首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Synopsis We examined the abundance of blue tang surgeonfish, Acanthurus coeruleus, in each of three social modes (schooling, territorial, and wandering) in relation to size class, ecological variables, population density and time of day to discern potential determinants of social organization. We found individuals from all three social modes in all four fringing reef habitats (back reef, flat, crest and spur and groove zones) at our main site. Territorial tang density was highest in the flat zone, lowest in the spur and groove zone and negatively related to adult damselfish density. A higher proportion of tangs formed schools in reef zones with the highest densities of territorial damselfishes (spur and groove, crest). In the back reef and flat zones, where damselfish densities were very low, tangs rarely formed schools. Tangs in the wandering mode were most abundant in the back reef. The density of territorial tangs did not change with time of day, but non-territorial tangs tended to wander more in the morning and to form schools more at midday. Small yellow-phase juveniles were always territorial, and the incidence of territoriality decreased in the larger size classes, while schooling and wandering increased. Among similar fringing reefs, the incidence of territoriality increased with increasing population density. These data suggest that life history stage, damselfish density, and conspecific population density are important determinants of blue tang social organization.  相似文献   

2.
Blue tangs in Barbados exhibit three distinct social modes: territorial, schooling and wandering. We compared the mobility, foraging, aggression performed and received and the use of cleaning stations of adult blue tangs among modes and among habitats within a single fringing reef in Barbados. Evidence from observed switches during focal observations and multiple observations of tagged individuals indicate that fish are either territorial or non-territorial. Non-territorial fish formed schools and wandered. However, wandering can be used during solitary movements by fish in either type. Fish in the territorial mode, not previously described in adults of this species, restricted activity to a small area overlapping the territories of other tangs. They actively chased conspecifics and were chased mostly by damselfishes. They swam more slowly and fed at higher rates than other modes. Fish in the schooling mode ranged widely in compact, polarized groups of conspecifics, congeners and other species. They were not aggressive and were attacked mostly by damselfishes. They swam rapidly and fed at intermediate rates. Fish in the wanderer mode showed neither aggression nor association with other individuals. They swam rapidly, well above the substrate, fed little, were chased by conspecifics, ocean surgeonfish, A. bahianus, and damselfish and visited cleaning stations more often then other modes. All three modes were observed in all four main zones of the reef, and their behaviour changed quantitatively with habitat type. We suggest that territoriality reduces competition for algal food, schooling allows fish to overcome the food defence by damselfish, tangs and ocean surgeonfish, and wandering permits solitary movement over the reef to cleaning stations, feeding sites and other resources.  相似文献   

3.
We studied territoriality and habitat use by yellow phase juvenile blue tangs, Acanthurus coeruleus, on a small fringing reef in Barbados, West Indies. Juvenile blue tangs occurred on the reef crest, spurs, and a transition zone between the reef crest and reef flat at a density of about 8 individuals per 100m2, but were much rarer on the reef flat. They were solitary and occupied stable home ranges (median=0.85m2) that increased with body size. Observational and experimental data documented aggressive defense of home ranges against conspecific and to a lesser extent congeneric, A. bahianus, juveniles (about 7.5 approaches and attacks per hour directed at intruders). Home range locations were structurally more complex and closer to a vertical face than expected by chance. Although juvenile blue tang territories overlapped considerably with those of larger and more aggressive Stegastes damselfish, which are believed to exclude solitary adult Acanthurus spp. from reef crest and spurs, the tangs avoided Stegastes and were rarely chased (<0.3 fleeing events per hour). Space use and social organization of yellow juvenile blue tangs contrast strikingly with that of both conspecific adults and congeneric juveniles.  相似文献   

4.
Solitary blue tang surgeonfish, Acanthurus coeruleus, are virtually excluded from feeding on algal mats defended by the dusky damselfish, Stegastes dorsopunicans. Foraging in groups enables blue tangs to overwhelm the defences of the damselfish and to feed in their territories. The rate of biting on algal mats by individual participants is positively correlated with group size, probably because individuals in large groups suffer attacks from damselfish less frequently. Experimental reduction of the density of damselfish on a small patch reef resulted in feeding rates by solitary surgeonfish equal to those of participants in large groups. This demonstrates that the positive association between foraging group size and participant bite rates on defended algal mats is due to the presence of the damselfish rather than to a reduction in time spent watching for predators. Overwhelming territory defenders by aggregating in groups is a habit widespread among fishes, suggesting that effective defence of a valuable resource may promote the evolution of a social behaviour pattern which permits access to an otherwise unobtainable resource.  相似文献   

5.
For many species securing territories is important for feeding and reproduction. Factors such as competition, habitat availability, and male characteristics can influence an individual’s ability to establish and maintain a territory. The risk of predation can have an important influence on feeding and reproduction; however, few have studied its effect on territoriality. We investigated territoriality in a haremic, polygynous species of coral reef herbivore, Sparisoma aurofrenatum (redband parrotfish), across eight reefs in the Florida Keys National Marine Sanctuary that were either protected or unprotected from fishing of piscivorous fishes. We examined how territory size and quality varied with reef protection status, competition, predation risk, and male size. We then determined how territory size and quality influenced harem size and female size to understand the effect of territoriality on reproductive potential. We found that protected reefs trended towards having more large predatory fishes and that territories there were smaller but had greater algal nutritional quality relative to unprotected reefs. Our data suggest that even though males in protected sites have smaller territories, which support fewer females, they may improve their reproductive potential by choosing nutritionally rich areas, which support larger females. Thus, reef protection appears to shape the trade-off that herbivorous fishes make between territory size and quality. Furthermore, we provide evidence that males in unprotected sites, which are generally less complex than protected sites, choose territories with higher structural complexity, suggesting the importance of this type of habitat for feeding and reproduction in S. aurofrenatum. Our work argues that the loss of corals and the resulting decline in structural complexity, as well as management efforts to protect reefs, could alter the territory dynamics and reproductive potential of important herbivorous fish species.  相似文献   

6.
Determinants of territory size in the pomacentrid reef fish,Parma victoriae   总被引:4,自引:0,他引:4  
Summary Factors governing the size of territories defended by the pomacentrid reef fish, Parma victoriae, were investigated, prompted by contradictory predictions in the literature concerning the effects of food supply and competitors. Observations were carried out over the non-breeding period (March–October) on a medium density population in which territories were partially contiguous. The territory size of adult fish varied between 3 and 26 m2, and was inversely correlated with local densities of conspecifics. The same range in territory size was found for both males and females, which did not differ in the time they spent on territory defence and foraging activities. No correlation existed between territory size and the abundance of algal food, body size, age or time spent on territory defence. Also, there was little variation in territory size over time, despite seasonal changes in the abundance of food algae.Experimental reduction of food supplies on isolated territories of males and females had no effect on territory size. In a higher density habitat an experiment was carried out in which population density and food abundance were simultaneously manipulated. This showed that territory size was primarily determined by intraspecific interactions, as territories exhibited considerable increases in size upon removal of neighbours. No changes in the size of defended areas resulted from either artificial increases or decreases of food levels. There were also no changes in the time spent on defence of territories, foraging time or feeding rates associated with food manipulations or territory expansion, which suggested that food was not a limited resource. This conflicted with current theories proposed to explain territory defence and expansion. It is hypothesized that intraspecific interactions constrain territory size well below the optimum in terms of the abundance of preferred food algal species.  相似文献   

7.
The grazing fish, ayu,Plecoglossus altivelis Temminck & Schlegel, establishes feeding territorialiry during the young stage. The population density fluctuates from year to year by more than a hundredfold, but the determinant of territory size is less well known. The feeding territoriality of ayu was examined under simulated habitat conditions where fish density was manipulated and food resources were renewable. Fish competed for algae attached to the substrata and were divided into residents with territories, and floaters without territories. By experimental alteration of fish density the number of residents increased with density and rerritory size decreased with density. Floaters intruded into territories in a school to feed on algae, which induced overt aggression of the resident and reduced the productivity of algae growing there. Both the intruding frequency of floaters over territorial areas and their feeding pressure on algae increased at higher floater density. Floaters functioned to shift cost-benefit relationships for various territory sizes. They acted as food competitors to restrict territory size below a maximum through competitive interference. Although the growth rate of residents was inversely related to fish density, residents grew faster than floaters in each group. Under a given set of competitor abundances, economic defensibility determined territory size.  相似文献   

8.
Synopsis Nocturnal foraging habitats of Haemulon flavolineatum and H. sciurus were investigated in the backreef habitat around Tobacco Caye, Belize. Grunts leave the reef at dusk to forage in the grass beds and sand flats surrounding the reef. The hypothesis that French and bluestriped grunts use separate foraging habitats was examined by following tagged fishes from their diurnal territories or schooling sites to nocturnal foraging grounds. The tag consisted of a small, glowing Cyalume light stick sutured to the dorsal musculature of the fish, next to the first dorsal fin. Surveys of foraging habitats were done to support the tracking study. Large quadrats (225 m2) were set out over the sand flats and grass beds during the day. The numbers of French and bluestriped grunts feeding in each habitat were counted one hour after dark. Foraging French grunts used sand flats, whereas bluestriped grunts usually fed in grass beds. Repeated sightings of two French grunts and one bluestriped grunt in the same individual night-time locations support the hypothesis that nocturnal foraging sites may be used repeatedly by the same individuals.  相似文献   

9.
Surgeonfish (Acanthuridae) are prominent, herbivorous members of coral reef communities that occur as dispersed individuals and small, loose groups ('non-schooling fish') or as members of large, highly aggregated, mixed-species schools ('schooling fish'). We examined the relationships among fish size, habitat use and schooling in two species of surgeonfish on a fringing reef in Barbados, West Indies. Both ocean surgeonfish, Acanthurus bahianus, and blue tangs, A. coeruleus, appeared to show ontogenetic habitat shifts. The density of juvenile ocean surgeonfish was highest in the back reef (inshore), lower on the reef crest (intermediate) and lowest in the spurs and grooves (offshore) zone, but schooling adults were most abundant in the spurs and grooves zone. In a multiple regression considering the effects of depth, algal cover, rugosity and distance from shore, the density of non-schooling ocean surgeonfish was positively associated with percent algal cover on the substratum and negatively with distance from shore. Newly settled blue tangs occurred only in the reef crest and spurs and grooves zones, but larger juveniles were more common in the back reef, while adults were more evenly distributed across zones. The density of non-schooling blue tang was positively associated with rugosity, distance from shore, and percent algal cover. In both species, schooling occurred primarily in adults; small juveniles never participated in the large, dense schools. The proportion of adults that were schooling increased from the back reef to the reef crest to the spurs and grooves zone. These results are consistent with the hypothesis that schooling permits adult surgeonfish access to higher quality food in the territories of damselfish (Pomacentridae) that predominate on the reef crest and spurs.  相似文献   

10.
Susan A. Foster 《Oecologia》1985,67(4):499-505
Summary Three adult size classes of the territorial Caribbean dusky damselfish,Stegastes dorsopunicans, are differently distributed with respect to habitat, and with respect to the biomass of filamentous algal turfs in the areas they defend. The density of large individuals is positively correlated with the decalcified dry biomass of these turfs, whereas the densities of medium and small individuals are inversely related to algal biomass. Density of the urchin,Diadema, is also inversely correlated with algal biomass. The high density of large dusky damselfish in sites with algal turfs of relatively high biomass probably results from preferences of dusky damselfish for sites in which algal turfs are thick, and superior abilities of large individuals to defend these sites.Because both rate of attacks and the effectiveness of attacks on territory invaders by dusky damselfish increases with increasing size, sites with relatively high biomass algal turfs are typically better defended than those with lower biomass turfs. Apparently as a result of this, small foraging groups of the blue tang surgeonfish,Acanthurus coeruleus, feed less on high biomass algal turfs than do larger foraging groups, the members of which experience attacks by defending damselfishes less frequently. The relatively low proportionate use of high biomass feeding sites by solitary blue tangs and members of small foraging groups is caused by dusky damselfish. When the density of this damselfish was reduced artificially, use of high biomass algal turfs by solitary blue tangs increased to a level indistinguishable from that of participants in large foraging groups.  相似文献   

11.
We tested the hypothesis for several Caribbean reef fish species that there is no difference in nursery function among mangrove, seagrass and shallow reef habitat as measured by: (a) patterns of juvenile and adult density, (b) assemblage composition, and (c) relative predation rates. Results indicated that although some mangrove and seagrass sites showed characteristics of nursery habitats, this pattern was weak. While almost half of our mangrove and seagrass sites appeared to hold higher proportions of juvenile fish (all species pooled) than did reef sites, this pattern was significant in only two cases. In addition, only four of the six most abundant and commercially important species (Haemulon flavolineatum, Haemulon sciurus, Lutjanus apodus, Lutjanus mahogoni, Scarus iserti, and Sparisoma aurofrenatum) showed patterns of higher proportions of juvenile fish in mangrove and/or seagrass habitat(s) relative to coral reefs, and were limited to four of nine sites. Faunal similarity between reef and either mangrove or seagrass habitats was low, suggesting little, if any exchange between them. Finally, although relative risk of predation was lower in mangrove/seagrass than in reef habitats, variance in rates was substantial suggesting that not all mangrove/seagrass habitats function equivalently. Specifically, relative risk varied between morning and afternoon, and between sites of similar habitat, yet varied little, in some cases, between habitats (mangrove/seagrass vs. coral reefs). Consequently, our results caution against generalizations that all mangrove and seagrass habitats have nursery function.  相似文献   

12.
Synopsis Algal growth and damselfish (Eupomacentrus planifrons) territories were studied in two reef habitats at Discovery Bay, Jamaica. Damselfish territories were contiguous in the reef flat (0 to 2.5 m), where the algal composition and biomass varied from territory to territory. In contrast, on the lower reef terrace (22 m), damselfish territories were often spatially segregated. While the algal composition of the territories was more uniform on the reef terrace, the total algal biomass was lower than in the territories on the reef flat. Damselfish are largely herbivorous, and they defend their territories against most intruding fish, including a number of herbivorous species. Areas of the reef terrace outside of damselfish territories were heavily grazed by herbivorous fishes and contained only small quantities of non-crustose algae.The reef terrace territories were characterized by a multispecific turf of algae (greens, blue-greens, and reds) covering the Acropora cervicornis framework and by the leafy, brown alga, Lobophora variegata. A rapid reduction in the biomass of brown algae and filamentous algae was noted when damselfish were permanently removed from their territories. Only calcified, encrusting algae — plants apparently somewhat undesirable as fish food sources — would be common on the terrace zone of this reef if damselfish territories were absent. Damselfish territoriality may significantly influence the dynamics of some reefs by increasing the biomass of the algal turf thereby increasing; reef productivity. Since blue-green algae, potential nitrogen fixers, occur in these algal turfs, the fish may also be indirectly affecting reef nutrition.  相似文献   

13.
Most tropical insectivorous birds, unlike their temperate counterparts, hold and defend a feeding and breeding territory year-around. However, our understanding of ecological factors influencing territory selection and size in tropical insectivores is limited. Here we examine three prominent hypotheses relating food abundance, food dispersion (spatial arrangement of food items), and habitat structure to territoriality in the Usambara Thrush Turdus roehli. We first compared leaf-litter macro-invertebrate abundance and dispersion, and habitat structure between territories and random sites. We then examined the relation between these same ecological factors and territory size. Invertebrate abundance and dispersion were sparsely and evenly distributed across our study system and did not vary between territories and random sites. In contrast, habitat structure did vary between territories and random sites indicating the Usambara Thrush selects territories with open understorey and closed overstorey habitat. Invertebrate abundance and dispersion within territories of the Usambara Thrush were not associated with habitat structure. We believe the most likely explanation for the Usambara Thrush’s preference for open understorey and closed overstorey habitat relates to foraging behavior. Using information-theoretic model selection we found that invertebrate abundance was the highest-ranked predictor of territory size and was inversely related, consistent with food value theory of territoriality.  相似文献   

14.
Synopsis The herbivorous surgeonfish Acanthurus lineatus aggressively maintained feeding territories in the surf zone of the outer reef flat in American Samoa. Intertidal territories were re-established each morning, as well as after displacement by low tides or rough surf. Day-to-day site fidelity of recognizable individuals was high: 99.9% return rate per day for adults (15–20 cm), 99.6% for juveniles (8–13 cm), and 97.2% for recruits (2.5–5 cm). Fish fed on turf algae primarily in the afternoon (80% of available time), and spent 10% of their time on active territorial defense and 2–13% of their time on forays from their territory. On average, a fish defended its territory 1900 times daily and took 17 000 bites (= 7400 bites m–2 d–1), but rough surf reduced feeding by 60% and defense by 75%. High territorial defense requirements significantly reduced feeding rates. Although the distribution and behavior of this species in Samoa was in large part similar to that reported for it elsewhere (Australia, Indian Ocean), there were notable differences: in Samoa A. lineatus densities within colonies were greater (0.4 fish m–2), territory size was smaller (2.3 m2), and defense rate against intruders was greater (2.5 attacks min–1). These differences in Samoa may be related to their smaller body size, greater abundance or increased food supply caused by hurricane damage to reefs which has enhanced the algal turfs that A. lineatus feeds upon.  相似文献   

15.
An increase in habitat complexity is thought to decrease visibility and the territory size of visually oriented animals. Hence, the addition of physical structure has been viewed as a useful restoration technique to increase the density of territorial species, particularly in stream fishes. However, a decrease in territory size may have a negative effect on the fitness of individual organisms. We attempted to quantify some of the positive and negative effects of increasing habitat structure on the behaviour and growth rate of wild young‐of‐the‐year (YOY) Atlantic salmon. Fish were exposed to one of two habitat treatments in mesh enclosures in Catamaran Brook, New Brunswick: a gravel substrate (low complexity) or a gravel substrate with boulders added (high complexity). Wild‐caught individuals were tagged, weighed and measured before being stocked at densities of 1·m?2 for 7‐d trials. While fish from high‐complexity treatments benefited from lower rates of aggression, they also had lower foraging rates and smaller territories compared to those in low‐complexity treatments. Specific growth rate, however, did not differ significantly between treatments. While the addition of structure to a habitat may be beneficial at the population level in terms of an increase in population density, our results suggested that individual fish may pay some short‐term costs in these environments. Further research is needed to evaluate the longer term costs and benefits of adding structure to improve the habitat quality for stream salmonids.  相似文献   

16.
Habitat selection by coral reef fish during initial settlement has been shown to depend on various biotic and abiotic characteristics. However, relatively little is known of the factors influencing habitat choice by adults during post-settlement processes such as relocation or migration. In this study, we first characterised the habitat of longfin damselfish (Stegastes diencaeus Jordan and Rutter) territories to quantify territory variability. Characteristics such as percentage cover of rock, sand, live coral and distance from sand were highly variable, while territory area, turf and macro algae cover were relatively uniform across territories.We then assessed the importance of specific habitat characteristics by experimentally removing damselfish and measuring recolonisation times in relation to these characteristics. The presence of nest sites markedly increased the speed of territory recolonisation after experimental removals. Other variable territory characteristics such as substrate type, rugosity and the presence of cleaning stations did not affect recolonisation speed. In general, males recolonised territories faster than females, and males were more likely to recolonise territories previously owned by males with an active nest site. Thus, intraspecific competition for high-quality nest sites may generate sex differences in territory relocation and highly stable sex-specific patterns of adult distribution.  相似文献   

17.
The structural complexity of coral reefs is important for their function as shelter and feeding habitats for coral reef fishes, but physical disturbance by human activities often reduce complexity of the reefs by selectively destroying fragile and more complex coral species. The damselfish Springer's demoiselle Chrysiptera springeri primarily utilize complex coral heads for shelter and are hence vulnerable to human disturbance. In order to evaluate the potential effect of habitat degradation on juvenile fish growth, coral reef cover, fish age at settling and otolith growth, juvenile Springer's demoiselle was investigated on a protected and non‐protected coral reef in Darvel Bay, Borneo. The protected reef had higher coverage of complex branching corals and exhibited a more complex 3‐dimensional structure than the non‐protected reef. Springer's demoiselle settled at the same age on non‐protected and protected reefs. The growth rates of the otoliths from Springer's demoiselle were similar during the pre‐settlement period on the two reefs (manova , P > 0.05), but from age 20 to 48 days (post‐settlement period) the otolith growth rate of juveniles on the non‐protected reef was reduced compared to those from the protected reef (manova , P = 0.017). However, the differences in the otolith size, and by inference, fish size, after 48 days were small. The small effect of habitat degradation on growth is likely related to the fact that the Springer's demoiselles collected on the non‐protected reef were associated with the few remaining complex coral heads. Increased foraging‐predation tradeoffs on the non‐protected reef may decrease food intake and growth of juvenile Springer's demoiselle, but the main effect of habitat degradation on their abundance is likely to be related to lack of suitable shelter, and consequently reduced carrying capacity, on disturbed reefs.  相似文献   

18.
Contrary to assumptions of habitat selection theory, field studies frequently detect ‘ecological traps’, where animals prefer habitats conferring lower fitness than available alternatives. Evidence for traps includes cases where birds prefer breeding habitats associated with relatively high nest predation rates despite the importance of nest survival to avian fitness. Because birds select breeding habitat at multiple spatial scales, the processes underlying traps for birds are likely scale‐dependent. We studied a potential ecological trap for a population of yellow warblers Dendroica petechia while paying specific attention to spatial scale. We quantified nest microhabitat preference by comparing nest‐ versus random‐site microhabitat structure and related preferred microhabitat features with nest survival. Over a nine‐year study period and three study sites, we found a consistently negative relationship between preferred microhabitat patches and nest survival rates. Data from experimental nests described a similar relationship, corroborating the apparent positive relationship between preferred microhabitat and nest predation. As do other songbirds, yellow warblers select breeding habitat in at least two steps at two spatial scales; (1) they select territories at a coarser spatial scale and (2) nest microhabitats at a finer scale from within individual territories. By comparing nest versus random sites within territories, we showed that maladaptive nest microhabitat preferences arose during within‐territory nest site selection (step 2). Furthermore, nest predation rates varied at a fine enough scale to provide individual yellow warblers with lower‐predation alternatives to preferred microhabitats. Given these results, tradeoffs between nest survival and other fitness components are unlikely since fitness components other than nest survival are probably more relevant to territory‐scale habitat selection. Instead, exchanges of individuals among populations facing different predation regimes, the recent proliferation of the parasitic brown‐headed cowbird Molothrus ater, and/or anthropogenic changes to riparian vegetation structure are more likely explanations.  相似文献   

19.
Tropical reef corals are expanding on Japanese temperate coasts in response to rising sea surface temperatures, and many tropical fish juveniles have been observed routinely in these coral habitats. The present study explored how offshore tropical fish larvae locate coral habitat on the temperate coasts of Japan. Settlement-stage larvae were sampled between July and October 2009–2011 with light traps anchored on coral-replete and coral-free habitats (rocky habitats) at two-level distance (distance between each habitat type was 6 km and 500 m, respectively). Larval abundance was significantly higher on the coral-dominated habitat than that on the rocky habitat at both short and long distance sites, suggesting that coral habitats attract offshore tropical fish larvae. In underwater visual survey, Chaetodontidae and Pomacentridae juveniles were more abundant in coral habitats than in rocky habitats at both the sites, and a laboratory habitat choice experiment demonstrated that these larvae showed a preference for corals rather than rocks. In contrast, densities of juvenile Mullidae did not differ between the coral and rocky habitats, and the larvae did not show a substrate preference in the habitat choice experiment. These observations suggest that habitat choice at settlement possibly accounts for the differences in settlement patterns of tropical fishes between the two habitats. Taken together, our results showed that most tropical fish larvae colonize their settlement coast at a scale of ~0.5 km, and that they may locate coral habitats after reaching a reef. Moreover, the results suggest that coral habitat expansion on temperate coasts will lead to an increase in coral-associated tropical fishes and will change assemblage structures of fishes on temperate coasts.  相似文献   

20.
Although there have been many studies on ecological factors responsible for the organization of reef fish communities, most of the studies have focused on isolated habitats. However, findings from isolated habitats cannot necessarily be applied to fish communities in other habitats (e.g., a continuous habitat). In this study, therefore, we examined the structures of fish communities (abundance, species richness and species composition), and the dynamics of fish communities (seasonal changes in abundance, species richness and species composition) over a 2-year period in two different habitats (continuous habitat and isolated habitat) in an Okinawan coral reef. We established eight permanent quadrats (8m × 8m) on a rocky reef flat (continuous habitat) and rock reef patches surrounded by a sandy sea bottom (isolated habitat). The abundance and species richness of fishes such as pomacentrids, labrids, chaetodontids and acanthurids were greater in quadrats located in the continuous habitat, whereas those of blenniids, gobiids and mullids were greater in quadrats located in the isolated habitat. This caused marked differences between the fish community structure at the two sites. Seasonal and annual changes in fish community structure were relatively small at the continuous habitat site (>0.7 similarity based on C index) but were large at the isolated habitat site (C < 0.4), indicating that the fish community structure was relatively stable at the continuous habitat site but unstable at the isolated habitat site throughout the study period. Spatial differences between the fish community structures in the four quadrats at the continuous habitat site were small (C > 0.65 in most sites), but these differences were large at the isolated habitat site (C < 0.4). Our findings suggest that habitat structure (spatial arrangement of habitats) affects both spatial and seasonal differences in the reef fish community structure. The results also suggest that the main mechanisms underlying organization of reef fish communities in continuous and isolated habitats are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号