首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human lymphocyte responses are enhanced by culture at 40 degrees C.   总被引:2,自引:0,他引:2  
In vitro responses of human peripheral blood lymphocytes (PBL) were found to be markedly enhanced by culture at 40 degrees C rather than at the conventional temperature of 37 degrees C. We studied proliferative responses of lymphocytes by activation by phytohemagglutinin (PHA) concanavalin A (Con A), pokeweed mitogen (PWM), and allogeneic lymphocytes in mixed lymphocyte culture (MLC) and found enhancement of DNA synthesis at the higher temperature. Cytotoxic T cell responses to allogeneic cells were also enhanced when MLC was done at 40 degrees C. These enhanced immune responses appear to be due in part to increased numbers of participating cells. If in vitro lymphocyte responses correlate with in vivo responses, then fever associated with infection or tumor may be beneficial whereas that associated with autoimmune disorders may have a detrimental effect.  相似文献   

2.
We have examined the functional consequences of the exposure of human lymphocytes to sheep red blood cells (SRBC). Peripheral blood lymphocytes (PBL) were incubated wih SRBC under optimal conditions for their interaction and, after lysis of the erythrocytes, the unfractionated PBL were examined for several T cell functions. Only after exposure to SRBC, but not after incubation with mouse, ox, chicken, or human erythrocytes, the unfractionated PBL showed an increased reactivity in the following functions: 1) Production of T cell growth factor, after PHA stimulation; 2) mitogenic response to suboptimal doses of PHA and Con A, and 3) response in mixed lymphocyte culture. Other functional activities, such as natural cytotoxicity (NK) and antibody-dependent cellular cytotoxicity (ADCC) were also enhanced by the interaction of PBL with SRBC, but the increases in cytotoxic activities were not consistently detected. Taken together, these results indicate that the interaction of PBL with SRBC has functional consequences in the reactivity of T cells producing an enhancement of several in vitro T cell functions.  相似文献   

3.
The proliferative responses of human peripheral blood mononuclear cells (PBL) and thymocytes to OKT3 monoclonal antibody have been investigated. The PBL response to OKT3 was maximal after 72 hr while that of thymocytes was inappreciable at all times measured. Unlike phytohemagglutinin, OKT3 was unable to elicit the mitogenesis of adherent cell-depleted T cells in spite of the presence of exogenously added Interleukin 1 and/or Interleukin 2. The addition of autologous or heterologous adherent cells restored the OKT3 mitogenic response of peripheral purified T cells but not of thymocyte cultures. The adherent cell population that was able to sustain the OKT3-elicited T-cell mitogenesis was constituted by Ia-, Fc receptor-positive cells. These data suggest that the adherent cell-T cell interaction is mediated via the Fc portion of the OKT3 molecule. Furthermore, unlike peripheral T cells, T3-positive thymocytes, which represent the more mature. PHA-responsive subset within the thymus, are unable to cooperate with accessory cells when pulsed with OKT3 monoclonal antibody.  相似文献   

4.
Using human thymocytes and autologous thymic epithelial (TE) cells grown in vitro in long-term culture, we have found TE cells can function as accessory cells for mitogen-induced mature thymocyte activation. Tritiated thymidine incorporation, blast formation, and protein synthesis were all induced in accessory cell-depleted thymocytes by autologous TE cells in the presence of suboptimal concentrations of PHA. After 3 days of mitogen stimulation of thymocyte-TE cell cocultures in vitro, thymocyte blasts bound to TE cells and 77 +/- 4% (mean +/- SEM) of TE cells acquired expression of major histocompatibility complex (MHC) class II (DR) antigen. TE accessory cell function for thymocyte activation was dependent on the number of TE cells added to thymocyte cultures, was not dependent on TE cell division, but did require TE cell protein synthesis. In thymocyte separation experiments, the predominant cell type responding to PHA in the presence of TE cells was T6- mature (stage III) thymocytes. Thus, human TE cells are capable of providing signals that lead to mature thymocyte activation.  相似文献   

5.
Summary The effect of cimetidine, an H-2 receptor antagonist, on activation of PBL from both normal individuals and melanoma patients was studied. It has been shown that cimetidine enhanced, though moderately, the production of TCGF from normal PBL after PHA-P stimulation. In addition, cimetidine significantly augmented TCGF-induced proliferation of normal PBL, as well as proliferation induced by allogeneic cells (MLC) by PPD, Con A, and PHA. In PBL samples where coincubation with cimetidine had limited or no effect, preincubation of PBL with cimetidine prior to the addition of IL-2 and other T cell activators showed a significant enhancement effect. This effect mediated by cimetidine was further demonstrated on PBL from melanoma patients whose T cell responses were initially low. The possibilities are discussed that: (a) cimetidine treatment inactivates suppressor cell activity, thus enhancing T cell mediated responses; or (b) cimetidine may act directly at effector cell level.TCGF = T cell growth factor = Interleukin-2 or IL-2  相似文献   

6.
Blood mononuclear cells (MNC) develop into T cell colonies when the cells are sensitized with PHA and seeded in a two-layer soft agar system. Conditioned medium (CM) derived from MNC enhanced lymphocyte colony formation when it was added to the culture system. CFU-TL appear to be stimulated into colony formation by molecules secreted by lymphocyte subpopulations contained in the seeded cells. In this study, human peripheral blood MNC were fractionated by a battery of techniques into adherent, E+, CD4+, CD8+, B and null cells. CM was prepared from each of the subpopulations and its effects on T cell colony growth assayed. All the lymphocyte subpopulations were found to generate lymphocyte colony enhancement factor (LCEF). After several purification procedures, CM prepared from CD4 and CD8+, displayed LCEF activity corresponding to proteins of molecular weight 30-40 and 100-140 kD.  相似文献   

7.
Cellular and humoral influences of T lymphocytes on human megakaryocyte colony formation in vitro were assessed by using a microagar system. Megakaryocyte colony formation from nonadherent low density T lymphocyte-depleted (NALDT-) bone marrow cells was increased significantly after the addition of aplastic anemia serum (AAS) or purified megakaryocyte colony-stimulating factor (Meg-CSF). The addition of conditioned medium obtained from phytohemagglutinin-stimulated T lymphocytes replaced, at least partially, the requirement for AAS or purified Meg-CSF for the growth of megakaryocyte colonies. The cellular influence of T lymphocytes and T lymphocyte subsets on megakaryocyte colony formation was assessed by removing either T cells from nonadherent peripheral blood mononuclear cells with monoclonal OKT4, OKT8, or OKT3 antibodies plus complement, or by adding back populations of bone marrow or blood T4+ or T8+ lymphocytes, isolated by means of fluorescence-activated cell sorting, respectively, to NALDT--bone marrow or -blood cells. When sorted T cell subpopulations were added to a fixed number of NALDT--bone marrow or -peripheral blood cells in the presence of AAS or Meg-CSF, T4+ cells enhanced megakaryocyte colony formation and T8+ cells decreased it. These studies demonstrate that although the stimulation of megakaryocytic progenitor cells by Meg-CSF may not require the presence of monocytes or T lymphocytes, T4+ lymphocytes enhance and T8+ lymphocytes down-regulate megakaryocyte colony formation induced by Meg-CSF. These observations suggest that the immune system is capable of modulating the proliferative response of human megakaryocytic progenitor cells to Meg-CSF.  相似文献   

8.
A human leukemia cell line (TALL-101) was established from the bone marrow of a patient with an undifferentiated acute T cell leukemia using the conditioned medium (CM) of the human T cell leukemia virus (HTLV) II-transformed human cell line J-LB1. Immunofluorescence analysis on the original leukemic cells indicated the presence of T cell markers (Leu-1, Tdt, and T11); however, the established TALL-101 cell line expressed only antigens commonly present on progenitor cells, thymocytes, and myelomonocytic cells, but not on mature T cells. A high percentage of TALL-101 cells displayed the Tac antigen which was down-regulated upon incubation in the presence of recombinant human (rH) interleukin 2 (IL 2). Interferon (IFN)-gamma induced the appearance of class II histocompatibility leukocyte antigens (HLA) and of a T cell marker (3A1), and enhanced the expression of transferrin receptors on these cells. Further evidence for a T cell lineage of the TALL-101 cell line was provided by both chromosomic and genotypic analysis showing a translocation in chromosome 14 typical of T cell leukemias, and a rearrangement of the T-beta receptor locus. The growth-promoting activity in the J-LB1-CM was identified as granulocyte-macrophage colony stimulatory factor (GM-CSF), a growth factor which stimulates proliferation of normal myelomonocytic cells and other progenitor cells, but not known to have an effect on T cells. Dose response curves of [3H]thymidine incorporation and growth indicated that TALL-101 cells were sensitive to very low concentrations of rHGM-CSF, 5 ng/ml inducing maximal proliferation in chemically defined medium. The TALL-101 cell line is strictly GM-CSF-dependent for growth: upon depletion of GM-CSF from the culture medium, the cells stop proliferating immediately and die within 1 to 2 wk. The overall data, showing that GM-CSF is able to support the growth of a highly undifferentiated T cell leukemia, strongly suggests that this factor might have similar growth promoting effects on other immature T cell leukemias, and possibly, on normal T cell progenitors.  相似文献   

9.
The normally weak murine T-cell proliferative response against autologous non-T stimulator cells (the autologous mixed lymphocyte culture (MLC) was enhanced markedly by inclusion of the hydrophilic polymer, polyethylene glycol (PEG), into the culture medium. Potentiation of the autologous MLC was indicated on the basis of increased [3H]TdR incorporation by responding cells, as well as by the numbers of viable cells recovered from mixed cell cultures. PEG is not a polyclonal activator of T and/or B lymphocytes, since nylon wool nonadherent lymphoid cells (T cell-enriched fraction), nylon wool adherent cells (B cell-enriched fraction) and T cell-deficient “nude” spleen cells were not stimulated into DNA synthesis when cultured separately with PEG. Inclusion of 4% PEG into the culture medium was found to optimally enhance autologous MLC, although concentrations between 2 and 5% also significantly elevated responsiveness. At a responder/stimulator ratio of 1:2, autologous MLC yielded peak [3H]TdR incorporation after 5 days of culture. At lower ratios (1:1 and 2:1), however, Δ cpm of autologous MLC continued to increase over a culture period of 7 days. Enhanced responsiveness in the presence of PEG was observed in strains of mice representing a variety of H-2 haplotypes, indicating that at least the potential for autoreactivity of this type is a naturally occurring and widespread characteristic of murine species. An absolute requirement for purified T responder cells was necessary in the autologous MLC, since unseparated lymphoid cell responder LN or spleen cells demonstrated marked proliferation when cultured alone in medium containing PEG. The proliferation of T cells to autologous non-T cells within the same unseparated lymphoid cell preparation appears to be responsible for this phenomenon. Ia antigens expressed by the stimulator cells are involved in the induction of T-cell response, since anti-Ia sera added directly to the cultures inhibited the autologous MLC, but did not affect other T-cell responses to alloantigens or mitogens. Despite the marked proliferation observed in the autologous MLC performed in the presence of PEG, there was no generation of cytotoxic effector cells. Thus, PEG does not appear to add, or alter determinants on stimulator cells to an extent that they are recognized as foreign by precursor cytotoxic T cells. Although the mechanism of enhancement of autologous MLC by PEG is not totally defined, it appears, at least functionally, to promote cellular interactions that occur normally between T cells, B cells, and macrophages. In this respect, PEG will be a powerful and useful probe to dissect the cellular interactions that take place in autologous responses.  相似文献   

10.
Regulatory effects of mixed lymphocyte culture (MLC)-derived CD4+ human T cell clones on granulocyte-macrophage colony (CFU-GM) formation by normal bone marrow (BM) were studied in an initial attempt to establish an in vitro model for the negative feedback control of myelopoiesis by alloactivated T cells. This is likely to be of clinical significance in the aberrant control of haematopoiesis during some cases of graft-versus-host disease (GVHD) after allogeneic BM transplantation. Whilst 5 such alloproliferative clones generally failed to suppress CFU-GM, the majority of clones with natural killer (NK)-like activity, or those with suppressive activity in MLC, regularly and strongly suppressed in this system, reinforcing the view that certain T cells may have potent negative regulatory effects on haematopoiesis.  相似文献   

11.
It has previously been demonstrated that retinoic acid (RA) enhances the blastogenic responses of human thymocytes. We have now delineated the cellular mechanism of this activity. When RA was added to resting thymocyte cultures in the presence of recombinant interleukin-2 (rIL-2), blastogenesis was increased two- to fourfold. By assessing the proportion of cells that became Tac-positive and showed DNA synthesis early in the activation process, we determined that the augmentation by RA was not caused by an increased recruitment of resting cells that are activated to undergo blast transformation. Instead, RA markedly potentiated the growth rate of long-term rIL-2-dependent thymocyte blasts and, correspondingly, increased the Tac expression on these proliferating cells. Thus, RA enhancement of thymocyte responses appears to be mediated by an increase in IL-2-receptor expression on thymocyte blasts, resulting in augmented IL-2-dependent growth. This effect is independent of the original activating stimulus since enhancement of thymocyte responses to phytohemagglutinin (PHA) was also shown to be caused solely by increased proliferation of IL-2-dependent blast growth. In contrast to these effects on thymocytes, peripheral blood lymphocyte (PBL) proliferative responses were unaffected by RA treatment and, correspondingly, RA affected neither IL-2 receptor expression on PBL blasts nor the growth of these cells. Taken together, the results of this study suggest that RA can modulate IL-2-dependent immune responses, in part, by upregulating the expression of IL-2 receptors on proliferating T lymphoblasts generated from cells at restricted stages of development.  相似文献   

12.
The ability of growth hormone (GH) and insulin to influence positively T lymphocytes responding to an alloantigen stimulus in vitro was analyzed through the use of a serum substitute system. The presence of insulin but not GH, enables the generation of a successful mixed lymphocyte culture (MLC) blastogenic response. However, the presence of GH during a 5-day MLC allowed for the generation of cytotoxic T lymphocytes (CTL). It was further demonstrated that GH needed to be present during the first 2 days of the culture system, presumably before the entry of the precursor CTL into cell division. The results are discussed in terms of the induction, by the GH, of ornithine decarboxylase activity and how this might relate to the successful generation of CTL activity.  相似文献   

13.
Null lymphocytes, lacking B- and T-lymphocyte markers, were isolated from PBL of patients with acute lymphocytic leukemia. Upon culture in the presence of medium produced from PHA-stimulated allogeneic lymphocytes, induction of these cells to T lymphocytes occurred. Within 18 hr, they acquired the capacity to form SRBC rosettes and bind complement components, IgG or IgM. This differentiation, as supported by cell cycle kinetic analysis, was accompanied by lymphocyte activation, inferable from warm SRBC rosetting. Capping of these rosettes was identified as indicative of early T lymphocytes. During T-lymphocyte development subclasses bearing complement receptors, followed by IgG and finally IgM receptors appeared. The emergence of subclasses, functionally expressed by a gain in MLC responsiveness and stimulatory capacity reflected T-lymphocyte maturation. Simultaneous with the later decrease of the subclasses was a decrease in MLC reactivity. This elucidation of T-lymphocyte development may help in dissection of the lymphoid system.  相似文献   

14.
Human thymocytes are devoid of NK cells but develop lymphokine-activated killer (LAK) activity after culture with recombinant interleukin-2 (rIL-2). The most active precursor for this activity appears to be a CD3-negative cell. The purpose of these studies was to compare the phenotype and functional activities of thymocyte and peripheral blood lymphocyte (PBL) LAK cells. Following culture, rIL-2-activated thymocytes resemble PBL-generated LAk and PBL NK cells. For each of these populations, lytic activity is highest in NKH-1-positive cells. Two-color fluorescence of each population also indicates that NKH-1+ cells are highly granular, as measured by staining with the lysosomotropic vital dye quinacrine. PBL, PBL-derived LAK cells, and thymus-derived LAK cells have a portion of cells that express both CD3 and NKH-1. However, approximately 60-80% of NKH-1+ cells lack detectable CD3. This suggests that both CD3+ and CD3- cells may be capable of LAK activity. Thymic-derived LAK cells respond to interferon in a manner very similar to NK and PBL-derived LAK cells, but lack the NK-associated CD16 antigen. Thus, despite the absence of NK cells in the thymus, it is possible to generate thymocyte LAK activity which bears a strong resemblance to LAK activity derived from peripheral blood lymphocytes.  相似文献   

15.
Alloactivated human lymphocytes were cloned by limiting dilution. After 1 month in culture with T-cell growth factor several clones incorporated tritiated thymidine when stimulated with the appropriate allogeneic cells. Specificity of restimulation of two primed lymphocyte clones, designated 12-2 and 12-8, was studied in detail after varying periods of culture (up to 50 days). Clone 12-2 cells were stimulated only by cells expressing the HLA-Dw antigens of the original priming cells (Dw3); furthermore, this primed lymphocyte reagent specifically recognized antigens associated with only one of the three distinct Dw3-bearing haplotypes from an informative family (KOH). Clone 12-8 cells, on the other hand, failed to recognize Dw3 antigens in the random panel or on homozygous typing cells (including the original priming cell), but were strongly restimulated by certain cells expressing Dw4 antigens. In addition, within family KOH, these restimulating products segregated with another one of the three Dw3-bearing haplotypes but with none of the three Dw4-bearing haplotypes. These two clones exemplify a hitherto unknown precision in cellular typing of theHLA-D region. Clone 12-2 allows the discrimination of a probably rare and as yet undetected HLA-Dw3 subtypic specificity. Clone 12-8, on the other hand, apparently identifies an allelic system segregating withHLA but distinct from the HLA-D determinants definable by HTC-typing.Abbreviations used in this paper MHC major histocompatibility complex - HLA human leukocyte antigens - PBL peripheral blood leukocytes - HTC homozygous typing cells - MLC mixed leukocyte culture - PLT primed lymphocyte testing - TCGF T-cell growth factor - CTC cultured T cells - Tdr tritiated thymidine  相似文献   

16.
17.
Umbilical cord blood (UCB) is increasingly being used for human hematopoietic stem cell (HSC) transplantation in children but often requires pooling multiple cords to obtain sufficient numbers for transplantation in adults. To overcome this limitation, we have used an ex vivo two-week culture system to expand the number of hematopoietic CD34(+) cells in cord blood. To assess the in vivo function of these expanded CD34(+) cells, cultured human UCB containing 1 x 10(6) CD34(+) cells were transplanted into conditioned NOD-scid IL2rgamma(null) mice. The expanded CD34(+) cells displayed short- and long-term repopulating cell activity. The cultured human cells differentiated into myeloid, B-lymphoid, and erythroid lineages, but not T lymphocytes. Administration of human recombinant TNFalpha to recipient mice immediately prior to transplantation promoted human thymocyte and T-cell development. These T cells proliferated vigorously in response to TCR cross-linking by anti-CD3 antibody. Engrafted TNFalpha-treated mice generated antibodies in response to T-dependent and T-independent immunization, which was enhanced when mice were co-treated with the B cell cytokine BLyS. Ex vivo expanded CD34(+) human UCB cells have the capacity to generate multiple hematopoietic lineages and a functional human immune system upon transplantation into TNFalpha-treated NOD-scid IL2rgamma(null) mice.  相似文献   

18.
Activation of peripheral blood lymphocytes (PBL) from a melanoma patient either in secondary MLC in which EBV-transformed B cells from the cell line JY were used as stimulator cells, or by co-cultivation with the autologous melanoma cells in a mixed leukocyte tumor cell culture (MLTC) resulted in the generation of cytotoxic activity against the autologous melanoma (O-mel) cells. From these activated bulk cultures four cloned cytotoxic T lymphocyte (CTL) lines were isolated. The CTL clone O-1 (T3+, T4+, T8-, OKM-1-, HNK-, and HLA-DR+), and O-36 (T3+, T4-, T8+, OKM-, HNK-, and HLA-DR+) were obtained from MLC, whereas the CTLC clones O-C7 (T3+, T4+, T8-, OKM-1-, HNK-, and HLA-DR+) and O-D5 (T3+, T4-, T8+, OKM-1-, HNK, and HLA-DR+) were isolated from autologous MLTC. All four CTL clones were strongly cytotoxic for O-mel cells but failed to lyse autologous fibroblasts and autologous T lymphoblasts. Moreover, the CTL clones lacked NK activity as measured against K562 and Daudi cells. Panel studies indicated that the CTL clones also killed approximately 50% of the allogeneic melanoma cells preferentially, whereas the corresponding T lymphoblasts were not lysed. Monoclonal antibodies against class I (W6/32) and class II (279) MHC antigens failed to block the reactivity of the CTL clones against O-mel and allogeneic melanoma cells, indicating that a proportion of human melanoma cells share determinants that are different from HLA antigens and that are recognized by CTL clones. In contrast to the CTL clones isolated from MLTC, the clones obtained from MLC also lysed JY cells, which initially were used as stimulator cells. The reactivity of O-36 against JY could be inhibited with W6/32, demonstrating that this reactivity was directed against class I MHC antigens. These results suggest that the lysis of O-mel and JY cells by O-36 has to be attributed to two independent specificities of this CTL clone. The specificity of the other cross-reactive CTL clone (O-1) could not be determined. The notion that individual CTL clones can have two specificities was supported by the following observations. The cytotoxic reactivity of both O-1 (T4+) and O-36 (T8+) against JY was blocked by monoclonal antibodies directed against T3 and human LFA-1, and against T3, T8, and human LFA-1, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
L-Ornithine was shown to inhibit the development of cytolytic T lymphocytes (CTL) in mixed lymphocyte cultures (MLC). Lymphokines were unable to reverse the suppressive effect, and cytotoxic activity was not revealed by coupling ornithine-inhibited MLC cells to target cells with phytohemagglutinin (PHA). If addition of ornithine to MLC were delayed, sensitivity of CTL to inhibition was reduced after 24 hr and lost by 48 hr. Suppression of CTL development was not due to a toxic effect. MLC washed free of ornithine after 3 days produced detectable cytolytic activity within 24 hr of secondary culture, and to the same degree as the uninhibited MLC control within 48 hr. Cytotoxic cells generated in secondary cultures were Lyt-2+, did not kill the natural killer-sensitive YAC-1 cell line, and were shown to be antigen-specific by virtue of the findings that cytolysis and cold target inhibition were observed only with cells carrying the original, inducing H-2 haplotype. Cytolysis of target cells by normal CTL effector cells was not inhibited by L-ornithine. MLC depleted of accessory cells so that CTL activation was dependent upon addition of lymphokines remained susceptible to inhibition by ornithine. Our findings indicate that in the ornithine-inhibited MLC, CTL precursors undergo clonal expansion, but their maturation is arrested at a precytolytic stage. L-Arginine and putrescine also suppressed generation of CTL in primary MLC, and cells recovered from arginine- and putrescine-inhibited MLC developed control levels of CTL within 48 hr of secondary culture. Inhibition by putrescine was observed in tissue culture medium supplemented with human serum but not with fetal calf serum, presumably due to the presence of diamine oxidase activity in fetal calf serum. Similar to ornithine, the suppressive effects of arginine and putrescine on T lymphocytes were apparently selective for CTL because they did not inhibit mitogen activation with concanavalin A or the production of interleukin 2 and interleukin 3. These findings are consistent with a hypothesis that the inhibitory effects of ornithine, arginine, and putrescine are mediated by polyamines, and exerted on the differentiative stage of CTL development.  相似文献   

20.
The modulation of growth of normal and leukemic myeloid progenitor cells in soft agar cultures by recombinant human tumor necrosis factor-alpha (TNF alpha) and recombinant human interferon-gamma (IFN gamma) was investigated. TNF alpha inhibited colony formation of all colony types representing different maturational stages of normal progenitor cells committed to the myeloid lineage with different orders of sensitivity. Blast-type colonies derived from patients with acute myelogenous leukemia were more sensitive to TNF alpha inhibition than progenitor cells purified from normal bone marrow or bone marrow from patients with stable-phase chronic myelogenous leukemia. The response of most colony types to IFN gamma was poor. However, when IFN gamma was administered together with TNF alpha, synergistically enhanced antiproliferative effects were detected in all colony types tested. The antiproliferative action of IFN gamma on myelopoiesis was enhanced in culture by the presence of autologous monocytes, presumedly by inducing endogenous production of TNF alpha. However, TNF alpha seemed to act directly on the progenitor cells themselves to suppress their clonal growth, rather than involving accessory marrow elements such as monocytes and/or T lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号