首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
粘质沙雷氏菌产几丁质酶发酵条件的研究   总被引:2,自引:0,他引:2  
目的:通过对粘质沙雷氏菌发酵条件的优化,提高其产几丁质酶的能力。方法:以实验室保存菌种粘质沙雷氏菌S418为对象,通过单因素试验和三因素三水平正交试验筛选出了菌株S418产几丁质酶的最佳培养基配方及培养条件。结果:该菌种产酶的最佳发酵条件:0.2%(w/v)胶体几丁质,1%蛋白胨,0.05%KH2PO4,在28℃、pH7.0、接种量6%,培养72h,酶活达到5.49U/mL。结论:优化后菌株S418产几丁质酶的条件。  相似文献   

2.
笔者所在实验室前期筛选到1株产脂肪酶粘质沙雷氏菌,克隆其脂肪酶基因,构建重组枯草芽胞杆菌Bacillus subtilis 168/pMA5-lipA,成功实现了来源于粘质沙雷氏菌的脂肪酶基因在枯草芽胞杆菌中的表达。基于以上工作基础上,对B.subtilis 168/pMA5-lipA进行了摇瓶水平上的产酶发酵优化。首先通过单因素和正交试验确定了有利于产脂肪酶的最佳培养基成分,并对发酵条件进行了优化。结果表明:优化后的培养基组分为蔗糖35 g/L,玉米浆27.5 g/L,(NH4)2SO41.25 g/L,CaCl24 g/L,pH 7.0。在最优发酵培养基的条件下,37℃、160 r/min摇床培养33 h,每毫升发酵液中重组菌脂肪酶酶活可达98.6 U,是优化前的3倍。  相似文献   

3.
洋葱假单胞菌(Pseudomonas cepacia)PCL-3产脂肪酶发酵条件研究   总被引:2,自引:0,他引:2  
研究了洋葱假单胞菌(Pseudomonas cepacia) PCL-3发酵产碱性脂肪酶培养条件的优化。采用单因子试验筛选出糊精为最适碳源,蛋白胨和尿素为复合氮源。通过Plackett-Burman设计试验,对影响产酶条件的8个相关因子进行评估并筛选出具有显著效应的三个因子:尿素、接种量以及初始pH值。用最陡爬坡实验逼近显著因子的最大响应区域后,采用响应面分析法,确定尿素、接种量以及初始pH值最优值分别为0.15%,3.05%和8.59。优化后液体发酵培养基中脂肪酶活力提高到48.88 U/mL,比初始酶活25.37U/ml提高了1.93倍。10 L 的发酵罐中,脂肪酶活力在52h达到最大,为47.69U/mL。  相似文献   

4.
周林  朱爽  潘敏芬  蔡泽加  许尧滨 《生物磁学》2011,(8):1436-1439,1435
目的:采用双亲灭活原生质体技术制备粘质沙雷氏菌和红曲霉的跨界产色素融合子,并测定其抑菌活性。方法:经0.2%溶菌酶处理获得粘质沙雷氏菌的原生质体并热灭活;经混合酶(0.8%溶菌酶+1.2%蜗牛酶+1.6%纤维素酶)处理获得红曲霉的原生质体并紫外灭活;用含25%PEG的原生质体融合剂进行促融合与再生。观察融合子的菌落形态和色素合成能力,测定融合子色素提取物对金黄色葡萄球菌的抑制活性。结果:在优化条件下,粘质沙雷氏菌原生质体的形成率为92.58%,红曲霉原生质体形成数约为106个/mL,两菌原生质体灭活率均为100%。共获得13个融合子,9个能产红色素,融合率为1×10-5%。其中8个融合子的95%乙醇提取物对金黄色葡萄球菌表现出不同程度的抑制。结论:采用双亲灭活原生质体技术,能够制备具有抑菌活性的粘质沙雷氏菌和红曲霉的跨界产色素融合子。  相似文献   

5.
响应面法优化洋葱假单胞菌产脂肪酶液体发酵工艺   总被引:6,自引:0,他引:6  
用响应面法对洋葱假单胞菌G-63液体发酵产脂肪酶条件进行了优化。首先运用单因子试验筛选出麦芽糖和豆粉水解液为最适碳源和氮源。在此基础上,通过Plackett-Burman设计试验,对影响产酶条件的11个相关因子进行评估并筛选出具有显著效应的3个因子:橄榄油、豆饼粉水解液以及初始pH值。在用最陡爬坡实验逼近以上3个因子的最大响应区域后,采用响应面分析法,确定出橄榄油、豆粉水解液的最佳浓度和最佳初始pH值分别为4.337%,1.956%和8.38。优化后液体发酵培养基中脂肪酶活力提高到44.39 U/mL,比初始酶活13.45 U/mL提高了3.3倍。  相似文献   

6.
冯璨  马香  刘柱  李宏  李娟娟  彭欣  唐燕琼 《微生物学通报》2022,49(10):4291-4304
【背景】微生物蛋白酶在工业生物技术上具有广阔的应用前景。在微生物蛋白酶中,碱性蛋白酶占全球酶总产量的50%以上,获取产碱性蛋白酶的新微生物资源意义重要。【目的】在海南近海贝类养殖基地海泥中筛选获得高产碱性蛋白酶的菌株,对其生长特性进行探究并优化菌株产酶条件,获得新的蛋白酶生产资源。【方法】以酪素培养基为筛选培养基,采用形态学结合系统发育分析鉴定菌株,通过响应面实验优化菌株的产酶条件。【结果】筛选获得一株高产碱性蛋白酶的菌株F3,鉴定为粘质沙雷氏菌(Serratia marcescens)。菌株在最优产酶条件下发酵酶活达到(339.36±4.30) U/mL。【结论】筛选获得的菌株粘质沙雷氏菌F3有较好的产碱性蛋白酶的能力。  相似文献   

7.
Galactomyces geotrichum Y25产脂肪酶条件的优化   总被引:1,自引:0,他引:1  
应用响应面法对Galactomyces geotrichumY25液体发酵产脂肪酶的条件进行了优化。首先采用Plackett-Burman设计对影响产酶因素的效应进行评价,筛选出黄豆粉、玉米浆和发酵时间3个对产酶影响显著的因素。用最陡爬坡路径逼近最大产酶区域后,利用响应面设计对显著因素进行优化,得出黄豆粉、玉米浆最佳质量分数分别为2.51%、2.12%,最佳发酵时间101.95 h。优化后液体发酵液中脂肪酶活力提高到34.65 U/mL,比初始酶活力9.6 U/mL提高了3.61倍。表明响应面法可显著优化Galactomyces geotrichumY25液体发酵产脂肪酶条件。  相似文献   

8.
以假丝酵母菌GXU08产脂肪酶催化合成麝香类香料—环十五内酯目前已备受关注,在一定条件下,环十五内酯的转化率与脂肪酶的水解酶活有直接关系,酶活越高其催化合成环十五内酯的能力越强。通过单因素试验和正交试验,对假丝酵母菌GXU08产脂肪酶的发酵条件进行优化。结果表明:最佳发酵培养基配方为蔗糖0.5%,淀粉0.5%,蛋白胨1.5%,K_2HPO_40.05%,MgSO_40.15%,(NH_4)_2SO_41%,茶油1.5%,菜籽油1.5%,pH=8,此培养基在28℃,180 r/min的条件下发酵培养48h,脂肪酶水解活力达到27.53 U/mL,是初始发酵培养基条件下所得脂肪酶酶活的3.74倍;其环十五内酯的转化率为16.6%,是优化前的4倍。  相似文献   

9.
目的:采用双亲灭活原生质体技术制备粘质沙雷氏菌和红曲霉的跨界产色素融合子,并测定其抑菌活性。方法:经0.2%溶菌酶处理获得粘质沙雷氏菌的原生质体并热灭活;经混合酶(0.8%溶菌酶+1.2%蜗牛酶+1.6%纤维素酶)处理获得红曲霉的原生质体并紫外灭活;用含25%PEG的原生质体融合剂进行促融合与再生。观察融合子的菌落形态和色素合成能力,测定融合子色素提取物对金黄色葡萄球菌的抑制活性。结果:在优化条件下,粘质沙雷氏菌原生质体的形成率为92.58%,红曲霉原生质体形成数约为106个/mL,两菌原生质体灭活率均为100%。共获得13个融合子,9个能产红色素,融合率为1×10-5%。其中8个融合子的95%乙醇提取物对金黄色葡萄球菌表现出不同程度的抑制。结论:采用双亲灭活原生质体技术,能够制备具有抑菌活性的粘质沙雷氏菌和红曲霉的跨界产色素融合子。  相似文献   

10.
为提高黏质沙雷氏菌株S68-CM5产几丁质酶能力,对产酶发酵条件进行优化研究。利用Plackett-Burman设计和响应面法对培养基和发酵条件进行摸索。结果显示,获得最佳发酵产酶培养基:胶体几丁质1.5%,牛肉膏7 g/L,酵母膏2 g/L,葡萄糖8 g/L,氯化钠3.5 g/L,蛋白胨2 g/L,磷酸氢二钾3.5 g/L;最佳产酶培养条件为:p H6.88,温度27.32℃,摇床转数155.82r/min,培养时间60 h,接种量1%,装液量50 m L/250 m L。优化后产酶量达到7.131 U/m L,比优化前产酶量提高了1.43倍。  相似文献   

11.
单因子-响应面法优化白地霉Y162产脂肪酶条件   总被引:2,自引:1,他引:1  
对白地霉Y162液体发酵产脂肪酶的条件进行了优化。首先采用单因子实验筛选出最适碳源为橄榄油,氮源为黄豆粉和NH4Cl,无机盐为BaCl2和MgCl2。在此基础上,利用Plackett-Burman设计对影响产酶因素的效应进行评价,筛选出具有显著效应的橄榄油、BaCl2和NH4Cl三个最显著的因素。用最陡爬坡路径逼近最大产酶区域后,利用响应面中心组合设计对显著因素进行优化,得出橄榄油、BaCl2和NH4Cl最佳浓度分别为2.35%,0.36%,1.35%。优化后液体发酵液中脂肪酶活力提高到31.85 U/mL,比初始酶活力14.16 U/mL提高了2.25倍,表明单因子-响应面结合法可显著优化白地霉Y162液体发酵产脂肪酶条件。  相似文献   

12.
粘质沙雷氏菌产灵菌红素培养基的筛选   总被引:1,自引:1,他引:0  
目的:确定菌株S418产生灵菌红素的最优培养基配方及其的分类地位。方法:以花生粉为基础培养基,通过单因素试验和四因素三水平正交试验筛选出了菌株S418产灵菌红素的最佳培养基配方;根据该菌株的16S rRNA基因序列系统发育树分析初步确定了菌株S418的分类地位。结果:培养基最优配方为:花生粉2%,花生油0.5%,L-脯氨酸1%,硫酸镁0.025%。在28℃、pH7.5、250r/min振荡培养24h,灵菌红素产量达67.92mg/L。菌株S418初步鉴定为粘质沙雷氏菌(Serratia marcescensS418)。结论:花生粉培养基是一种适合粘质沙雷氏菌产灵菌红素的优良培养基。  相似文献   

13.
Response surface methodology (RSM) was employed to optimize culture medium for production of lipase with Candida sp. 99-125. In the first step, a Plackett–Burmen design was used to evaluate the effects of different components in the culture medium. Soybean oil, soybean powder and K2HPO4 have significant influences on the lipase production. The concentrations of three factors were optimized subsequently using central composite designs and response surface analysis. The optimized condition allowed the production of lipase to be increased from 5000 to 6230 IU/ml in shake flask system. The lipase fermentation in 5 l fermenter reached 9600 IU/ml.  相似文献   

14.
Penicillium sp.脂肪酶的发酵及催化生成生物柴油的研究   总被引:7,自引:2,他引:5  
目的:为了提高脂肪酶的产量及更好地应用脂肪酶。方法:采用单因子实验与均匀设计相结合的方法,对青霉Penicil- lium sp.TS414发酵生产脂肪酶的条件进行了优化。结果:在实验优化后的最适产酶培养基中,碳源为1.4%蔗糖,氮源为7.0%豆饼粉,起始pH8.0。均匀设计优化后的产酶水平(315.1U/mL)比优化前(101.5U/mL)提高了约2倍。Penicillium sp.TS414脂肪酶能够有效地催化大豆油转酯化合成脂肪酸甲酯(生物柴油),反应72h后,脂肪酸甲酯的最终得率在96%左右。结论:Penicillium sp.TS414产生的脂肪酶在生物柴油的工业化生产方面,具有潜在的应用前景。  相似文献   

15.
Methanol, the acyl acceptor usually used in the commercial process of biodiesel production, is associated with some problems such as immiscibility with oils and lipase deactivation. To overcome these barriers, ethyl acetate was proposed as an alternative acyl acceptor for the production of biodiesel from soybean oil using an immobilized lipase, Novozym 435, Ethyl acetate mixed well with soybean oil, and only slightly inhibited the lipase activity by 5%. The effects of various environmental parameters, such as the composition of soybean oil and ethyl acetate, lipase content, and reaction temperature, were investigated to determine the optimal conditions for biodiesel production. As a result, the highest biodiesel production yield, 63.3 (±0.6)%, was obtained by using an ethyl acetate and soybean oil mixture with a 6∶1 molar ratio, with 8% of the immobilized lipase based on the weight of oil added at 70°C and 600 rpm.  相似文献   

16.
脂肪酶协同催化猪油合成生物柴油工艺研究   总被引:1,自引:0,他引:1  
探讨了以乙酸甲酯为酰基受体两种脂肪酶协同催化猪油转酯合成生物柴油的工艺条件。首先利用单因子试验确定2种固定化脂肪酶Novozym435、Lipozyme TLIM单独作为催化剂时的最佳酶用量为40%,反应温度为50℃,乙酸甲酯用量为14(相对于油的摩尔比)。在此基础上,采用3因素5水平和3个中心点的中心组分旋转设计法研究了上述2种脂肪酶协同使用时脂肪酶用量(g/g)、混合酶的配比(%/%)以及乙酸甲酯用量诸因素共同作用对转酯反应转化率的影响。优化后的反应条件为:总酶用量为40%,混合酶配比为50/50,乙酸甲酯用量为14,在该条件下甲酯得率可达97.6%,比同质量的Novozym435、Lipozyme TLIM的催化活性分别高出7.6%、22.3%。表明脂肪酶协同催化猪油合成生物柴油工艺可以较好地提高甲酯得率,并且节约生产成本。  相似文献   

17.
An extracellular lipase-producing bacterium was isolated from a fecal sample of lion-tailed macaque (Macaca silenus), an endangered Old World monkey that is endemic to the Western Ghats of South India. Morphological, biochemical and molecular analyses identified the bacterium as Serratia marcescens. Production of lipase was investigated in shake-flask culture. Optimum tributyrin concentration of 1.5 % was found to be the most suitable triglyceride to increase lipase production (13.3 U ml?1). The next best lipid source observed was olive oil (11.94 U ml?1), followed by castor oil, coconut oil and palm oil. Analyzing the effect of different carbon sources on lipase production revealed that 2 % glucose yielded higher lipase production than the other tested carbon sources. Investigations on suitable nitrogen source for lipase production revealed that 2 % meat extract yielded higher lipase production. The most suitable trace element for maximum lipase production was zinc sulfate, followed by magnesium sulfate and copper sulfate. Partial characterization of the crude lipase revealed that pH 7.0 and a temperature of 40 °C gave optimal lipase activity. Enzymatic activity of the crude sample was retained over a wide temperature range (20–75 °C), and 70 % of enzyme activity was retained at 60 °C. Testing the effect of various organic solvents on lipase activity revealed that hexadecane increased lipase activity by 85 % over the control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号