首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Homogeneous subpopulations of human high-density lipoproteins subfraction-3 (HDL3) have been incubated at 37 degrees C with purified lecithin: cholesterol acyltransferase, human serum albumin and varying concentrations of human low-density lipoproteins (LDL). Changes in HDL particle size and composition during these incubations were monitored. Incubation of HDL3a (particle radius 4.3 nm) in the absence of LDL resulted in an esterification of more than 70% of the HDL free cholesterol after 24 h of incubation. This, however, was sufficient to increase the HDL cholesteryl ester by less than 10% and was not accompanied by any change in particle size. When this mixture was incubated in the presence of progressively increasing concentrations of LDL, which donated free cholesterol to the HDL, the molar rate of production of cholesteryl ester was much greater; at the highest LDL concentration HDL cholesteryl ester content was almost doubled after 24 h and there was an increase in the HDL particle size up to the HDL2 range. In the case of HDL3b (radius 3.9 nm), there were again only minimal changes in particle size in incubations not containing LDL. In the presence of the highest concentration of LDL tested, however, the particles were again enlarged into the HDL2 size range after 24 h incubation. These HDL2-like particles were markedly enriched with cholesteryl ester but depleted of phospholipid and free cholesterol when compared with native HDL2. Furthermore, the ratio of apolipoprotein A-I to apolipoprotein A-II resembled that in the parent-HDL3 and was very much lower than that in native HDL2. It has been concluded that purified lecithin: cholesterol acyltransferase is capable of increasing the size of HDL3 towards that of HDL2 but that other factors must operate in vivo to modulate the chemical composition of the enlarged particles.  相似文献   

2.
The interstrand crosslinks that appear in stored depurinated DNA interfere with the counting of apurinic sites and strand breaks by sucrose gradient analysis. They could not be cleaved at acid or alkaline pH, or by treatment with methoxyamine.  相似文献   

3.
The oxidation of low density lipoproteins (LDL) has been implicated in the development of atherosclerosis. Recently, we found that polar lipids isolated from minimally oxidized LDL produced a dramatic inhibition of lecithin: cholesterol acyltransferase (LCAT) activity, suggesting that HDL-cholesterol transport may be impaired during early atherogenesis. In this study, we have identified molecular species of oxidized lipids that are potent inhibitors of LCAT activity. Treatment of LDL with soybean lipoxygenase generated small quantities of lipid hydroperoxides (20 +/- 4 nmol/mg LDL protein, n = 3); but when lipoxygenase-treated LDL (1 mg protein/ml) was recombined with the d > 1.063 g/ml fraction of human plasma, LCAT activity was rapidly inhibited (25 +/- 4 and 65 +/- 16% reductions by 1 and 3 h, respectively). As phospholipid hydroperoxides (PL-OOH) are the principal oxidation products associated with lipoxygenase-treated LDL, we directly tested whether PL-OOH inhibited plasma LCAT activity. Detailed dose-response curves revealed that as little as 0.2 and 1.0 mole % enrichment of plasma with PL-OOH produced 20 and 50% reductions in LCAT activity by 2 h, respectively. To gain insight into the mechanism of LCAT impairment, the enzyme's free cysteines (Cys31 and Cys184) and active site residues were "capped" with the reversible sulfhydryl compound, DTNB, during exposure to either minimally oxidized LDL or PL-OOH. Reversal of the DTNB "cap" after such exposures revealed that the enzyme was completely protected from both sources of peroxidized phospholipids. We, therefore, conclude that PL-OOH inhibited plasma LCAT activity by modifying the enzyme's free cysteine and/or catalytic residues. These studies are the first to suggest that PL-OOH may accelerate the atherogenic process by impairing LCAT activity.  相似文献   

4.
The substrate properties of low-density lipoprotein (LDL) fractions from human and pig plasma and of lipoprotein a [Lp(a)] upon incubation with either pig or human lecithin:cholesterol acyltransferase (LCAT, EC 2.3.1.43) were investigated and compared with those of pig high-density lipoproteins (HDL) or human HDL-3. The cholesterol esterification using purified native pig LDL-1, human LDL, or Lp(a) as a substrate was approximately 36-42% that of pig HDL or human HDL-3, while cholesteryl ester formation with pig LDL-2 was 41-47%. No significant difference was found in the substrate activity between pig HDL and human HDL-3, and between human LDL and Lp(a), respectively. After depletion of pig LDL-1, pig LDL-2, and human LDL from apolipoprotein A-I (apoA-I), cholesteryl ester formation decreased to about 22-28% of the value found with pig HDL. Depletion of human LDL from apolipoprotein E (apoE) did not result in significantly different esterification rates in comparison to native LDL. Total removal of non-apoB proteins from human LDL resulted in esterification rates of approximately 10-15% that of HDL. Readdition of apoA-I to all these LDL fractions produced solely in apoA-I-depleted LDL fractions an increase of cholesteryl ester formation, whereas in those LDL fractions that were additionally depleted from apoE and/or from apoC polypeptides, a further decrease in the esterification rate occurred.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The first step in the reaction of lecithin cholesterol acyltransferase (LCAT) with lipoproteins is the interfacial binding of the enzyme to the lipid surfaces. In this study the equilibrium dissociation constants (Kds) for the interaction of pure human plasma LCAT with LDL, HDL2, HDL3, and a reconstituted discoidal HDL (rHDL) were determined by the activity-inhibition method. In addition, enzyme kinetics were measured with each of the lipoprotein substrates. Based on phospholipid concentrations, the Kd values (0.9 x 10(-5) to 4.6 x 10(-5) M) increased in the order rHDL = HDL3 相似文献   

6.
7.
Human HDL3 (d 1.125-1.21 g/ml) were treated by an exogenous phospholipase A2 from Crotalus adamenteus in the presence of albumin. Phosphatidylcholine hydrolysis ranged between 30 and 90% and the reisolated particle was essentially devoid of lipolysis products. (1) An exchange of free cholesterol was recorded between radiolabelled erythrocytes at 5-10% haematocrit and HDL3 (0.6 mM total cholesterol) from 0 to 12-15 h. Isotopic equilibration was reached. Kinetic analysis of the data indicated a constant rate of free cholesterol exchange of 13.0 microM/h with a half-time of equilibration around 3 h. Very similar values of cholesterol exchange, specific radioactivities and kinetic parameters were measured when phospholipase-treated HDL replaced control HDL. (2) The lecithin: cholesterol acyltransferase reactivity of HDL3, containing different amounts of phosphatidylcholine, as achieved by various degrees of phospholipase A2 treatment, was measured using a crude preparation of lecithin: cholesterol acyltransferase (the d 1.21-1.25 g/ml plasma fraction). The rate of esterification was determined between 0 and 12 h. Following a 15-30% lipolysis, the lecithin: cholesterol acyltransferase reactivity of HDL3 was reduced about 30-40%, and then continued to decrease, though more slowly, as the phospholipid content was further lowered in the particle. (3) The addition of the lecithin: cholesterol acyltransferase preparation into an incubation medium made of labelled erythrocytes and HDL3 promoted a movement of radioactive cholesterol out of cells, above the values of exchange, and an accumulation of cholesteryl esters in HDL. This reflected a mass consumption of free cholesterol, from both the cellular and the lipoprotein compartments upon the lecithin: cholesterol acyltransferase action. As a consequence of a decreased reactivity, phospholipase-treated HDL (with 2/3 of phosphatidylcholine hydrolyzed) proved much less effective in the lecithin: cholesterol acyltransferase-induced removal of cellular cholesterol.  相似文献   

8.
Studies have been performed to determine the proportion of the esterified cholesterol in high-density lipoproteins (HDL), low-density lipoproteins (LDL) and very-low-density lipoproteins (VLDL) that is attributable to a direct action of lecithin: cholesterol acyltransferase on each lipoprotein fraction. Esterification of [3H]cholesterol was examined in 37 degrees C incubations of either: (a) unseparated whole plasma, (b) plasma reconstituted after prior ultracentrifugation to separate the 1.21 g/ml supernatant, (c) a mixture comprising the 1.21 g/ml supernatant of plasma and purified lecithin: cholesterol acyltransferase or (d) the same mixture as (c) after supplementation with a preparation of partially purified lipid transfer protein. Each of these incubations was performed using samples collected from four different subjects, two of whom had normal and two of whom had elevated concentrations of plasma triacylglycerol. At the completion of 3-h incubations, the lipoproteins were separated into multiple fractions by gel filtration to obtain a continuous profile of esterified [3H]cholesterol across the whole spectrum of lipoproteins. There was an appearance of esterified [3H]cholesterol in each of the major lipoprotein fractions in all incubations. In unseparated plasma, 56% of the total (mean of four experiments) was in HDL, 33% in LDL and 11% in VLDL. A comparable distribution was observed in the incubations of reconstituted plasma and in the samples to which partially purified lipid transfer protein had been added. In the absence of lipid transfer protein activity in incubations containing purified lecithin: cholesterol acyltransferase, 73% of the esterified [3H]cholesterol was in HDL, 25% in LDL and only 1% in VLDL. It has been concluded that at physiological concentrations of lipoproteins, 70-80% of the cholesterol esterifying action of lecithin: cholesterol acyltransferase is confined to the HDL fraction, with most of the remainder involving the LDL fraction. Of the newly formed esterified cholesterol incorporated into LDL during incubations of unseparated plasma, it was apparent that more than 70% was independent of activity of the lipid transfer protein. Of that incorporated into VLDL in unseparated plasma, in contrast, almost 90% was derived as a transfer from other fractions as a consequence of activity of the lipid transfer protein.  相似文献   

9.
The role of the plasma lecithin:cholesterol acyltransferase reaction in the esterification of the cholesterol of human and baboon plasma high density lipoproteins has been studied. Human plasma was incubated in vitro, and the initial rate of cholesterol esterification in lipoprotein fractions obtained by chromatography on hydroxylapatite was determined. The rate of esterification was greater in the high density lipoprotein fraction than in the low density lipoprotein fraction. High density lipoproteins from human and baboon plasma were filtered through columns of Sephadex G 200, and the relative concentrations in the effluent of key lipids involved in the acyltransferase reaction were determined. The ratio of esterified to unesterified cholesterol varied across the lipoprotein peak obtained from either type of plasma. The relative concentration of lecithin compared to sphingomyelin also varied across the peaks obtained with human high density lipoproteins. When human or baboon plasma was incubated with cholesterol-(14)C and the high density lipoproteins were filtered through Sephadex, the specific activity of the esterified cholesterol varied across the lipoprotein peak. Similar results were obtained when plasma esterified cholesterol was labeled in vivo by the injection of labeled mevalonate into baboons. The data suggest that the acyltransferase reaction is the major source of the esterified cholesterol of the high density lipoproteins.  相似文献   

10.
11.
Previous studies have provided detailed information on the formation of spherical high density lipoproteins (HDL) containing apolipoprotein (apo) A-I but no apoA-II (A-I HDL) by an lecithin:cholesterol acyltransferase (LCAT)-mediated process. In this study we have investigated the formation of spherical HDL containing both apoA-I and apoA-II (A-I/A-II HDL). Incubations were carried out containing discoidal A-I reconstituted HDL (rHDL), discoidal A-II rHDL, and low density lipoproteins in the absence or presence of LCAT. After the incubation, the rHDL were reisolated and subjected to immunoaffinity chromatography to determine whether A-I/A-II rHDL were formed. In the absence of LCAT, the majority of the rHDL remained as either A-I rHDL or A-II rHDL, with only a small amount of A-I/A-II rHDL present. By contrast, when LCAT was present, a substantial proportion of the reisolated rHDL were A-I/A-II rHDL. The identity of the particles was confirmed using apoA-I rocket electrophoresis. The formation of the A-I/A-II rHDL was influenced by the relative concentrations of the precursor discoidal A-I and A-II rHDL. The A-I/A-II rHDL included several populations of HDL-sized particles; the predominant population having a Stokes' diameter of 9.9 nm. The particles were spherical in shape and had an electrophoretic mobility slightly slower than that of the alpha-migrating HDL in human plasma. The apoA-I:apoA-II molar ratio of the A-I/A-II rHDL was 0.7:1. Their major lipid constituents were phospholipids, unesterified cholesterol, and cholesteryl esters. The results presented are consistent with LCAT promoting fusion of the A-I rHDL and A-II rHDL to form spherical A-I/A-II rHDL. We suggest that this process may be an important source of A-I/A-II HDL in human plasma.  相似文献   

12.
Cholesterol stored in human adipose tissue is derived from circulating lipoproteins. To delineate the cholesterol transport function of LDL and HDL, the movement of radiolabelled esterified cholesterol and free cholesterol from labelled LDL and HDL to human adipocytes was examined in the present study. LDL and HDL were enriched and labelled in esterified cholesterol with [14C]cholesterol by the action of plasma lipid transfer proteins and lecithin-cholesterol acyltransferase. Doubly labelled (3H,14C) LDL and HDL were prepared by exchanging free [3H]cholesterol into the 14C-labelled lipoproteins. 14C-labelled lipoprotein and 3H-labelled lipoprotein were also prepared separately and mixed to yield a mixed doubly labelled lipoprotein. Relative to the total amount added, proportionally more free than esterified cholesterol was transferred to the adipocytes upon incubation with any doubly labelled LDL and HDL. The calculated mass of free and esterified cholesterol transferred, however, varied with different labelled lipoproteins. 3H- and 14C-labelled LDL or HDL transferred 2-3-fold more esterified than free cholesterol while the reverse occurred with the mixed doubly labelled LDL or HDL. Thus, free cholesterol-depleted particles preferentially transferred cholesterol ester to the fat cells. In the presence of the homologous unlabelled native lipoprotein, the transfers of free and esterified cholesterol from labelled LDL or HDL were specifically inhibited. Selective transfer of esterified cholesterol relative to apoprotein was also observed when esterified cholesterol uptake from both LDL and HDL was assayed along with the binding of 125I-labelled lipoprotein. The cellular accumulation of cholesterol ether-labelled HDL (a non-hydrolyzable analogue of cholesterol ester) exceeded that of cholesterol ester consistent with significant hydrolysis of the latter physiological substrate. These results demonstrate preferential transfer of free cholesterol and esterified cholesterol over apoprotein for both LDL and HDL in human adipocytes. Furthermore, the data suggest that the cholesterol ester transport function of LDL and HDL can be enhanced by free cholesterol depletion and cholesterol ester enrichment of the particles, and affirms a role for adipose tissue in the metabolism of lipid-modified lipoproteins.  相似文献   

13.
Synthetic substrates of lecithin: cholesterol acyltransferase   总被引:1,自引:0,他引:1  
Investigation of the substrate specificity of lecithin: cholesterol acyltransferase has been greatly aided by the use of synthetic particles containing the molecular lipid substrates and the apolipoprotein activators of the enzyme. These synthetic particles, in vesicle or disc-like micelle form, are described in some detail noting their preparation, properties, advantages, and limitations as substrates for lecithin:cholesterol acyltransferase. The reactions of the enzyme with the synthetic particles are reviewed in terms of acyl donor and acceptor specificity, activation by apolipoproteins, effects of various inhibitors, and the kinetics of the reaction.  相似文献   

14.
The effect of cholesterol esterification on the distribution of apoA-IV in human plasma was investigated. Human plasma was incubated in the presence or absence of the lecithin:cholesterol acyltransferase (LCAT) inhibitor 5,5-dithiobis(2-nitrobenzoic acid) (DTNB) and immediately fractionated by 6% agarose column chromatography. Fractions were monitored for apoA-IV, apoE, and apoA-I by radioimmunoassay (RIA). Incubation resulted in an elevated plasma concentration of cholesteryl ester and in an altered distribution of apoA-IV. After incubation apoA-IV eluted in the ordinarily apoA-IV-poor fractions of plasma that contain small VLDL particles, LDL, and HDL2. Inclusion of DTNB during the incubation resulted in some enlargement of HDL; however, both cholesterol esterification and lipoprotein binding of apoA-IV were inhibited. Addition of DTNB to plasma after incubation and prior to gel filtration had no effect on the apoA-IV distribution when the lipoproteins were immediately fractionated. Fasting plasma apoE was distributed in two or three peaks; in some plasmas there was a small peak that eluted with the column void volume, and, in all plasmas, there were larger peaks that eluted with the VLDL-LDL region and HDL2. Incubation resulted in displacement of HDL apoE to larger lipoproteins and this effect was observed in the presence or absence of DTNB. ApoA-I was distributed in a single broad peak that eluted in the region of HDL and the gel-filtered distribution was unaffected by incubation either in the presence or absence of DTNB. Incubation of plasma that was previously heated to 56 degrees C to inactivate LCAT resulted in no additional movement of apoA-IV onto lipoproteins, unless purified LCAT was present during incubation. The addition of heat-inactivated LCAT to the incubation, had no effect on movement of apoA-IV. These data suggest that human apoA-IV redistribution from the lipoprotein-free fraction to lipoprotein particles appears to be dependent on LCAT action. The mechanism responsible for the increased binding of apoA-IV to the surface of lipoproteins when LCAT acts may involve the generation of "gaps" in the lipoprotein surface due to the consumption of substrate from the surface and additional enlargement of the core. ApoA-IV may bind to these "gaps," where the packing density of the phospholipid head groups is reduced.  相似文献   

15.
Rat plasma lecithin: cholesterol acyltransferase, a 68 kDa glycoprotein, has been purified 14 000-fold by a modification of a procedure used for the human enzyme. The activity of lecithin: cholesteryl acyltransferase in human and rat plasma are the same, although activation of both enzymes by human apolipoprotein A-I is greater than that produced by rat apolipoprotein A-I. Using reassembled high-density lipoproteins composed of human apolipoprotein A-I, phosphatidylcholine ethers and a series of different phosphatidylcholines, the separate effects of molecular species specificity and microenvironment on the rate of cholesteryl ester formation was determined. Substitution of a fluid lipid, 1-palmityl-2-oleyl-sn-glycero-3-phosphorylcholine, for a solid lipid, 1,2-dipalmityl-sn-glycero-3-phosphorylcholine, produced an 8-fold increase in the activity of all molecular species of phosphatidylcholine. With either solid or fluid lipid environments, the activity decreased as a function of increasing chain length of saturated acyl groups. Addition of one or more double bonds greatly increased the activity of a given saturated homologue. One major difference between the molecular specificity of rat and human lecithin: cholesteryl acyltransferase was that the latter had a two-fold preference for phosphatidylcholines containing arachidonate at the sn-2-position.  相似文献   

16.
A 70-75 kDa high-density lipoprotein (HDL) particle with pre-beta-electrophoretic migration (pre-beta(1)-HDL) has been identified in several studies as an early acceptor of cell-derived cholesterol. However, the further metabolism of this complex has not been determined. Here we sought to identify the mechanism by which cell-derived cholesterol was esterified and converted to mature HDL as part of reverse cholesterol transport (RCT). Human plasma selectively immunodepleted of pre-beta(1)-HDL was used to study factors regulating pre-beta(1)-HDL production. A major role for phospholipid transfer protein (PLTP) in the recycling of pre-beta(1)-HDL was identified. Cholesterol binding, esterification by lecithin/cholesterol acyltransferase (LCAT) and transfer by cholesteryl ester transfer protein (CETP) were measured using (3)H-cholesterol-labeled cell monolayers. LCAT bound to (3)H-free cholesterol (FC)-labeled pre-beta(1)-HDL generated cholesteryl esters at a rate much greater than the rest of HDL. The cholesteryl ester produced in pre-beta(1)-HDL in turn became the preferred substrate of CETP. Selective LCAT-mediated reactivity with pre-beta(1)-HDL represents a novel mechanism increasing the efficiency of RCT.  相似文献   

17.
Two types of A-I-containing lipoproteins are found in human high density lipoproteins (HDL): particles with A-II (Lp(A-I with A-II] and particles without A-II (Lp(A-I without A-II]. We have studied the distribution of lecithin:cholesterol acyltransferase (LCAT) and cholesteryl ester transfer (CET) activities in these particles. Lp(A-I with A-II) and Lp(A-I without A-II) particles were isolated from ten normolipidemic subjects by anti-A-I and anti-A-II immunosorbents. Most plasma LCAT mass (70 +/- 15%), LCAT (69 +/- 16%), and CET (81 +/- 15%) activities were detected in Lp(A-I without A-II). Some LCAT (mass: 16 +/- 7%, activity: 17 +/- 8%) and CET activities (7 +/- 8%) were detected in Lp(A-I with A-II). To determine the size subspecies that contain LCAT and CET activities, isolated Lp(A-I with A-II) and Lp(A-I without A-II) particles of six subjects were further fractionated by gel filtration column chromatography. In Lp(A-I without A-II), most LCAT and CET activities were associated with different size particles, with the majority of the LCAT and CET activities located in particles with hydrated Stokes diameters of 11.6 +/- 0.4 nm and 10.0 +/- 0.6 nm, respectively. In Lp(A-I with A-II), most of the LCAT and CET activities were located in particles similar in size: 11.1 +/- 0.4 nm and 10.6 +/- 0.3 nm, respectively. Ultracentrifugation of A-I-containing lipoproteins resulted in dissociation of both LCAT and CET activities from the particles. Furthermore, essentially all CET and LCAT activities were recovered in the non-B-containing plasma obtained by anti-LDL immunoaffinity chromatography. This report, therefore, provides direct evidence for the association of LCAT and CET protein with A-I-containing lipoproteins. Our conclusions pertain to fasting normolipidemic subjects and may not be applicable to hyperlipidemic or nonfasting subjects.  相似文献   

18.
Two populations of apoA-I-containing lipoproteins are found in plasma: particles with apoA-II [Lp(AI w AII)] and particles without apoA-II [Lp(AI w/o AII)]. Both are heterogeneous in size. However, their size subpopulation distributions differ considerably between healthy subjects and patients with coronary artery diseases. The metabolic basis for such alterations was studied by determining the role of lecithin:cholesterol acyltransferase (LCAT) and apoB-containing lipoproteins (LpB) in the size subpopulation distributions of Lp(AI w AII) and Lp(AI w/o AII). ApoB-free and LCAT-free plasmas, prepared by affinity chromatography, and whole plasma were incubated at 4 degrees C and 37 degrees C for 24 hr. After incubation, Lp(AI w AII) and Lp(AI w/o AII) were isolated by anti-A-II and anti-A-I immunosorbents. Their size subpopulation distributions were studied by nondenaturing gradient polyacrylamide gel electrophoresis. At 4 degrees C most Lp(AI w AII) particles were in the range of 7.0-9.2 nm Stokes diameter. Incubation of plasma at 37 degrees C resulted in an overall enlargement of particles up to 11.2 nm and larger. These particles were enriched with cholesteryl ester and triglyceride and depleted of phospholipids and free cholesterol. Removal of LpB or LCAT from plasma prior to incubation greatly reduced their enlargement. At 4 degrees C, Lp(AI w/o AII) contained mostly particles of 8.5 and 10.1 nm. Incubation at 37 degrees C abolished both subpopulations with the formation of a new subpopulation of 9.2 nm. This transformation was identical in apoB-free plasma but was not seen in LCAT-free plasma. Our study shows that transformation of Lp(AI w AII) requires both LCAT and LpB. However, LpB is not necessary for the transformation of Lp(AI w/o AII) in vitro. The relevance of these in vitro studies to in vivo lipoprotein metabolism was demonstrated in a subject with hepatic triglyceride lipase deficiency.  相似文献   

19.
20.
Isolation and properties of porcine lecithin:cholesterol acyltransferase   总被引:2,自引:0,他引:2  
Lecithin: cholesterol acyltransferase (LCAT, phosphatidylcholine: sterol O-acyltransferase, EC 2.3.1.43) was purified approximately 20 000-fold from pig plasma by ultracentrifugation, phenyl-Sepharose and hydroxyapatite chromatography. Purified LCAT had an apparent relative molecular mass of 69 000 +/- 2000. By isoelectrofocusing it separated into five or six bands with pI values ranging from pH 4.9 to 5.2. The amino acid composition was similar to that of the human enzyme. An antibody against pig LCAT was prepared in goat. The antibody reacted against pig LCAT and gave a reaction of partial identity with human LCAT. Incubation of pig plasma or purified enzyme with the antibody virtually inhibited LCAT activity. The same amount of antibody inactivated only 62% of the LCAT activity in human serum. Pig and human LCAT were activated to the same extent by either human or pig apolipoprotein A-I (apo-A-I) using small liposomes as substrate. Human apoA-I, however, caused a higher esterification rate for both enzymes. Using apoA-I and small liposomes as a substrate, the addition of apoC-II up to 4 micrograms/ml had no effect on the LCAT reaction, but above this concentration LCAT was inhibited. Small liposomes with phosphatidylcholine/cholesterol molar ratios of 3:1 up to 8.4:1 did not show any significant differences in the LCAT reaction, when used as substrates in the presence of various amounts of apoA-I and albumin. In contrast, the LCAT activity was significantly reduced by liposomes with phosphatidylcholine/cholesterol molar ratios below 3:1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号