首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Campylobacter jejuni is a leading cause of gastroenteritis in humans. Campylobacter jejuni produces extracellular polysaccharides that have been characterized structurally and shown to be independent of lipopolysaccharides. Furthermore, it has been suggested that these C. jejuni polysaccharides are capsular in nature, although their lipid anchor has not been identified. In this report, the occurrence of a lipid-linked capsular-like polysaccharide in C. jejuni is conclusively shown, and the lipid anchor identified as dipalmitoyl-glycerophosphate.  相似文献   

2.
The nature of the polysaccharide molecules of the human enteric pathogen Campylobacter jejuni has been the subject of debate. Previously, C. jejuni 81116 was shown to contain two different polysaccharides, one acidic (polysaccharide A) and the other neutral (polysaccharide B), occurring in a 3 : 1 ratio, respectively. The aim of this study was to determine the molecular origin of these polysaccharides. Using a combination of centrifugation, gel permeation chromatography, chemical assays, and (1)H-NMR analysis, polysaccharide B was shown to be derived from lipopolysaccharide and polysaccharide A from capsular polysaccharide. Thus, C. jejuni 81116 produces both lipopolysaccharide-like molecules and capsular polysaccharide.  相似文献   

3.
Campylobacter jejuni is the leading bacterial cause of gastroenteritis worldwide. The present study was undertaken to determine the forms of polysaccharide-related compounds (PRCs) produced by C. jejuni and the culture conditions influencing their production. Expression of polysaccharides by C. jejuni was influenced by culture medium composition and growth phase. In addition to the production of lipooligosaccharide and capsular polysaccharide, a previously undescribed polysaccharide, not related to capsular polysaccharide, was shown to occur in C. jejuni in batch liquid and chemostat cultures. Thus, a variety of PRCs are produced by C. jejuni, and this should be considered when growing the bacterium in vitro for pathogenesis studies.  相似文献   

4.
The amazing repertoire of glycoconjugates that are found in Campylobacter jejuni includes lipooligosaccharides mimicking human glycolipids, capsular polysaccharides with complex and unusual sugars, and proteins that are post-translationally modified with either O- or N-linked glycans. Thus, the glycome of this important food-borne pathogen is an excellent toolbox for glycobiologists to understand the fundamentals of these pathways and their role in host-microbe interactions, develop new techniques for glycobiology and exploit these pathways for novel diagnostics and therapeutics. The exciting surge in recent research activities will be summarized in this review.  相似文献   

5.
Campylobacter jejuni, a Gram-negative spiral bacterium, is the most common bacterial cause of acute human gastroenteritis and is increasingly recognized for its association with the serious post-infection neurological complications of the Miller-Fisher and Guillain-Barré syndromes. C. jejuni lipopolysaccharide (LPS) is thought to be involved in the pathogenesis of both uncomplicated infection and more serious sequelae, yet the LPS remains poorly characterized. Current studies on C. jejuni suggest that all strains produce lipooligosaccharide (LOS), with about one-third of strains also producing high-molecular-weight LPS (referred to as O-antigen). In this report, we demonstrate the presence of the high-molecular-weight LPS in all C. jejuni strains tested. Furthermore, we show that this LPS is biochemically and genetically unrelated to LOS and is similar to group II and group III capsular polysaccharides. All tested kpsM, kpsS and kpsC mutants of C. jejuni lost the ability to produce O-antigen. Moreover, this correlated with serotype changes. We demonstrate for the first time that the previously described O-antigen of C. jejuni is a capsular polysaccharide and a common component of the thermostable antigen used for serotyping of C. jejuni.  相似文献   

6.
Campylobacter jejuni 81-176 lipooligosaccharide (LOS) is composed of two covalently linked domains: lipid A, a hydrophobic anchor, and a nonrepeating core oligosaccharide, consisting of an inner and outer core region. We report the isolation and characterization of the deepest rough C. jejuni 81-176 mutant by insertional mutagenesis into the waaC gene, encoding heptosyltransferase I that catalyzes the transfer of the first L-glycero-D-manno-heptose residue to 3-deoxy-D-manno-octulosonic residue (Kdo)-lipid A. Tricine gel electrophoresis, followed by silver staining, showed that site-specific mutation in the waaC gene resulted in the expression of a severely truncated LOS compared to wild-type strain 81-176. Gas-liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy showed that the waaC LOS species lacked all sugars distal to Kdo-lipid A. Parallel structural studies of the capsular polysaccharides of the wild-type strain 81-176 and waaC mutant revealed loss of the 3-O-methyl group in the waaC mutant. Complementation of the C. jejuni mutant by insertion of the wild-type C. jejuni waaC gene into a chromosomal locus resulted in LOS and capsular structures identical to those expressed in the parent strain. We also report here the presence of O-methyl phosphoramidate in wild-type strain 81-176 capsular polysaccharide.  相似文献   

7.
8.
Glycomics, the study of microbial polysaccharides and genes responsible for their formation, requires the continuous development of rapid and sensitive methods for the identification of glycan structures. In this study, methods for the direct analysis of sugars from 108 to 1010 cells are outlined using the human gastrointestinal pathogen, Campylobacter jejuni. Using capillary-electrophoresis coupled with sensitive electrospray mass spectrometry, we demonstrate variability in the lipid A component of C. jejuni lipooligosaccharides (LOSs). In addition, these sensitive methods have permitted the detection of phase-variable LOS core structures that were not observed previously. High resolution magic angle spinning (HR-MAS) NMR was used to examine capsular polysaccharides directly from campylobacter cells and showed profiles similar to those observed for purified polysaccharides analyzed by solution NMR. This method also exhibited the feasibility of campylobacter serotyping, mutant verification, and preliminary sugar analysis. HR-MAS NMR examination of growth from individual colonies of C. jejuni NCTC11168 indicated that the capsular glycan modifications are also phase-variable. These variants show different staining patterns on deoxycholate-PAGE and reactivity with immune sera. One of the identified modifications was a novel -OP=O(NH2)OMe phosphoramide, not observed previously in nature. In addition, HR-MAS NMR detected the N-linked glycan, GalNAc-alpha1,4-GalNAc-alpha1,4-[Glc-beta1,3-]GalNAc-alpha1,4-GalNAc-alpha1,4-GalNAc-alpha1,3-Bac, where Bac is 2,4-diacetamido-2,4,6-trideoxy-d-glucopyranose, in C. jejuni and Campylobacter coli. The presence of this common heptasaccharide in multiple campylobacter isolates demonstrates the conservation of the N-linked protein glycosylation pathway in this organism and describes the first report of HR-MAS NMR detection of N-linked glycans on glycoproteins from intact bacterial cells.  相似文献   

9.
细菌的荚膜多糖是生物膜的重要组成部分,在细菌的生长分裂、维持细胞壁形态、抵御外界环境以及免疫反应等方面都起到重要作用。在致病菌中,荚膜多糖常作为一种毒力因子发挥作用。在革兰氏阳性菌中,荚膜多糖的化学结构、生物合成过程及功能应用越来越受到关注。讨论了革兰氏阳性菌中部分致病菌的荚膜多糖与非致病菌表面多糖的分布位置、化学组成及其结构特异性。重点讨论三种具有代表性的革兰氏阳性致病菌及非致病菌株:肺炎链球菌(Streptococcus pneumonia)、金黄色葡萄球菌(Staphylococcus aureus)及乳酸乳球菌(Lactococcus lactis)。综述革兰氏阳性菌中荚膜多糖生物合成的三种方式:Wzx/Wzy-依赖通路、ABC转运蛋白(ABC transporter)途径及合酶依赖途径,并举例解释了相应多糖的合成过程及相关基因。介绍了革兰氏阳性菌荚膜多糖及表面多糖的生理功能,如屏障保护功能、胞间黏附功能以及参与宿主细胞的免疫反应等。结合荚膜多糖的生物学功能,概述其当前主要研究进展,如构建高耐受工程菌疫苗研制等。结合细菌荚膜多糖的特征差异,对其在医药与工业生产领域的广阔前景提出展望和建议。  相似文献   

10.
Campylobacter jejuni produces both lipooligosaccharide (LOS) and a higher-molecular-weight polysaccharide that is believed to form a capsule. The role of these surface polysaccharides in C. jejuni-mediated enteric disease is unclear; however, epitopes associated with the LOS are linked to the development of neurological complications. In Escherichia coli and Salmonella enterica serovar Typhimurium the waaF gene encodes a heptosyltransferase, which catalyzes the transfer of the second L-glycero-D-manno-heptose residue to the core oligosaccharide moiety of lipopolysaccharide (LPS), and mutation of waaF results in a truncated core oligosaccharide. In this report we confirm experimentally that C. jejuni gene Cj1148 encodes the heptosyltransferase II enzyme, WaaF. The Campylobacter waaF gene complements an S. enterica serovar Typhimurium waaF mutation and restores the ability to produce full-sized lipopolysaccharide. To examine the role of WaaF in C. jejuni, waaF mutants were constructed in strains NCTC 11168 and NCTC 11828. Loss of heptosyltransferase activity resulted in the production of a truncated core oligosaccharide, failure to bind specific ligands, and loss of serum reactive GM(1), asialo-GM(1), and GM(2) ganglioside epitopes. The mutation of waaF did not affect the higher-molecular-weight polysaccharide supporting the production of a LOS-independent capsular polysaccharide by C. jejuni. The exact structural basis for the truncation of the core oligosaccharide was verified by comparative chemical analysis. The NCTC 11168 core oligosaccharide differs from that known for HS:2 strain CCUG 10936 in possessing an extra terminal disaccharide of galactose-beta(1,3) N-acetylgalactosamine. In comparison, the waaF mutant possessed a truncated molecule consistent with that observed with waaF mutants in other bacterial species.  相似文献   

11.
荚膜是一些细菌所具有的表层结构,与多种疾病有着密切联系。细菌荚膜多糖不仅结构复杂,而且在免疫活性方面发挥着重要的作用。同一种细菌根据其荚膜多糖的抗原性不同可分为不同的血清型,不同血清型细菌荚膜多糖的化学结构也存在差异。以荚膜多糖为基础的疫苗正在积极研究开发当中,对不同致病细菌荚膜多糖具体化学结构的掌握是疫苗得到许可的必备条件之一。本文对致病细菌荚膜多糖的化学结构进行了归纳和总结,以期为荚膜多糖的化学结构研究和疫苗开发提供参考。  相似文献   

12.
The role of bacterial capsular antigens represented in capsular polysaccharides and exoglycans in pathogenicity and virulence of bacteria is discussed in this review. Using capsular antigens for vaccines against severe diseases caused by capsular microorganisms is considered in detail. The use of conjugates of capsular polysaccharides and their fragments with proteins and peptides for vaccine as well as using liposomes as adjuvants for the capsular antigens are described. Data concerning structural elucidation of bacterial capsular antigens are given in the first part of this review. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 9, pp. 1175–1182.  相似文献   

13.
The role of lipopolysaccharide (LPS) in the serotyping of Campylobacter jejuni based on heat-stable antigens was examined using SDS-PAGE and a silver stain for carbohydrate. None of the 32 type strains of Camp. jejuni expressed long-chain LPS. Rabbit antibodies, prepared to 10 selected strains of Camp. jejuni , reacted with surface-exposed carbohydrate antigens, which were not LPS. This study suggests that the heat-stable antigens of Camp. jejuni , which form the basis for the established Penner serotyping scheme, are probably capsular and not LPS.  相似文献   

14.
The in vitro binding of the macrophage mannose receptor to a range of different bacterial polysaccharides was investigated. The receptor was shown to bind to purified capsular polysaccharides from Streptococcus pneumoniae and to the lipopolysaccharides, but not capsular polysaccharides, from Klebsiella pneumoniae. Binding was Ca(2+)-dependent and inhibitable with d-mannose. A fusion protein of the mannose receptor containing carbohydrate recognition domains 4-7 and a full-length soluble form of the mannose receptor containing all domains external to the transmembrane region both displayed very similar binding specificities toward bacterial polysaccharides, suggesting that domains 4-7 are sufficient for recognition of these structures. Surprisingly, no direct correlation could be made between polysaccharide structure and binding to the mannose receptor, suggesting that polysaccharide conformation may play an important role in recognition. The full-length soluble form of the mannose receptor was able to bind simultaneously both polysaccharide via the carbohydrate recognition domains and sulfated oligosaccharide via the cysteine-rich domain. The possible involvement of the mannose receptor, either cell surface or soluble, in the innate and adaptive immune responses to bacterial polysaccharides is discussed.  相似文献   

15.
Klebsiella pneumoniae serotype 1 and serotype 2 and their capsular variants were examined for production of cell-associated capsular polysaccharides and extracellular capsular polysaccharides. The virulence of these organisms in experimental animals was examined via intraperitoneal injection in mice and transtracheal inoculation into the lungs of rats. It was found that the production of either polysaccharide component correlated with the observed virulence. The extracellular polysaccharides were purified by ethanol precipitation, electrodialysis, extraction with quaternary ammonium salts, and gel filtration. These purification steps allowed for the separation and purification of both the extracellular lipopolysaccharide and the extracellular capsular polysaccharide. Purified extracellular capsular polysaccharide and extracellular lipopolysaccharide were co-injected with K. pneumoniae intraperitoneally into mice to determine if either of these substances would produce an effect on the natural course of infection in these animals. These studies showed that only purified extracellular lipopolysaccharide enhanced the virulence of K. pneumoniae when co-injected into mice, and this virulence enhancement correlated with the content of extracellular lipopolysaccharide, but not extracellular capsular polysaccharide in mixtures of these polysaccharides. Saponification of K. pneumoniae serotype 1 extracellular polysaccharides significantly decreased their virulence-enhancing capabilities in mice, further suggesting that extracellular lipopolysaccharide may play a role in these infections.  相似文献   

16.
Iron and sulfur oxidizing bacteria produce capsular and colloidal extracellular polymeric substances. The properties and functional role of capsular polysaccharides are well studied. However, colloidal polysaccharides produced by iron oxidizing bacteria have not been sufficiently explored. In this paper, the physical and chemical properties of colloidal polysaccharides produced by the iron oxidizing bacterial isolate Leptospirillum ferriphilum CC have been studied. Colloidal polysaccharides were extracted and further investigated by optical polarized microscopy and analytical programs (LobVIEW15 and NOVA) that allowed determining the size, changes in shape, perimeter, degree of hydration, and crystallization of polysaccharides. Computer modeling of the experimental data has revealed that polysaccharides concentration does not contribute to the size of colloids but influence the number of particles.  相似文献   

17.
Previous studies have shown that when pneumococci are incubated in normal, nonimmune serum, they activate the alternative pathway and opsonically active C3b is fixed to the surface of the organism. Other studies have demonstrated that C3-dependent opsonization via the alternative pathway plays a significant role in the nonimmune host's defense against the pneumococcus. The present studies concern the role of the capsular polysaccharide in initiating the activation of the alternative pathway by the pneumococcus. Some pneumococcal capsular polysaccharide types, but not all, are able to activate the alternative pathway. Soluble purified capsular polysaccharide types 1, 4 and 25 activate the alternative pathway, whereas types 2, 3, 14, and 19 do not. Since the capsular polysaccharides exist in their native form attached to the pneumococcal surface, selected capsular polysaccharides were also tested for their ability to activate the alternative pathway when attached to a particulate carrier, sheep erythrocytes. Capsular polysaccharide types 2 and 3 failed to activate the alternative pathway when attached to sheep erythrocytes, paralleling the results obtained when these capsular polysaccharides were in solution. In contrast, the type 25 capsular polysaccharide not only activated the alternative pathway when attached to sheep erythrocytes, as it had when in solution, but it also initiated alternative pathway-mediated lysis of the erythrocytes. The capsular polysaccharide is not required for the activation of the alternative pathway by the pneumococcus. Although all types of encapsulated pneumococci are able to activate the alternative pathway, not all the purified capsular polysaccharide types are able to do so. In addition, a nonencapsulated pneumococcus, derived originally from a type 2 organism, activates the alternative pathway as well as a fully encapsulated type 2 pneumococcus.  相似文献   

18.
Within the capsule gene complex (cps) of Neisseria meningitidis two functional regions B and C are involved in surface translocation of the cytoplasmically synthesized capsular polysaccharide, which is a homopolymer of α-2,8 polyneuraminic acid. The region-C gene products share characteristics with transporter proteins of the ABC (ATP-binding cassette) superfamily of active transporters. For analysis of the role of region B in surface translocation of the capsular polysaccharide we purified the polysaccharides of region B- and region C-defective Escherichia coli clones by affinity chromatography. The molecular weights of the polysaccharides were determined by gel filtration and the polysaccharides were analysed for phospholipid substitution by polyacrylamide gel electrophoresis and immunoblotting. The results indicate that the full-size capsular polysaccharide with a phospholipid anchor is synthesized intracellularly and that lipid modification is a strong requirement for translocation of the poly saccharide to the cell surface. Proteins encoded by region B are involved in phospholipid substitution of the capsular polysaccharide. Nucleotide sequence analysis of region B revealed two open reading frames, which encode proteins with molecular masses of 45.1 and 48.7 kDa.  相似文献   

19.
Sedimentation constants at infinite dilution have been found to be 1.89 and 4.06 for the somatic and capsular polysaccharides, respectively, from pneumococcus Type III. Intrinsic viscosities have been determined for the somatic and capsular polysaccharides of pneumococcus Type III using the Ostwald viscometer. Molecular weights and dimensions have been calculated for the somatic and capsular polysaccharides of pneumococcus Type III assuming the molecules to be prolate ellipsoids of revolution. Values for the somatic polysaccharide are: molecular weight, 26,400; diameter, 0.97 mmicro; and length, 36.18 mmicro. Values for the capsular polysaccharide are: molecular weight, 171,800; diameter, 1.04 mmicro; and length, 177.87 mmicro. The molecular weights were calculated for the somatic and capsular polysaccharides of pneumococcus Type III assuming the molecules to be flexible chains. The value of the molecular weight of the somatic polysaccharide is 31,500 and the value for the molecular weight of the capsular polysaccharide is 267,500. The molecules of both the somatic and capsular polysaccharides exhibit high degrees of asymmetry.  相似文献   

20.
Sedimentation constants at infinite dilution have been found to be 1.89 and 4.06 for the somatic and capsular polysaccharides, respectively, from pneumococcus Type III. Intrinsic viscosities have been determined for the somatic and capsular polysaccharides of pneumococcus Type III using the Ostwald viscometer. Molecular weights and dimensions have been calculated for the somatic and capsular polysaccharides of pneumococcus Type III assuming the molecules to be prolate ellipsoids of revolution. Values for the somatic polysaccharide are: molecular weight, 26,400; diameter, 0.97 mµ; and length, 36.18 mµ. Values for the capsular polysaccharide are: molecular weight, 171,800; diameter, 1.04 mµ; and length, 177.87 mµ. The molecular weights were calculated for the somatic and capsular polysaccharides of pneumococcus Type III assuming the molecules to be flexible chains. The value of the molecular weight of the somatic polysaccharide is 31,500 and the value for the molecular weight of the capsular polysaccharide is 267,500. The molecules of both the somatic and capsular polysaccharides exhibit high degrees of asymmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号