首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscle strain injuries are some of the most frequent injuries in sports and command a great deal of attention in an effort to understand their etiology. These injuries may be the culmination of a series of subcellular events accumulated through repetitive lengthening (eccentric) contractions during exercise, and they may be influenced by a variety of variables including fiber strain magnitude, peak joint torque, and starting muscle length. To assess the influence of these variables on muscle injury magnitude in vivo, we measured fiber dynamics and joint torque production during repeated stretch-shortening cycles in the rabbit tibialis anterior muscle, at short and long muscle lengths, while varying the timing of activation before muscle stretch. We found that a muscle subjected to repeated stretch-shortening cycles of constant muscle-tendon unit excursion exhibits significantly different joint torque and fiber strains when the timing of activation or starting muscle length is changed. In particular, measures of fiber strain and muscle injury were significantly increased by altering activation timing and increasing the starting length of the muscle. However, we observed differential effects on peak joint torque during the cyclic stretch-shortening exercise, as increasing the starting length of the muscle did not increase torque production. We conclude that altering activation timing and muscle length before stretch may influence muscle injury by significantly increasing fiber strain magnitude and that fiber dynamics is a more important variable than muscle-tendon unit dynamics and torque production in influencing the magnitude of muscle injury.  相似文献   

2.
The objective of the present study was to investigate the impact of muscle length during stretch-shortening cycles on static and dynamic muscle performance. Animals were randomly assigned to an isometric (control, Con, n = 12), a short-muscle-length (S-Inj, 1.22-2.09 rad, n = 12), or a long-muscle-length (L-Inj, 1.57-2.44 rad, n = 12) group. The dorsiflexor muscles were exposed in vivo to 7 sets of 10 stretch-shortening contractions (conducted at 8.72 rad/s) or 7 sets of isometric contractions of the same stimulation duration by using a custom-designed dynamometer. Performance was characterized by multipositional isometric exertions and positive, negative, and net work before exposure, 6 h after exposure, and 48 h after exposure to contractions. Real-time muscle performance during the stretch-shortening cycles was characterized by stretch-shortening parameters and negative, positive, and net work. The S-Inj group recovery (force difference) was similar to the Con group force difference at 48 h, whereas the L-Inj group force difference was statistically greater at 1.39, 1.57, and 1.74 rad than the Con group force difference (P < 0.05). Negative work (P < 0.05) and net work (P < 0.05) were statistically lower in the S-Inj and L-Inj groups than in the Con group 48 h after exposure to contractions. Of the real-time parameters, there was a difference in cyclic force with treatment during the stretch-shortening cycles (P < 0.0001), with the L-Inj group being the most affected. Thus longer ranges of motion result in a more profound isometric force decrement 48 h after exposure to contractions and in real-time changes in eccentric forces.  相似文献   

3.
During downhill running, manoeuvring, negotiation of obstacles and landings from a jump, mechanical energy is dissipated via active lengthening of limb muscles. Tendon compliance provides a ‘shock-absorber’ mechanism that rapidly absorbs mechanical energy and releases it more slowly as the recoil of the tendon does work to stretch muscle fascicles. By lowering the rate of muscular energy dissipation, tendon compliance likely reduces the risk of muscle injury that can result from rapid and forceful muscle lengthening. Here, we examine how muscle–tendon mechanics are modulated in response to changes in demand for energy dissipation. We measured lateral gastrocnemius (LG) muscle activity, force and fascicle length, as well as leg joint kinematics and ground-reaction force, as turkeys performed drop-landings from three heights (0.5–1.5 m centre-of-mass elevation). Negative work by the LG muscle–tendon unit during landing increased with drop height, mainly owing to greater muscle recruitment and force as drop height increased. Although muscle strain did not increase with landing height, ankle flexion increased owing to increased tendon strain at higher muscle forces. Measurements of the length–tension relationship of the muscle indicated that the muscle reached peak force at shorter and likely safer operating lengths as drop height increased. Our results indicate that tendon compliance is important to the modulation of energy dissipation by active muscle with changes in demand and may provide a mechanism for rapid adjustment of function during deceleration tasks of unpredictable intensity.  相似文献   

4.
The sliding filament and cross-bridge theories of muscle contraction provide discrete predictions of the tetanic force-length relationship of skeletal muscle that have been tested experimentally. The active force generated by a maximally activated single fiber (with sarcomere length control) is maximal when the filament overlap is optimized and is proportionally decreased when overlap is diminished. The force-length relationship is a static property of skeletal muscle and, therefore, it does not predict the consequences of dynamic contractions. Changes in sarcomere length during muscle contraction result in modulation of the active force that is not necessarily predicted by the cross-bridge theory. The results of in vivo studies of the force-length relationship suggest that muscles that operate on the ascending limb of the force-length relationship typically function in stretch-shortening cycle contractions, and muscles that operate on the descending limb typically function in shorten-stretch cycle contractions. The joint moments produced by a muscle depend on the moment arm and the sarcomere length of the muscle. Moment arm magnitude also affects the excursion (length change) of a muscle for a given change in joint angle, and the number of sarcomeres arranged in series within a muscle fiber determines the sarcomere length change associated with a given excursion.  相似文献   

5.
Hamstring strain injuries often occur near the proximal musculotendon junction (MTJ) of the biceps femoris. Post-injury remodeling can involve scar tissue formation, which may alter contraction mechanics and influence re-injury risk. The purpose of this study was to assess the affect of prior hamstring strain injury on muscle tissue displacements and strains during active lengthening contractions. Eleven healthy and eight subjects with prior biceps femoris injuries were tested. All previously injured subjects had since returned to sport and exhibited evidence of residual scarring along the proximal aponeurosis. Subjects performed cyclic knee flexion–extension on an MRI-compatible device using elastic and inertial loads, which induced active shortening and lengthening contractions, respectively. CINE phase-contrast imaging was used to measure tissue velocities within the biceps femoris during these tasks. Numerical integration of the velocity information was used to estimate two-dimensional tissue displacement and strain fields during muscle lengthening. The largest tissue motion was observed along the distal MTJ, with the active lengthening muscle exhibiting significantly greater and more homogeneous tissue displacements. First principal strain magnitudes were largest along the proximal MTJ for both loading conditions. The previously injured subjects exhibited less tissue motion and significantly greater strains near the proximal MTJ. We conclude that localized regions of high tissue strains during active lengthening contractions may predispose the proximal biceps femoris to injury. Furthermore, post-injury remodeling may alter the in-series stiffness seen by muscle tissue and contribute to the relatively larger localized tissue strains near the proximal MTJ, as was observed in this study.  相似文献   

6.
Achilles tendon (AT) compliance can affect the generation and transmission of triceps surae muscle forces, and thus has important biomechanical consequences for walking performance. However, the uniarticular soleus (SOL) and the biarticular (GAS) function differently during walking, with in vivo evidence suggesting that their associated fascicles and tendinous structures exhibit unique kinematics during walking. Given the strong association between muscle fiber length, velocity and force production, we conjectured that SOL and GAS mechanics and energetic behavior would respond differently to altered AT compliance. To test this, we characterized GAS and SOL muscle and tendon mechanics and energetics due to systematic changes in tendon compliance using musculoskeletal simulations of walking. Increased tendon compliance enlarged GAS and SOL tendon excursions, shortened fiber operation lengths and affected muscle excitation patterns. For both muscles, an optimal tendon compliance (tendon strains of approximately 5% with maximum isometric force) existed that minimized metabolic energy consumption. However, GAS muscle-tendon mechanics and energetics were significantly more sensitive to changes in tendon compliance than were those for SOL. In addition, GAS was not able to return stored tendon energy during push-off as effectively as SOL, particularly for larger values of tendon compliance. These fundamental differences between GAS and SOL sensitivity to altered tendon compliance seem to arise from the biarticular nature of GAS. These insights are potentially important for understanding the functional consequences of altered Achilles tendon compliance due to aging, injury, or disease.  相似文献   

7.
Repetitive motion disorders can involve lengthening of skeletal muscles to perform braking actions to decelerate limbs under load often resulting in muscle strains and injury. Injury is a loss of isometric force (weakness) requiring days to recover. The capacity of skeletal muscle to tolerate repeated strains is dependent on multiple factors including individual variation. The most important factors producing muscle strain injury are the magnitude of the resisting force (peak-stretch force) and the number of strains. Other factors such as muscle length and fiber type contribute to the susceptibility to injury as well, but to a lesser degree. Strain injury can also lead to inflammation and pain. Chronic exposure to repeated strains can result in fibrosis that is not completely reversed after months of rest. Long rest times appear to be the only factor reported to prevent inflammation in rats following repeated strain injury. Further understanding of the mechanism for prevention of histopathologic changes by long rest times should provide a rationale for prevention of negative outcomes.  相似文献   

8.
The goal of this work was to create a finite element micromechanical model of the myotendinous junction (MTJ) to examine how the structure and mechanics of the MTJ affect the local micro-scale strains experienced by muscle fibers. We validated the model through comparisons with histological longitudinal sections of muscles fixed in slack and stretched positions. The model predicted deformations of the A-bands within the fiber near the MTJ that were similar to those measured from the histological sections. We then used the model to predict the dependence of local fiber strains on activation and the mechanical properties of the endomysium. The model predicted that peak micro-scale strains increase with activation and as the compliance of the endomysium decreases. Analysis of the models revealed that, in passive stretch, local fiber strains are governed by the difference of the mechanical properties between the fibers and the endomysium. In active stretch, strain distributions are governed by the difference in cross-sectional area along the length of the tapered region of the fiber near the MTJ. The endomysium provides passive resistance that balances the active forces and prevents the tapered region of the fiber from undergoing excessive strain. These model predictions lead to the following hypotheses: (i) the increased likelihood of injury during active lengthening of muscle fibers may be due to the increase in peak strain with activation and (ii) endomysium may play a role in protecting fibers from injury by reducing the strains within the fiber at the MTJ.  相似文献   

9.
10.
Lengthening (eccentric) contractions result in injury to skeletal muscle fibers. Two hypotheses were tested through lengthening contractions of an in situ muscle preparation: the extent of injury increases with increases in the duration; and the extent of injury increases with increases in the peak force. Mice were anesthetized, and distal tendons of the extensor digitorum longus muscles were attached to a servomotor. Muscles were stimulated at 150 Hz and lengthened 20% of fiber length (Lf). Lengthening contractions were performed at 0.2, 0.5, or 1.0 Lf/s with durations of 0.5-15 min. Peak force during lengthening contractions at 1.0 Lf/s was decreased by inducing fatigue with isometric contractions, stimulating at 70-100 Hz, or 3) lengthening 10% of Lf. Injury was assessed 3 days after lengthening contractions by histological appearance and maximum force (Po) development. Injury increased with duration up to 5 min. After 5 min, fatigue appeared to prevent further injury. Results for 0.2 and 0.5 Lf/s were similar to those for 1.0 Lf/s but with less injury. A high correlation was observed between histological appearance of injury and the decrease in Po. The extent of injury was related to the peak force developed during the lengthening contractions.  相似文献   

11.
Hamstring strain injury is one of the most common injuries in athletes, particularly for sports that involve high speed running. The aims of this study were to determine whether muscle activation and internal morphology influence in vivo muscle behavior and strain injury susceptibility. We measured tissue displacement and strains in the hamstring muscle injured most often, the biceps femoris long head muscle (BFLH), using cine DENSE dynamic magnetic resonance imaging. Strain measurements were used to test whether strain magnitudes are (i) larger during active lengthening than during passive lengthening and (ii) larger for subjects with a relatively narrow proximal aponeurosis than a wide proximal aponeurosis. Displacement color maps showed higher tissue displacement with increasing lateral distance from the proximal aponeurosis for both active lengthening and passive lengthening, and higher tissue displacement for active lengthening than passive lengthening. First principal strain magnitudes were averaged in a 1cm region near the myotendinous junction, where injury is most frequently observed. It was found that strains are significantly larger during active lengthening (0.19 SD 0.09) than passive lengthening (0.13 SD 0.06) (p<0.05), which suggests that elevated localized strains may be a mechanism for increased injury risk during active as opposed to passive lengthening. First principal strains were higher for subjects with a relatively narrow aponeurosis width (0.26 SD 0.15) than wide (0.14 SD 0.04) (p<0.05). This result suggests that athletes who have BFLH muscles with narrow proximal aponeuroses may have an increased risk for BFLH strain injuries.  相似文献   

12.
Effects of the length ratio between the contractile element (CE) and the series elastic element (SEE) on the behavior of the muscle tendon complex were investigated during stretch-shortening cycles. A computer simulation model of the Hill-type muscle tendon complex was constructed. The proximal end of the CE was affixed to a point in the gravitational field, and a massless supporting object was affixed to the distal end of the SEE. A mass was held on the supporting object. Initially, the muscle tendon complex was fixed at a certain length, and the CE was activated at 100%. Through this process, the CE contracted as much as the SEE was stretched. Thereafter, the supporting object was released, which caused the muscle tendon complex to propel the mass upward, simulating a stretch-shortening cycle. The length ratio between the CE and the SEE, the size of the mass and the initial length of the CE were sequentially changed. As a result, it was found that a higher performance is obtained with a longer SEE when the mass is small, while with a shorter SEE when the mass is large.  相似文献   

13.
The purposes of this study were to create a three-dimensional representation of strain during isometric contraction in vivo and to interpret it with respect to the muscle fiber direction. Diffusion tensor MRI was used to measure the muscle fiber direction of the tibialis anterior (TA) muscle of seven healthy volunteers. Spatial-tagging MRI was used to measure linear strains in six directions during separate 50% maximal isometric contractions of the TA. The strain tensor (E) was computed in the TA's deep and superficial compartments and compared with the respective diffusion tensors. Diagonalization of E revealed a planar strain pattern, with one nonzero negative strain (ε(N)) and one nonzero positive strain (ε(P)); both strains were larger in magnitude (P < 0.05) in the deep compartment [ε(N) = -40.4 ± 4.3%, ε(P) = 35.1 ± 3.5% (means ± SE)] than in the superficial compartment (ε(N) = -24.3 ± 3.9%, ε(P) = 6.3 ± 4.9%). The principal shortening direction deviated from the fiber direction by 24.0 ± 1.3° and 39.8 ± 6.1° in the deep and superficial compartments, respectively (P < 0.05, deep vs. superficial). The deviation of the shortening direction from the fiber direction was due primarily to the lower angle of elevation of the shortening direction over the axial plane than that of the fiber direction. It is concluded that three-dimensional analyses of strain interpreted with respect to the fiber architecture are necessary to characterize skeletal muscle contraction in vivo. The deviation of the principal shortening direction from the fiber direction may relate to intramuscle variations in fiber length and pennation angle.  相似文献   

14.
We tested the hypothesis that lengthening contractions and subsequent muscle fiber degeneration and/or regeneration are required to induce exercise-associated protection from lengthening contraction-induced muscle injury. Extensor digitorum longus muscles in anesthetized mice were exposed in situ to repeated lengthening contractions, isometric contractions, or passive stretches. Three days after lengthening contractions, maximum isometric force production was decreased by 55%, and muscle cross sections contained a significant percentage (18%) of injured fibers. Neither isometric contractions nor passive stretches induced a deficit in maximum isometric force or a significant number of injured fibers at 3 days. Two weeks after an initial bout of lengthening contractions, a second identical bout produced a force deficit (19%) and a percentage of injured fibers (5%) that was smaller than those for the initial bout. Isometric contractions and passive stretches also provided protection from lengthening contraction-induced injury 2 wk later (force deficits = 35 and 36%, percentage of injured fibers = 12 and 10%, respectively), although the protection was less than that provided by lengthening contractions. These data indicate that lengthening contractions and fiber degeneration and/or regeneration are not required to induce protection from lengthening contraction-induced injury.  相似文献   

15.
This article investigates how the internal structure of muscle and its relationship with tendon and even skeletal structures influence the translation of muscle fiber contractions into movement of a limb. Reconstructions of the anatomy of the human soleus muscle from the Visible Human Dataset (available from the National Library of Medicine), magnetic resonance images (MRI), and cadaver studies revealed a complex 3D connective tissue structure populated with pennate muscle fibers. The posterior aponeurosis and the median septum of the soleus form the insertion of the muscle and are continuous with the Achilles tendon. The distal extremities of the pennate muscle fibers attach to these structures. The anterior aponeurosis is located intramuscularly, between the posterior aponeurosis and the median septum. It forms the origin of the muscle and contacts the proximal extremities of the soleus muscle fibers. MRI measurements of in vivo tissue velocities during isometric contractions (20% and 40% maximum voluntary contractions) revealed a similarly complex 3D distribution of tissue movements. The distribution of velocities was similar to the distribution of major connective tissue structures within the muscle. During an isometric contraction, muscle fiber contractions move the median septum and posterior aponeurosis proximally, relative to the anterior aponeurosis. The pennate arrangement of muscle fibers probably amplifies muscle fiber length changes but not sufficiently to account for the twofold difference in muscle fiber length changes relative to excursion of the calcaneus. The discrepancy may be accounted for by an additional gain mechanism operating directly on the Achilles tendon by constraining the posterior movement of the tendon, which would otherwise occur due to the increasingly posterior location of the calcaneus in plantarflexeion.  相似文献   

16.
An important function of skeletal muscle is deceleration via active muscle fascicle lengthening, which dissipates movement energy. The mechanical interplay between muscle contraction and tendon elasticity is critical when muscles produce energy. However, the role of tendon elasticity during muscular energy dissipation remains unknown. We tested the hypothesis that tendon elasticity functions as a mechanical buffer, preventing high (and probably damaging) velocities and powers during active muscle fascicle lengthening. We directly measured lateral gastrocnemius muscle force and length in wild turkeys during controlled landings requiring rapid energy dissipation. Muscle-tendon unit (MTU) strain was measured via video kinematics, independent of muscle fascicle strain (measured via sonomicrometry). We found that rapid MTU lengthening immediately following impact involved little or no muscle fascicle lengthening. Therefore, joint flexion had to be accommodated by tendon stretch. After the early contact period, muscle fascicles lengthened and absorbed energy. This late lengthening occurred after most of the joint flexion, and was thus mainly driven by tendon recoil. Temporary tendon energy storage led to a significant reduction in muscle fascicle lengthening velocity and the rate of energy absorption. We conclude that tendons function as power attenuators that probably protect muscles against damage from rapid and forceful lengthening during energy dissipation.  相似文献   

17.
This paper hypothesizes that average muscle length and minimum tendon strain govern muscle and tendon length adaptation in all situations. A model has been implemented to test this hypothesis, and simulations have been performed for normal development, bone lengthening, immobilization, and retinacular release experiments in young and adult animals. The simulation results predict that both muscle and tendon lengthen during normal development, with the rate of tendon growth slowing faster than the rate of muscle growth. The results also predict that muscle length increases during bone lengthening in both young and adult animals, while tendon length increases only in young animals. For immobilization in adult animals, the results predict that muscle length increases when the muscle is immobilized in a lengthened position and decreases when the muscle is immobilized in a shortened position with no change in tendon length. For immobilization in young animals, the results predict reduced muscle growth and increased tendon growth regardless of immobilization position. Finally, the simulations predict that retinacular release which increases excursion of the musculotendinous unit leads to increased muscle length with decreased tendon length in young animals and decreased muscle length with no change in tendon length in adult animals. These simulation results are consistent with experimental findings reported in the literature by other investigators. This suggests that average muscle length and minimum tendon strain may represent general principles that govern muscle and tendon length adaptation.  相似文献   

18.
A finite element model was used to investigate the counter-intuitive experimental observation that some regions of the aponeuroses of a loaded and contracting muscle may shorten rather than undergo an expected lengthening. The model confirms the experimental findings and suggests that pennation angle plays a significant role in determining whether regions of the aponeuroses stretch or shorten. A smaller pennation angles (25°) was accompanied by aponeurosis lengthening whereas a larger pennation angle (47°) was accompanied by mixed strain effects depending upon location along the length of the aponeurosis. This can be explained by the Poisson effect during muscle contraction and a Mohr’s circle analogy. Constant volume constraint requires that fiber cross sectional dimensions increase when a fiber shortens. The opposing influences of these two strains upon the aponeurosis combine in proportion to the pennation angle. Lower pennation angles emphasize the influence of fiber shortening upon the aponeurosis and thus favor aponeurosis compression, whereas higher pennation angles increase the influence of cross sectional changes and therefore favor aponeurosis stretch. The distance separating the aponeuroses was also found to depend upon pennation angle during simulated contractions. Smaller pennation angles favored increased aponeurosis separation larger pennation angles favored decreased separation. These findings caution that measures of the mechanical properties of aponeuroses in intact muscle may be affected by contributions from adjacent muscle fibers and that the influence of muscle fibers on aponeurosis strain will depend upon the fiber pennation angle.  相似文献   

19.
Muscle shortening and stretch are associated with force depression and force enhancement, respectively. Previously, we have investigated the effect of combined dynamic contractions (i.e. a single shortening-stretch and stretch-shortening cycle) on force production (Herzog and Leonard, 2000). In order to investigate the relationship between force depression and force enhancement systematically, we studied the effects of a single as well as multiple stretch-shortening and shortening-stretch cycles on the ascending limb of the force-length relationship. Furthermore, by systematically varying the speed and magnitude of stretch preceding shortening and the speed and magnitude of shortening preceding stretch, we investigated the influence of these varying contractile conditions on force depression and force enhancement, respectively. Test contractions were performed on cat soleus (n=6) by electrical stimulation using four conceptually different protocols containing a single or repeated stretch-shortening and shortening-stretch cycles. The results of this study showed that: (1) force depression was not influenced by stretch preceding shortening independent of the speed and amount of stretch; (2) force enhancement was influenced in a dose-dependent manner by the amount of shortening preceding stretch but was not affected by the speed of shortening; (3) repeated stretch-shortening (shortening-stretch) cycles showed cumulative effects; (4) the number of shortening steps over a given distance did not influence the amount of force depression. The findings of this study support the idea that the mechanism of force depression associated with muscle shortening is different from that of force enhancement associated with muscle stretch. Furthermore, they support and extend our previous findings that stretch-shortening and shortening-stretch cycles are not commutative.  相似文献   

20.
In the musculoskeletal system, some muscles are injured more frequently than others. For example, the biceps femoris longhead (BFLH) is the most commonly injured hamstring muscle. It is thought that acute injuries result from large strains within the muscle tissue, but the mechanism behind this type of strain injury is still poorly understood. The purpose of this study was to build computational models to analyze the stretch distributions within the BFLH muscle and to explore the effects of aponeurosis geometry on the magnitude and location of peak stretches within the model. We created a three-dimensional finite element (FE) model of the BFLH based on magnetic resonance (MR) images. We also created a series of simplified models with a similar geometry to the MR-based model. We analyzed the stretches predicted by the MR-based model during lengthening contractions to determine the region of peak local fiber stretch. The peak along-fiber stretch was 1.64 and was located adjacent to the proximal myotendinous junction (MTJ). In contrast, the average along-fiber stretch across all the muscle tissue was 0.95. By analyzing the simple models, we found that varying the dimensions of the aponeuroses (width, length, and thickness) had a substantial impact on the location and magnitude of peak stretches within the muscle. Specifically, the difference in widths between the proximal and distal aponeurosis in the BFLH contributed most to the location and magnitude of peak stretch, as decreasing the proximal aponeurosis width by 80% increased peak average stretches along the proximal MTJ by greater than 60% while slightly decreasing stretches along the distal MTJ. These results suggest that the aponeurosis morphology of the BFLH plays a significant role in determining stretch distributions throughout the muscle. Furthermore, this study introduces the new hypothesis that aponeurosis widths may be important in determining muscle injury susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号