首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platenkamp GA  Foin TC 《Oecologia》1990,83(2):201-208
Summary A field experiment was performed to estimate the relative importance of neighbors and the rest of the environment for the growth, mortality and reproductive output of cloned individuals of the perennial bunchgrass Anthoxanthum odoratum. Single cloned Anthoxanthum tillers (targets) were reciprocally transplanted between a xeric and a mesic grassland site with one of four neighbor treatments: (1) no neighbors, (2) Anthoxanthum neighbors transplanted from the xeric site, (3) Anthoxanthum neighbors from the mesic site, and (4) Holcus lanatus neighbors. Targets without neighbors had a twofold higher two year reproductive output (RO) than those with neighbors, but there was no difference among neighbor treatments. No overall site effect on two year RO was found, because the site with the highest mortality among targets produced larger plants, with more inflorescences. Neighborhood competition was more intense at the xeric site than at the mesic site. The effects of environmental and neighborhood variation on Anthoxanthum were additive, rather than interactive. Population origin did not affect target performance significantly. Anthoxanthum neighbors of different origin did respond differentially to transplant site. There was a strong target genotype x site interaction, but no genotype x neighborhood interaction.  相似文献   

2.
Phenotypic plasticity allows organisms to cope with environmental variation and may aid in the evolution of novel traits. However, whether phenotypic plasticity is beneficial, or if acclimation responses might be constrained to particular ecotypes is generally poorly explored. Here we test the beneficial acclimation hypothesis (BAH) and its alternatives for desiccation resistance to atmospheric moisture in mesic‐ and xeric‐adapted Glossina species. Highly significant interactions among acclimation and test humidity were detected for water loss rates indicative of significant phenotypic plasticity. Ordered‐factor anova was unable to reject predictions of the ‘drier is better’ acclimation hypothesis in xeric Glossina morsitans and mesic G. austeni. Evidence for the ‘deleterious acclimation hypothesis’ was found for mesic G. palpalis as expected from the moist habitats it typically occupies. By contrast, support for the ‘optimal acclimation hypothesis’ was found in xeric G. pallidipes. Little support for BAH was obtained in the present study, although other hypotheses, which might enhance fitness within the environments these species are typically exposed to, were supported. However, acclimation responses were not necessarily constrained to xeric/mesic ecotypes which might be expected if adaptation to a particular environment arose as a trade‐off between plastic responses and living in a particular habitat. These results highlight the complexity of acclimation responses and suggest an important role for phenotypic plasticity in moderating environmental effects on evolutionary fitness in Glossina.  相似文献   

3.
Forty years ago, Robert Allard and colleagues documented that the slender wild oat, Avena barbata , occurred in California as two multi-locus allozyme genotypes, associated with mesic and xeric habitats. This is arguably the first example of ecotypes identified by molecular techniques. Despite widespread citation, however, the inference of local adaptation of these ecotypes rested primarily on the allozyme pattern. This study tests for local adaptation of these ecotypes using reciprocal transplant and quantitative trait locus (QTL) mapping techniques. Both ecotypes and 188 recombinant inbred lines (RILs) derived from a cross between them were grown in common garden plots established at two sites representative of the environments in which the ecotypes were first described. Across four growing seasons at each site, three observations consistently emerged. First, despite significant genotype by environment interaction, the mesic ecotype consistently showed higher lifetime reproductive success across all years and sites. Second, the RILs showed no evidence of a trade-off in performance across sites or years, and fitness was positively correlated across environments. Third, at QTL affecting lifetime reproductive success, selection favoured the same allele in all environments. None of these observations are consistent with local adaptation but suggest that a single genotype is selectively favoured at both moist and dry sites. I propose an alternative hypothesis that A. barbata may be an example of contemporary evolution – whereby the favoured genotype is spreading and increasing in frequency – rather than local adaptation.  相似文献   

4.
We created Recombinant Inbred Lines (RILs) derived from a cross between ecotypes of Avena barbata associated with moist (mesic) and dry (xeric) habitats in California. Traits which were correlated with fitness across RILs mapped to the same Quantitative Trait Loci (QTLs) as fitness. However, different QTL affected fitness in different environments so that fitness was weakly correlated across environments. Recombination released considerable heritable variation both in fitness, and in ecologically relevant traits. Many traits showed transgressive segregation caused by recombination of QTL associated in repulsion phase in the parents. In addition, some traits were uncorrelated, allowing novel combinations of those traits to be created. Recombination also created heritable variation in reaction norms for at least one trait (root allocation). Altogether these results suggest that recombination can combine the most selectively advantageous genes and traits of the parents to produce broadly adapted genotypes that are capable of outperforming the parents. Indeed, two of the RILs showed higher fitness than the parental ecotypes across a range of environmental treatments in the greenhouse, but their superiority was less pronounced in the field. Although late-generation recombinants exhibited hybrid breakdown, being less fit, on average, than the mid-parent, early generation hybrids appear to exhibit hybrid vigour through the expression of dominance effects in the heterozyotes. This vigour may offset the effects of hybrid breakdown in the early generations following a cross, enhancing the opportunity for recombination to create broadly adapted genotypes. We discuss the implications of these findings to the evolution of colonizing species.  相似文献   

5.
We used a quantitative trait locus (QTL) approach to study the genetic basis of population differentiation in wild barley, Hordeum spontaneum. Several ecotypes are recognized in this model species, and population genetic studies and reciprocal transplant experiments have indicated the role of local adaptation in shaping population differences. We derived a mapping population from a cross between a coastal Mediterranean population and a steppe inland population from Israel and assessed F3 progeny fitness in the natural growing environments of the two parental populations. Dilution of the local gene pool, estimated as the proportion of native alleles at 96 marker loci in the recombinant lines, negatively affected fitness traits at both sites. QTLs for fitness traits tended to differ in the magnitude but not in the direction of their effects across sites, with beneficial alleles generally conferring a greater fitness advantage at their native site. Several QTLs showed fitness effects at one site only, but no opposite selection on individual QTLs was observed across the sites. In a common-garden experiment, we explored the hypothesis that the two populations have adapted to divergent nutrient availabilities. In the different nutrient environments of this experiment, but not under field conditions, fitness of the F3 progeny lines increased with the number of heterozygous marker loci. Comparison of QTL-effects that underlie genotype x nutrient interaction in the common-garden experiment and genotype x site interaction in the field suggested that population differentiation at the field sites may have been driven by divergent nutrient availabilities to a limited extent. Also in this experiment no QTLs were observed with opposite fitness effects in contrasting environments. Our data are consistent with the view that adaptive differentiation can be based on selection on multiple traits changing gradually along ecological gradients. This can occur without QTLs showing opposite fitness effects in the different environments, that is, in the absence of genetic trade-offs in performance between environments.  相似文献   

6.
We examined heritable variation for quantitative traits within and between naturally occurring mesic and xeric ecotypes of the slender wild oat (Avena barbata), and in 188 recombinant inbred lines derived from a cross between the ecotypes. We measured a suite of seedling and adult traits in the greenhouse, as well as performance-related traits in field sites native to the two ecotypes. Although the ecotypes were genetically diverged for most traits, few traits showed significant heritable variation within either ecotype. In contrast, considerable heritable variation was released in the recombinant progeny of the cross, and transgressive segregation was apparent in all traits. Heritabilities were substantially greater in the greenhouse than in the field, and this was associated with an increase in environmental variance in the field, rather than a decrease in genetic variance. Strong genetic correlations were evident among the recombinants, such that 22 measured traits could be well represented by only seven underlying factors, which accounted for 80% of the total variation. The primary axis of variation in the greenhouse described a trade-off between vegetative and reproductive allocation, mediated by the date of first flowering, and fitness was strongly correlated with this trade-off. Other factors in the greenhouse described variation in size and in seedling traits. Lack of correlation among these factors represents the release of multivariate trait variation through recombination. In the field, a separate axis of variation in overall performance was found for each year/site combination. Performance was significantly correlated across field environments, but not significantly correlated between greenhouse and field.  相似文献   

7.
Monocarpic plant species, where reproduction is fatal, frequently exhibit variation in the length of their prereproductive period prior to flowering. If this life-history variation in flowering strategy has a genetic basis, genotype-by-environment interactions (G x E) may maintain phenotypic diversity in flowering strategy. The native monocarpic plant Common Evening Primrose (Oenothera biennis L., Onagraceae) exhibits phenotypic variation for annual vs. biennial flowering strategies. I tested whether there was a genetic basis to variation in flowering strategy in O. biennis, and whether environmental variation causes G x E that imposes variable selection on flowering strategy. In a field experiment, I randomized more than 900 plants from 14 clonal families (genotypes) into five distinct habitats that represented a natural productivity gradient. G x E strongly affected the lifetime fruit production of O. biennis, with the rank-order in relative fitness of genotypes changing substantially between habitats. I detected genetic variation in annual vs. biennial strategies in most habitats, as well as a G x E effect on flowering strategy. This variation in flowering strategy was correlated with genetic variation in relative fitness, and phenotypic and genotypic selection analyses revealed that environmental variation resulted in variable directional selection on annual vs. biennial strategies. Specifically, a biennial strategy was favoured in moderately productive environments, whereas an annual strategy was favoured in low-productivity environments. These results highlight the importance of variable selection for the maintenance of genetic variation in the life-history strategy of a monocarpic plant.  相似文献   

8.
Our knowledge of the effects of increased levels of ultraviolet-B radiation (UV-B) on plant fitness is limited mainly to yield studies in a few crop species. Previous greenhouse and garden studies of Brassica have found greater detrimental effects of UV-B on fitness in gardens than in the greenhouse, suggesting the possibility that additional stresses in the field decrease the ability of Brassica to cope with UV-B. Possible interactions between UV-B and water/nutrient stress in determining plant fitness have rarely, if ever, been studied experimentally. Here we report measurements of female fitness in two species of Brassica in an experiment in which both UV-B and levels of water and nutrients were varied in a 2 x 2 factorial design. Water and nutrient stress reduced female fitness in both species, while UV-B caused fitness reductions in only one of the species. There was evidence for interactions between UV-B and water/nutrient stress for only a few of the traits measured; most traits, including those closely related to fitness, showed no evidence of an interaction.  相似文献   

9.
Asexual, vertically transmitted endophytes are well known for increasing competitive abilities of agronomic grasses, but little is known about endophyte–host interactions in native grasses. We tested whether the asexual Neotyphodium endophyte enhances competitive abilities in a native grass, Arizona fescue, in a field experiment pairing naturally infected (E+) and uninfected (E?) plants, and in a greenhouse experiment pairing E+ and E? (experimentally removed) plants, under varying levels of soil water and nutrients. In the field experiment, E? plants had greater vegetative, but not reproductive, growth than E+ plants. In the greenhouse experiment, where plant genotype was strictly controlled, E? plants consistently outperformed their E+ counterparts in terms of root and shoot biomass. Thus, Neotyphodium infection decreases host fitness via reduced competitive properties, at least in the short term. These findings contrast starkly with most endophyte studies involving introduced, agronomic grasses where infection increases competitive abilities, and the interaction is viewed as highly mutualistic.  相似文献   

10.
The genetic basis of seed dormancy, a key life history trait important for adaptive evolution in plant populations, has yet been studied only using seeds produced under controlled conditions in greenhouse environments. However, dormancy is strongly affected by maternal environmental conditions, and interactions between seed genotype and maternal environment have been reported. Consequently, the genetic basis of dormancy of seeds produced under natural field conditions remains unclear. We examined the effect of maternal environment on the genetic architecture of seed dormancy using a recombinant inbred line (RIL) population derived from a cross between two locally adapted populations of Arabidopsis thaliana from Italy and Sweden. We mapped quantitative trait loci (QTL) for dormancy of seeds produced in the greenhouse and at the native field sites of the parental genotypes. The Italian genotype produced seeds with stronger dormancy at fruit maturation than did the Swedish genotype in all three environments, and the maternal field environments induced higher dormancy levels compared to the greenhouse environment in both genotypes. Across the three maternal environments, a total of nine dormancy QTL were detected, three of which were only detected among seeds matured in the field, and six of which showed significant QTL × maternal environment interactions. One QTL had a large effect on dormancy across all three environments and colocalized with the candidate gene DOG1. Our results demonstrate the importance of studying the genetic basis of putatively adaptive traits under relevant conditions.  相似文献   

11.
When studying selection during adaptation to novel environments, researchers have often paid little attention to an organism’s earliest developmental stages. Despite this lack of attention, early life history traits may be under strong selection during colonization, as the expression of adaptive phenotypes at later points is contingent upon early survival. Moreover, the timing of early developmental transitions can constrain the timing of later transitions, with potentially large effects on fitness. In this issue, Huang et al. (2010) underscore the importance of early life history traits in the adaptation of Arabidopsis thaliana to old‐field sites in North America. Using a new population of mapped recombinant inbred lines, the authors examined germination timing and total lifetime fitness of A. thaliana while varying site latitude, dispersal season, and maternal photoperiod. Huang et al. (2010) discovered several Quantitative Trait Loci (QTL) with large effects on fitness that colocalized with QTL for field germination timing and seed dormancy—demonstrating that fitness is genetically associated with these early life history traits, and that these loci are likely under strong selection during adaptation to novel environments. In the epistatic interactions of some loci, recombinant genotypes outperformed parental genotypes, supporting the potentially adaptive role of recombination. This study provides elegant evidence that traits expressed early in an organism’s development can play an important role during adaptive evolution.  相似文献   

12.
Abstract. Aim: Patterns of plant functional traits related to clonality (clonal growth modes; CGM) in plant communities were studied and hypotheses on the importance of the selected traits in plant communities supported by soils differing in moisture and nutrient status were tested. Material and Methods: Selected plant functional traits, such as the position of the mother‐daughter plants connections, length of spacers, frequency of multiplication, persistency of ramets connections, presence of storage organs and bud protection were studied in two contrasting plant communities (xeric and mesic abandoned pastures) typical of central Apennines, Italy. Results and Discussion: Clonality was shown to be of great importance in both mesic and xeric grasslands. The major differences between the two communities were due to the dominant CGMs: turf graminoids (having effective protection of growth meristems in dense tussocks) dominated xeric grasslands, while rhizomatous graminoids (typical of competitive resource‐rich environments) dominated mesic grasslands. Below‐ground CGOs (clonal growth organs), shorter spacers, higher multiplication potential, permanent ramet connection, large bud bank and increased importance of bud protection were found to be of importance in water stressed xeric grassland. Contrary to our expectations, the mesic (less stressed) grasslands have the higher number of clonal plants possessing storage organs.  相似文献   

13.
Earlier flowering is triggered by vernalization in some but not all Arabidopsis ecotypes, often reflecting allelic variation at the FRIGIDA (FRI) locus. Using a recombinant inbred (RI) population polymorphic at FRI, we examined fitness consequences of variation for plasticity. Flowering and fitness were scored for 68 RI genotypes following full and partial vernalization treatments. Within-environment and mixed-model anovas estimated variance components for a genotype effect and a G x E term, respectively. Selection analyses examined whether delayed bolting increases fitness; a plasticity costs analysis asked whether increased plasticity lowers fitness. We also explored whether trait QTL had environment-specific effects, colocated in the immediate vicinity of FRI, or overlapped with fitness QTL. Selection may favor fri alleles and constitutive early flowering, especially in conditions that only partially vernalize plants. Plasticity costs, detected only after partial vernalization and only marginally significant, were nonetheless consistent with FRI-FLC function. We discuss how information about QTL with environment-specific effects, fitness QTL, and knowledge about plasticity genes can improve interpretation of selection or plasticity cost analyses.  相似文献   

14.
Silver-fir (Abies alba Mill.) populations located at the south side of the main Pyrenean axis and Pre-Pyrenees constitute the south-western distribution limit of the species and, therefore, may be responding more noticeably to climate change than those in the centre of the range. The increasing aridity detected in the Pyrenees during the 20th century should affect more negatively the physiological performance of the southernmost silver-fir stand growing under more xeric conditions in comparison with stands growing within the main distribution area under mesic conditions. To evaluate the climatic influence on the performance of silver fir near its distribution limit, we studied several physiological and growth variables in shoots and needles from two silver fir populations located in nearby but climatically contrasting sites: Paco Ezpela (site E) and Gamueta (site G). Site E showed a stronger Mediterranean influence than site G, i.e. the former site was characterized by higher temperatures and leaf-to-air water vapour pressure difference and lower precipitation in summer than the latter site. Silver firs from site E showed lower values of primary and secondary growth, needle length, stomatal conductance, net photosynthesis and photosystem II (PSII) efficiency than individuals from site G. The reduction in net photosynthesis could be ascribed to a low CO2 availability and to a lower PSII efficiency. We conclude that the physiological differences found between both sites were caused by the more xeric conditions of site E as compared with the more mesic environment in site G. The predicted increase of severe droughts in the southern Pyrenees might cause a decrease in photosynthesis and growth in those silver-fir stands located near the ecological limit of the species.  相似文献   

15.
Biological soil crusts consisting of algae, cyanobacteria, lichens, fungi, bacteria, and mosses are common in habitats where water and nutrients are limited and vascular plant cover is discontinuous. Crusts alter soil factors including water availability, nutrient content, and erosion susceptibility, and thus are likely to both directly and indirectly affect plants. To establish this link, we must first understand the crust landscape. We described the composition, abundance, and distribution of microalgae in crusts from a periodically burned, xeric Florida shrubland, with the goal of understanding the underlying variability they create for vascular plants, as well as the scale of that variability. This is the first comprehensive study of crusts in the southeastern United States, where the climate is mesic but sandy soils create xeric conditions. We found that crusts were both temporally and spatially heterogeneous in depth and species composition. For example, cyanobacteria and algae increased in abundance 10-15 years after fire and away from dominant shrubs. Chlorophyll a levels recovered rapidly from small-scale disturbance relative to intact crusts, but these disturbances added to crust patchiness. Plants less than 1 m apart can experience different crust environments that may alter plant fitness, plant interactions, and plant community composition.  相似文献   

16.
This study investigates the influence of texture, soil moisture and nutrient status on the growth and survival of seedlings of two typical fynbos (Leucadendron pubescens and Passerina vulgaris) and succulent karoo (Ruschia spp.) species, which grow in the boundary zone between these two vegetation types. Seedlings of each species were grown in shalederived and sandstone‐derived soils and under xeric and mesic regimes. Under the xeric regime, the shale‐derived and sandstone‐derived soils represented fine and coarse‐textured soils, respectively. Under the mesic regime, the same soils represented nutrient‐rich and nutrient‐poor soils, respectively. The seedlings of both fynbos species died rapidly under the xeric regime, irrespective of soil type. In contrast, the succulent karoo seedlings survived for over 77 days without water. Under mesic conditions, the fynbos seedlings grew faster than the succulent karoo seedlings, irrespective of soil type. Fynbos seedlings appear to be directly limited by the environment (moisture and salinity), whereas succulent karoo seedlings may be limited by interactions with other plants.  相似文献   

17.
We tested the relative fitness of two Louisiana Iris species (Iris brevicaulis and I. fulva) and their first-generation backcross hybrids in three experimental watering treatments: dry, field capacity, and flooded. Leaf area expansion rate, gas exchange (A(max), g(s), c(i)), and biomass at final harvest were measured for each species and hybrid class in all three environmental treatments. Fitness (based on total biomass) of the four genotypic classes differed significantly with environment. All genotypic classes performed most poorly in the dry treatment. The fitness ranking of genotypic class also changed across environments (significant genotypic class by treatment interaction) with hybrid genotype fitness shifting relative to parental genotypes. Integrating over all treatments, backcrosses to I. fulva showed the lowest fitness, whereas backcrosses to I. brevicaulis outperformed I. fulva. The differences in fitness were apparently achieved by a combination of differences in photosynthesis and allocation. In this system, hybrids are not necessarily less fit than their parents, and the relationship between hybrid and parental fitness is influenced by environmental conditions, lending support to the Hybrid Novelty model of hybrid zone evolution.  相似文献   

18.
Community genetics examines how genotypic variation within a species influences the associated ecological community. The inclusion of additional environmental and genotypic factors is a natural extension of the current community genetics framework. However, the extent to which the presence of and genetic variation in associated species influences interspecific interactions (i.e., genotype x genotype x environment [G x G x E] interactions) has been largely ignored. We used a community genetics approach to study the interaction of barley and aphids in the absence and presence of rhizosphere bacteria. We designed a matrix of aphid genotype and barley genotype combinations and found a significant G x G x E interaction, indicating that the barley-aphid interaction is dependent on the genotypes of the interacting species as well as the biotic environment. We discuss the consequences of the strong G x G x E interaction found in our study in relation to its impact on the study of species interactions in a community context.  相似文献   

19.
We investigated relationships between whole-tree hydraulic architecture and stomatal conductance in Pinus palustris Mill. (longleaf pine) across habitats that differed in soil properties and habitat structure. Trees occupying a xeric habitat (characterized by sandy, well-drained soils, higher nitrogen availability and lower overstory tree density) were shorter in stature and had lower sapwood-to-leaf area ratio (A(S):A(L)) than trees in a mesic habitat. The soil-leaf water potential gradient (psiS - psiL) and leaf-specific hydraulic conductance (kL) were similar between sites, as was tissue-specific hydraulic conductivity (Ks) of roots. Leaf and canopy stomatal conductance (gs and Gs, respectively) were also similar between sites, and they tended to be somewhat higher at the xeric site during morning hours when vapour pressure deficit (D) was low. A hydraulic model incorporating tree height, A(S):A(L) and psiS-psiL accurately described the observed variation in individual tree G(Sref) (G(S) at D = 1 kPa) across sites and indicated that tree height was an important determinant of G(Sref) across sites. This, combined with a 42% higher root-to-leaf area ratio (A(R):A(L)) at the xeric site, suggests that xeric site trees are hydraulically well equipped to realize equal--and sometimes higher potential for conductance compared with trees on mesic sites. However, a slightly more sensitive stomatal closure response to increasing D observed in xeric site trees suggests that this potential for higher conductance may only be reached when D is low and when the capacity of the hydraulic system to supply water to foliage is not greatly challenged.  相似文献   

20.
Studies of genotype × environment interactions (G × E) and local adaptation provide critical tests of natural selection’s ability to counter opposing forces such as gene flow. Such studies may be greatly facilitated in asexual species, given the possibility for experimental replication at the level of true genotypes (rather than populations) and the possibility of using molecular markers to assess genotype–environment associations in the field (neither of which is possible for most sexual species). Here, we tested for G × E in asexual dandelions (Taraxacum officinale) by subjecting six genotypes to experimental drought, mown and benign (control) conditions and subsequently using microsatellites to assess genotype–environment associations in the field. We found strong G × E, with genotypes that performed poorly under benign conditions showing the highest performance under stressful conditions (drought or mown). Our six focal genotypes comprise > 80% of plants in local populations. The most common genotype in the field showed its highest relative performance under mown conditions (the most common habitat in our study area), and almost all plants of this genotype in the field were found growing in mowed lawns. Genotypes performing best under benign experimental conditions were found most frequently in unmown conditions in the field. These results are strongly indicative of local adaptation at a very small scale, with unmown microsites of only a few square metres typically embedded within larger mown lawns. By studying an asexual species, we were able to map genotypes with known ecological characteristics to environments with high spatial precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号