首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Viruses of the order Mononegavirales encompass life-threatening pathogens with single-stranded segmented or nonsegmented negative-strand RNA genomes. The RNA genomes are characterized by highly conserved sequences at the extreme untranslated 3' and 5' termini that are most important for virus infection and viral RNA synthetic processes. The 3' terminal genome regions of negative-strand viruses such as vesicular stomatitis virus, Sendai virus, or influenza virus contain a high number of conserved U and G nucleotides, and synthetic oligoribonucleotides encoding such sequences stimulate sequence-dependent cytokine responses via TLR7 and TLR8. Immune cells responding to such sequences include NK cells, NK/T cells, plasmacytoid, and myeloid dendritic cells, as well as monocytes and B cells. Strong Th1 and pro-inflammatory cytokine responses are also induced upon in vivo application of oligoribonucleotides. It appears possible that the presence of highly conserved untranslated terminal regions in the viral genome fulfilling fundamental functions for the viral replication may enable the host to induce directed innate immune defense mechanisms, by allowing pathogen detection through essential RNA regions that the virus cannot readily mutate.  相似文献   

2.
Using 3'-end-labeled genome probes, cells infected with vesicular stomatitis virus Chandipura, Cocal, and Piry serotypes were shown to contain (+) leader RNAs of approximately 50 nucleotides in length. The nucleotide sequence of the leader RNA regions of these genomes was determined and compared with the previously reported sequences of both the (+) and (-) leader RNA regions of other vesicular stomatitis virus serotypes. Regions of strong conservation of nucleotide sequence among the various vesicular stomatitis virus serotypes suggest those nucleotides thought to be involved in control functions during vesicular stomatitis virus replication.  相似文献   

3.
The nucleotide sequences of the termini of the mature pseudorabies virus genome and of the junction between these termini in concatemeric DNA were compared. To ensure conservation of unmodified 5' and 3' termini, the end fragments obtained directly (uncloned) from mature viral DNA were sequenced. The sequence obtained from 5' and 3' end labeling revealed that whereas the L terminus was blunt ended, the S terminus had a 2-base (GG) 3' overhang. The sequences spanning the junction between the termini present in concatemeric DNA was also determined and compared with that expected when the two ends of the mature DNA were juxtaposed. This comparison showed that in concatemeric DNA the ends of the mature genome had become joined by blunt-end ligation of one of the strands and that the 2-nucleotide gap on the other strand had been repaired. A significant degree of homology between the sequences spanning the junction between the ends of the varicella-zoster virus and pseudorabies virus genomes was found.  相似文献   

4.
5.
6.
Whole genome duplication (WGD) and subsequent evolution of gene pairs have been shown to have shaped the present day genomes of most, if not all, plants and to have played an essential role in the evolution of many eukaryotic genomes. Analysis of the rice (Oryza sativa ssp. japonica) genome sequence suggested an ancestral WGD ~50-70 Ma common to all cereals and a segmental duplication between chromosomes 11 and 12 as recently as 5 Ma. More recent studies based on coding sequences have demonstrated that gene conversion is responsible for the high sequence conservation which suggested such a recent duplication. We previously showed that gene conversion has been a recurrent process throughout the Oryza genus and in closely related species and that orthologous duplicated regions are also highly conserved in other cereal genomes. We have extended these studies to compare megabase regions of genomic (coding and noncoding) sequences between two cultivated (O. sativa, Oryza glaberrima) and one wild (Oryza brachyantha) rice species using a novel approach of topological incongruency. The high levels of intraspecies conservation of both gene and nongene sequences, particularly in O. brachyantha, indicate long-range conversion events less than 4 Ma in all three species. These observations demonstrate megabase-scale conversion initiated within a highly rearranged region located at ~2.1 Mb from the chromosome termini and emphasize the importance of gene conversion in cereal genome evolution.  相似文献   

7.
Genome segmentation facilitates reassortment and rapid evolution of influenza A virus. However, segmentation complicates particle assembly as virions must contain all eight vRNA species to be infectious. Specific packaging signals exist that extend into the coding regions of most if not all segments, but these RNA motifs are poorly defined. We measured codon variability in a large dataset of sequences to identify areas of low nucleotide sequence variation independent of amino acid conservation in each segment. Most clusters of codons showing very little synonymous variation were located at segment termini, consistent with previous experimental data mapping packaging signals. Certain internal regions of conservation, most notably in the PA gene, may however signify previously unidentified functions in the virus genome. To experimentally test the bioinformatics analysis, we introduced synonymous mutations into conserved codons within known packaging signals and measured incorporation of the mutant segment into virus particles. Surprisingly, in most cases, single nucleotide changes dramatically reduced segment packaging. Thus our analysis identifies cis-acting sequences in the influenza virus genome at the nucleotide level. Furthermore, we propose that strain-specific differences exist in certain packaging signals, most notably the haemagglutinin gene; this finding has major implications for the evolution of pandemic viruses.  相似文献   

8.
Comparative genomics of foot-and-mouth disease virus   总被引:28,自引:0,他引:28       下载免费PDF全文
Here we present complete genome sequences, including a comparative analysis, of 103 isolates of foot-and-mouth disease virus (FMDV) representing all seven serotypes and including the first complete sequences of the SAT1 and SAT3 genomes. The data reveal novel highly conserved genomic regions, indicating functional constraints for variability as well as novel viral genomic motifs with likely biological relevance. Previously undescribed invariant motifs were identified in the 5' and 3' untranslated regions (UTR), as was tolerance for insertions/deletions in the 5' UTR. Fifty-eight percent of the amino acids encoded by FMDV isolates are invariant, suggesting that these residues are critical for virus biology. Novel, conserved sequence motifs with likely functional significance were identified within proteins L(pro), 1B, 1D, and 3C. An analysis of the complete FMDV genomes indicated phylogenetic incongruities between different genomic regions which were suggestive of interserotypic recombination. Additionally, a novel SAT virus lineage containing nonstructural protein-encoding regions distinct from other SAT and Euroasiatic lineages was identified. Insights into viral RNA sequence conservation and variability and genetic diversity in nature will likely impact our understanding of FMDV infections, host range, and transmission.  相似文献   

9.
Nucleotide sequences at the terminal of La Crosse virus RNAs.   总被引:10,自引:1,他引:9       下载免费PDF全文
The 5' and 3'-terminal sequences of the three RNA molecules which make up the genomes of La Crosse virus are reported. Eleven nucleotides at both the 5' and 3' termini of all three RNAs are conserved and complementary. In addition more extensive unique sequence complementarity is present in at least two of the three RNAs.  相似文献   

10.
LSm1-7 complexes promote cellular mRNA degradation, in addition to translation and replication of positive-strand RNA viruses such as the Brome mosaic virus (BMV). Yet, how LSm1-7 complexes act on their targets remains elusive. Here, we report that reconstituted recombinant LSm1-7 complexes directly bind to two distinct RNA-target sequences in the BMV genome, a tRNA-like structure at the 3′-untranslated region and two internal A-rich single-stranded regions. Importantly, in vivo analysis shows that these sequences regulate the translation and replication of the BMV genome. Furthermore, both RNA-target sequences resemble those found for Hfq, the LSm counterpart in bacteria, suggesting conservation through evolution. Our results provide the first evidence that LSm1-7 complexes interact directly with viral RNA genomes and open new perspectives in the understanding of LSm1-7 functions.  相似文献   

11.
12.
13.
We have constructed a series of deletion mutants spanning the genome of duck hepatitis B virus in order to determine which regions of the viral genome are required in cis for packaging of the pregenome into capsid particles. Deletion of sequences within either of two nonadjacent regions prevented replication of the mutant viral genomes expressed in a permissive avian hepatoma cell line in the presence of functionally active viral core and P proteins. Extraction of RNA from cells transfected with these replication-defective mutants showed that the mutants retained the capacity to be transcribed into a pregenomic-size viral RNA, but that these RNA species were not packaged into viral capsids. The two regions defined by these deletions are located 36 to 126 (region I) and 1046 to 1214 (region II) nucleotides downstream of the 5' end of the pregenome and contain sequences which are required in cis for encapsidation of the duck hepatitis B virus pregenome.  相似文献   

14.
The genomes of the two nondefective adenovirus 2/simian virus 40 (Ad2/SV 40) hybrid viruses, nondefective Ad2/SV 40 hybrid virus 1 (Ad2+ND1) and nondefective hybrid virus 3 (Ad2+ND3), WERE FORMED BY A DELETION OF ABOUT 5% OF Ad2 DNA and insertion of part of the SV40 genome. We have compared the cytoplasmic RNA synthesized during both the early and late stages of lytic infection of human cells by these hybrid viruses to that expressed in Ad2-infected and SV40-infected cells. Separated strands of the six fragments of 32P-labeled Ad2 DNA produced by cleavage with the restriction endonuclease EcoRI (isolated from Escherichia coli) and the four fragments of 32P-labeled SV40 DNA produced by cleavage with both a restriction nuclease isolated from Haemophilus parainfluenzae, Hpa1, and EcoRI were prepared by electrophoresis of denatured DNA in agarose gels. The fraction of each fragment strand expressed as cytoplasmic RNA was determined by annealing fragmented 32P-labeled strands to an excess of cellular RNA extracted from infected cells. The segment of Ad2 DNA deleted from both hybrid virus genomes is transcribed into cytoplasmic mRNA during the early phase of Ad2 infection. Hence, we suggest that Ad2 codes for at least one "early" gene product which is nonessential for virus growth in cell culture. In both early Ad2+ND1 and Ad2+ND3-infected cells, 1,000 bases of Ad2 DNA adjacent to the integrated SV40 sequences are expressed as cytoplasmic RNA but are not similarly expressed in early Ad2-infected cells. The 3' termini of this early hybrid virus RNA maps in the vicinity of 0.18 on the conventional SV40 map and probably terminates at the same position as early lytic SV40 cytoplasmic RNA. Therefore, the base sequence in this region of SV40 DNA specifies the 3' termini of early messenger RNA present in both hybrid virus and SV40-infected cells.  相似文献   

15.
H Savilahti  D H Bamford 《Gene》1986,49(2):199-205
The closely related lipid-containing bacteriophages PRD1, PR4, PR5, PR722 and L17 isolated from different parts of the world have double-stranded DNA genomes which replicate in a linear form. The nucleotide (nt) sequences of the genome termini of these viruses reveal 110-111-bp-long inverted terminal repeats (ITRs). Both ends of the viral DNA are identical. The first 18 bp and the last 35 bp of the ITRs are totally conserved in all viruses. Between these conserved nt sequences there is a variable sequence, which enables us to divide the phages into two groups. Comparison of the virus ITRs led also to the identification of a 10-bp-long A + T stretch, where the only changes observed were transversions between A and T. The termini of the PRD1 virus family genomes exhibit sequence similarities to those of phi 29 and Cp-1 families.  相似文献   

16.
Hepatitis E virus (HEV) replication is not well understood, mainly because the virus does not infect cultured cells efficiently. However, Huh-7 cells transfected with full-length genomes produce open reading frame 2 protein, indicative of genome replication (6). To investigate the role of 3'-terminal sequences in RNA replication, we constructed chimeric full-length genomes with divergent 3'-terminal sequences of genotypes 2 and 3 replacing that of genotype 1 and transfected them into Huh-7 cells. The production of viral proteins by these full-length chimeras was indistinguishable from that of the wild type, suggesting that replication was not impaired. In order to better quantify HEV replication in cell culture, we constructed an HEV replicon with a reporter (luciferase). Luciferase production was cap dependent and RNA-dependent RNA polymerase dependent and increased following transfection of Huh-7 cells. Replicons harboring the 3'-terminal intergenotypic chimera sequences were also assayed for luciferase production. In spite of the large sequence differences among the 3' termini of the viruses, replication of the chimeric replicons was surprisingly similar to that of the parental replicon. However, a single unique nucleotide change within a predicted stem structure at the 3' terminus substantially reduced the efficiency of replication: RNA replication was partially restored by a covariant mutation. Similar patterns of replication were obtained when full-length genomes were inoculated into rhesus macaques, suggesting that the in vitro system could be used to predict the effect of 3'-terminal mutations in vivo. Incorporation of the 3'-terminal sequences of the swine strain of HEV into the genotype 1 human strain did not enable the human strain to infect swine.  相似文献   

17.
The genomes of defective-interfering (DI) particles derived from the Sabin strain of type 1 poliovirus (PV1(Sab] were characterized by nuclease S1 mapping using complementary DNA (cDNA) copies of PV1(Sab) genome as probes. The results demonstrated variety in the size and location of the deletions, which were compatible with our previous prediction. The results further indicated that the locations of the deletions were limited within the internal genome region encoding viral capsid proteins and that the deletion sites were clustered in certain areas on the genome. Sequence analysis of a number of cloned cDNAs to the DI genomes revealed that every DI genome retained the correct reading frame for viral protein synthesis. These results strongly suggested that one or all of the viral non-structural proteins might be cis-acting at least at a certain stage in viral replication. A computer search for secondary structures with regard to the deletion sites provided a possible common structure from which, supported by sequences existing on the plus or minus RNA strand of PV1(Sab), deletion regions looped out from the remaining sequences. Replicase might, therefore, skip these transiently formed loop structures with certain frequencies, resulting in the generation of DI genomes. This model could also be considered as a model for genetic recombination in these RNA genomes. Possible "supporting sequences" were also found for every rearranged site on the RNAs of influenza virus and sindbis virus. Thus, we propose a new copy-choice model, designated the "supporting sequence-loop model", for the generation of rearrangements occurring on single-stranded RNA genomes.  相似文献   

18.
19.
N D Stow 《Nucleic acids research》1982,10(17):5105-5119
Deletions extending various distances into the left-hand terminal DNA sequences of the adenovirus type 2 (Ad2) genome were generated in a plasmid containing a cloned fragment spanning from 0 to 4.9 map units. The altered Ad2 DNA sequences were introduced into viral genomes by ligating a plasmid-derived fragment, which included the sequences extending to 3.8 map units, to the 3.8-100 map unit fragment generated by XbaI cleavage of the DNA of the Ad5 variant, d1309 (N.Jones and T.Shenk, Cell 17 683-689, 1979). The infectivity of the ligation products was studied by transfection of line 293 cells. Genomes lacking 11, 40, or 51 nucleotides from their left-hand termini, or containing an additional 18dG residues linked to this position were infectious, and analysis of the progeny virus genomes demonstrated that the structure of these modified termini had been restored to normal. In contrast, genomes from which the first 160 base pairs (bp), including the entire 102 bp left hand inverted terminal repeat (ITR), had been removed were non-infectious. The results indicate that the ITRs present at the opposite ends of transfecting DNA molecules are able to interact in vivo, and enable the production of viable viruses containing corrected left-hand terminal sequences. Possible mechanisms for this interaction are discussed.  相似文献   

20.
RNA virus genomes are compact, often containing multiple overlapping reading frames and functional secondary structure. Consequently, it is thought that evolutionary interactions between nucleotide sites are commonplace in the genomes of these infectious agents. However, the role of epistasis in natural populations of RNA viruses remains unclear. To investigate the pervasiveness of epistasis in RNA viruses, we used a parsimony-based computational method to identify pairs of co-occurring mutations along phylogenies of 177 RNA virus genes. This analysis revealed widespread evidence for positive epistatic interactions at both synonymous and nonsynonymous nucleotide sites and in both clonal and recombining viruses, with the majority of these interactions spanning very short sequence regions. These findings have important implications for understanding the key aspects of RNA virus evolution, including the dynamics of adaptation. Additionally, many comparative analyses that utilize the phylogenetic relationships among gene sequences assume that mutations represent independent, uncorrelated events. Our results show that this assumption may often be invalid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号