hypobaric conditions and treatments with ethylene and the ethylene analogue propylene were used to investigate effects of oxygen and elhylene on 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase activity and ethylene production of apples ( Malus sylveslris Mill. cv. Golden Delicious). Prcclimacteric apples were stored in air at 6.6 kPa (reduced pressure); 6.6 kPa ventilated with pure O2; 6.6 kPa ventilated with 2600 μl 1−1 C2H4; and in air at 101.3 kPa (atmospheric pressure) for 4 months at 4°C. No ACC synthase activity was detectable in apples stored at 6.6 kPa, whereas ACC synthase activity was induced in apples stored at 6.6 kPa and ventilated with either O2 or C2H4. In a further experiment, preclimacteric apples were stored for 14 days either in air at 20 kPa or at 20 kPa ventilated with pure O2. Both treatments were supplied with 58 500 μl 1−1 propylene from day 0 to day 9 or from day 9 to day 12. Ethylene production of apples treated with propylene from day 0 to day 9 increased earlier than ethylene production of untreated apples. Propylene treatment from day 9 to day 12 did not stimulate ethylene production. Ethylene and propylene induced and stimulated extractable ACC synthase activity and ACC formation of apples. Oxygen enhanced this effect. The results also suggest inhibition of in vivo ACC synthase activity by propylene.  相似文献   

16.
17.
Covering apple fruits with double layer waterproof bags to enhance fruit quality and evenness of blush colour is typical on many cultivars in Korea and Japan. Aminoethoxyvinylglycine (AVG) applied to unbagged apple fruits at 3–4 weeks before commercial harvest reduces ethylene production in the fruit, delays fruit ripening and reduces pre-harvest fruit drop. Spray application of AVG to trees of bagged apples should have no effect on apple ripening as there is␣no direct contact with the fruit and the translocation of AVG in apple trees is regarded as negligible. However, preliminary experiments suggested that AVG applied to trees of bagged apples reduced pre-harvest fruit drop in “Kotgetsu” apples. This study investigated the effect of spray treatments of 125 ppm of AVG on fruit drop, fruit ripening (firmness, starch conversion and soluble solids) and ethylene production to whole trees with bagged or unbagged “Kogetsu” fruit, as well as sprays of only the bagged or unbagged fruit on trees on two orchards. AVG applied to whole trees with unbagged apples reduced fruit drop from an average of 58.9% to 10.4%, delayed starch conversion and decreased ethylene production. AVG applied to whole trees with bagged fruit was equally effective in reducing pre-harvest drop, delaying fruit ripening and reducing ethylene production. Application of AVG to unbagged fruit only was nearly as effective as application to whole trees with unbagged fruit but application to bagged fruit only had no effect on fruit ripening or ethylene production. Application of AVG to bagged fruit only did reduce fruit drop to an average of 42.5% but this was not as effective as spraying unbagged fruit only or whole trees with bagged fruit. Possible mechanisms for this effect are discussed.  相似文献   

18.
The effects of daminozide (butanedioic acid-2,2-dimethylhydrazide) on ethylene synthesis by apple fruits were investigated. The objective was to determine the effects of postharvest applications as compared to the standard application of diaminozide in the orchard. Immersion in a solution containing 4.25 g L?1 active ingredient for 5 min delayed the rise in ethylene production in individual “Cox” apples at 15°C by about 2 days, whereas orchard application of 0.85 g L?1 caused delays of about 3 days. Both modes of application depressed the maximal rate of ethylene production attained by ripe apples by about 30%. Daminozide did not affect the stimulation of respiration by ethylene treatment of “Gloster” apples, but it delayed the increase in ethylene synthesis. Daminozide applied immediately after harvest delayed the rise in ethylene synthesis in “Golden Delicious” held at 15°C, but it was less effective when applied 48 h after harvest or when apples were held at 5°C. Exposure to 1–2 μl L?1 ethylene for 48 h was less effective in promoting the rise in ethylene in daminozidetreated “Cox” and “Gloster” apples than in untreated fruit. High (100–1000 μl L?1) concentrations of ethylene more or less overcame the daminozide effect. Apples absorbed about 40% of surface-applied [14C]daminozide in 48 h, but more than 90% of the radioactivity in the fruit was recovered from the peel and outer 1 cm of the cortex. Daminozide was partly converted to carbon dioxide and other metabolites.  相似文献   

19.
20.
Methyl jasmonate increased taxane production in suspension cultures of Taxus baccata Pendula. Time course changes of taxane production after methyl jasmonate addition were different from normal kinetics without elicitation. Baccatin III and 10-deacetyl baccatin III were detected first and paclitaxel, 10-deacetyl taxol and cephalomanine followed each other in sequence. Paclitaxel was not a dead-end metabolite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号