首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Molecular mimicry revisited   总被引:5,自引:0,他引:5  
The host immune response is an important line of defence against parasites. Tactics to evade this response are therefore expected in host-parasite relationships, and the clearest example is the antigenic variation displayed by African trypanosomes. But while few other parasites seem to have quite this ability, many seem to display a form of antigenic convergence with the host - allowing them a degree of molecular camouflage against the host's immune system. Ideas about such antigenic convergence were developed some 30 years ago, with, for example, John Sprent's theory of 'adaptation tolerance', John Dineen's 'selection for fitness antigens' and Raymond Damian's concept of 'antigen sharing' between host and parasite which was subsequently formulated in a now classical exposition on 'molecular mimicry'. Damian's theory, that one of the mechanisms by which parasites could avoid the host immune response was by mimicking host molecules, has greatly influenced both the theoretical and practical approaches to immunoparasitology. Earlier this year, at a UCLA Symposium, Professor Damian discussed how the theory had progressed since its original exposition. This article is based on that presentation.  相似文献   

2.
Research in fish immune system and parasite invasion mechanisms has advanced the knowledge of the mechanisms whereby parasites evade or cope with fish immune response. The main mechanisms of immune evasion employed by fish parasites are reviewed and considered under ten headings. 1) Parasite isolation: parasites develop in immuno-privileged host tissues, such as brain, gonads, or eyes, where host barriers prevent or limit the immune response. 2) Host isolation: the host cellular immune response isolates and encapsulates the parasites in a dormant stage without killing them. 3) Intracellular disguise: typical of intracellular microsporidians, coccidians and some myxosporeans. 4) Parasite migration, behavioural and environmental strategies: parasites migrate to host sites the immune response has not yet reached or where it is not strong enough to kill them, or they accommodate their life cycles to the season or the age in which the host immune system is down-regulated. 5) Antigen-based strategies such as mimicry or masking, variation and sharing of parasite antigens. 6) Anti-immune mechanisms: these allow parasites to resist innate humoral factors, to neutralize host antibodies or to scavenge reactive oxygen species within macrophages. 7) Immunodepression: parasites either suppress the fish immune systems by reducing the proliferative capacity of lymphocytes or the phagocytic activity of macrophages, or they induce apoptosis of host leucocytes. 8) Immunomodulation: parasites secrete or excrete substances which modulate the secretion of host immune factors, such as cytokines, to their own benefit. 9) Fast development: parasites proliferate faster than the ability of the host to mount a defence response. 10) Exploitation of the host immune reaction. Knowledge of the evasion strategies adopted by parasites will help us to understand host-parasite interactions and may therefore help in the discovery of novel immunotherapeutic agents or targeted vaccines, and permit the selection of host-resistant strains.  相似文献   

3.
Background Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence.Scope The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can give rise to exploitative competition and facilitation within ecological communities “inhabiting” a plant.Conclusions Herbivores have evolved diverse strategies, which are not mutually exclusive, to decrease the negative effects of plant defences in order to maximize the conversion of plant material into offspring. Numerous adaptations have been found in herbivores, enabling them to dismantle or bypass defensive barriers, to avoid tissues with relatively high levels of defensive chemicals or to metabolize these chemicals once ingested. In addition, some herbivores interfere with the onset or completion of induced plant defences, resulting in the plant’s resistance being partly or fully suppressed. The ability to suppress induced plant defences appears to occur across plant parasites from different kingdoms, including herbivorous arthropods, and there is remarkable diversity in suppression mechanisms. Suppression may strongly affect the structure of the food web, because the ability to suppress the activation of defences of a communal host may facilitate competitors, whereas the ability of a herbivore to cope with activated plant defences will not. Further characterization of the mechanisms and traits that give rise to suppression of plant defences will enable us to determine their role in shaping direct and indirect interactions in food webs and the extent to which these determine the coexistence and persistence of species.  相似文献   

4.
Hosts are expected to incur several physiological costs in defending against parasites. These include constitutive energetic (or other resource) costs of a defence system, facultative resource costs of deploying defences when parasites strike, and immunopathological costs of collateral damage. Here, we investigate the evolution of host recovery rates, varying the source and magnitude of immune costs. In line with previous work, we find that hosts paying facultative resource costs evolve faster recovery rates than hosts paying constitutive costs. However, recovery rate is more sensitive to changes in facultative costs, potentially explaining why constitutive costs are hard to detect empirically. Moreover, we find that immunopathology costs which increase with recovery rate can erode the benefits of defence, promoting chronicity of infection. Immunopathology can also lead to hosts evolving low recovery rate in response to virulent parasites. Furthermore, when immunopathology reduces fecundity as recovery rate increases (e.g. as for T-cell responses to urogenital chlamydiosis), then recovery and reproductive rates do not covary as predicted in eco-immunology. These results suggest that immunopathological and resource costs have qualitatively different effects on host evolution and that embracing the complexity of immune costs may be essential for explaining variability in immune defence in nature.  相似文献   

5.
Experimenta naturae, like the glucose-6-phosphate dehydrogenase deficiency, indicate that malaria parasites are highly susceptible to alterations in the redox equilibrium. This offers a great potential for the development of urgently required novel chemotherapeutic strategies. However, the relationship between the redox status of malarial parasites and that of their host is complex. In this review article we summarise the presently available knowledge on sources and detoxification pathways of reactive oxygen species in malaria parasite-infected red cells, on clinical aspects of redox metabolism and redox-related mechanisms of drug action as well as future prospects for drug development. As delineated below, alterations in redox status contribute to disease manifestation including sequestration, cerebral pathology, anaemia, respiratory distress, and placental malaria. Studying haemoglobinopathies, like thalassemias and sickle cell disease, and other red cell defects that provide protection against malaria allows insights into this fine balance of redox interactions. The host immune response to malaria involves phagocytosis as well as the production of nitric oxide and oxygen radicals that form part of the host defence system and also contribute to the pathology of the disease. Haemoglobin degradation by the malarial parasite produces the redox active by-products, free haem and H(2)O(2), conferring oxidative insult on the host cell. However, the parasite also supplies antioxidant moieties to the host and possesses an efficient enzymatic antioxidant defence system including glutathione- and thioredoxin-dependent proteins. Mechanistic and structural work on these enzymes might provide a basis for targeting the parasite. Indeed, a number of currently used drugs, especially the endoperoxide antimalarials, appear to act by increasing oxidant stress, and novel drugs such as peroxidic compounds and anthroquinones are being developed.  相似文献   

6.
Modelling the arms race in avian brood parasitism   总被引:5,自引:0,他引:5  
Takasu  Fugo 《Evolutionary ecology》1998,12(8):969-987
In brood parasitism, interactions between a parasite and its host lead to a co-evolutionary process called an arms race, in which evolutionary progress on one side provokes a further response on the other side. The host evolves defensive means to reduce the impact of parasitism, while the parasite evolves means to counter the host's defence. To gain insights into the co-evolutionary process of the arms race, a model is developed and analysed, in which the host's defence and the parasite's counterdefence are assumed to be genetically determined. First, the effect of parasite counterdefence on host defence is analysed. I show that parasite counterdefence can critically affect the establishment of host defence, giving rise to three situations in the equilibrium state: The host shows (1) no defence, (2) an intermediate level of defence or (3) perfect defence. Based on these results, the evolution of parasite counterdefence is considered in connection with host defence. It is suggested that the parasite can evolve counterdefence to a certain degree, but once it has established counterdefence beyond this, the host gives up its defence against parasitism provided the defence entails some cost to perform. Dynamic aspects of selection pressure are crucial for these results. Based on these results, I propose a hypothetical evolutionary sequence in the arms race, along which interactions between the host and parasite proceed.  相似文献   

7.
Foods contain various biologically active substances with extent physiological effects. Among them, some substances, such as dietary fibers, polyunsaturated fatty acids, and antioxidants, exert multiple activities. In addition, combinational uses of some components, such as sesamin and α-tocopherol, enhance their biological effects each other. The expression of multiple effect leads to the production of multifunctional foods which prevent the occurrence of various diseases. Furthermore, synergic effects between biologically active substances allow us to decrease the dose of each component, which lead to the improvement of safety and reduction of production cost of multifunctional foods. To use these active components for human health, studies on their adsorption and transportation are important, since distribution of some components, such as tocotrienols, is limited to some tissues. In addition, extent safety studies are essential to use artificially synthesized substances such as 10t, 12c derivative of conjugated linoleic acid for human health.  相似文献   

8.
Plant biologists have long recognized that host defence against parasites and pathogens can be divided into two conceptually different components: the ability to limit parasite burden (resistance) and the ability to limit the harm caused by a given burden (tolerance). Together these two components determine how well a host is protected against the effects of parasitism. This distinction is useful because it recognizes that hosts that are best at controlling parasite burdens are not necessarily the healthiest. Moreover, resistance and tolerance can be expected to have different effects on the epidemiology of infectious diseases and host-parasite coevolution. However, studies of defence in animals have to date focused on resistance, whereas the possibility of tolerance and its implications have been largely overlooked. The aim of our review is to (i) describe the statistical framework for analysis of tolerance developed in plant science and how this can be applied to animals, (ii) review evidence of genetic and environmental variation for tolerance in animals, and studies indicating which mechanisms could contribute to this variation, and (iii) outline avenues for future research on this topic.  相似文献   

9.
Most models concerning the evolution of a parasite's virulence and its host's resistance assume that each component of the relationship (transmission, virulence, recovery, etc.) is controlled by either the host or the parasite but not by both. We present a model that describes the coevolution of host and parasite, assuming that the rate of transmission or the virulence depends on both genotypes. The evolution of these traits is constrained by trade-offs that account for costs of defense and attack strategies, in line with previous studies on the separate evolution of the host and the parasite. Considering shared control by the host and the parasite in determining the traits of the relationship leads to several novel predictions. First, the host should evolve maximal investment in defense against parasites with an intermediate replication rate. Second, the evolution of the parasite strongly depends on the way the host's defense is described. Third, the coevolutionary process may lead to decreasing the parasite's virulence as a response to a rise in the host's background mortality, contrary to classical predictions.  相似文献   

10.
Traditional explanations for the negative fitness consequences of parasitism have focused on the direct pathogenic effects of infectious agents. However, because of the high selection pressure by the parasites, immune defences are likely to be costly and trade off with other fitness-related traits, such as reproductive effort. In a field experiment, we immunized breeding female flycatchers with non-pathogenic antigens (diphtheria-tetanus vaccine), which excluded the direct negative effects of parasites, in order to test the consequences of activated immune defence on hosts' investment in reproduction and self-maintenance. Immunized females decreased their feeding effort and investment in self-maintenance (rectrix regrowth) and had lower reproductive output (fledgling quality and number) than control females injected with saline. Our results reveal the phenotypic cost of immune defence by showing that an activated immune system per se can lower the host's breeding success. This may be caused by an energetic or nutritional trade-off between immune function and physical workload when feeding young or be an adaptive response to 'infection' to avoid physiological disorders such as oxidative stress and immunopathology.  相似文献   

11.
Genetic studies of host susceptibility to infection contribute to our understanding of an organism's response to pathogens at the immunological, cellular, and molecular levels. In this review we describe how the study of host genetics in mouse models has helped our understanding of host defense mechanisms against viral infection, and how this knowledge can be extended to human infections. We focus especially on the innate mechanisms that function as the host's first line of defense against infection. We also discuss the main issues that confront this field, as well as its future.  相似文献   

12.
Lysosomes form part of our innate immunity and are an important line of defence against microbes, viruses and parasites. Although it is more than 50?years since de Duve discovered lysosomes, it is only in more recent years that we are slowly unravelling the molecular mechanisms involved in the delivery of material to the lysosome. However, successful intracellular pathogens often have a better grip on the mechanisms involved in delivery to the lysosome and can manipulate membrane trafficking pathways to create an intracellular environment that is favourable for replication. By studying pathogen effector proteins that are secreted into the host's cytosol, we can learn about both pathogen-survival mechanisms and further regulatory elements involved in trafficking to the lysosome.  相似文献   

13.
Birds combat ectoparasites with many defences but the first line of defence is grooming behaviour, which includes preening with the bill and scratching with the feet. Preening has been shown to be very effective against ectoparasites. However, most tests have been with feather lice, which are relatively slow moving. Less is known about the effectiveness of preening as a defence against more mobile and evasive ectoparasites such as hippoboscid flies. Hippoboscids, which feed on blood, have direct effects on the host such asanaemia, as well as indirect effects as vectors of pathogens. Hence, effective defence against hippoboscid flies is important. We used captive Rock Pigeons (Columba livia) to test whether preening behaviour helps to control pigeon flies (Pseudolynchia canariensis). We found that pigeons responded to fly infestation by preening twice as much as pigeons without flies. Preening birds killed twice as many flies over the course of our week-long experiment as birds with impaired preening; however, preening did not kill all of the flies. We also tested the role of the bill overhang, which is critical for effective preening against feather lice, by experimentally removing the overhang and re-measuring the effectiveness of preening against flies. Birds without overhangs were as effective at controlling flies as were birds with overhangs. Overall, we found that preening is effective against mobile hippoboscid flies, yet it does not eliminate them. We discuss the potential impact of preening on the transmission dynamics of blood parasites vectored by hippoboscid flies.  相似文献   

14.
Landis SH  Kalbe M  Reusch TB  Roth O 《PloS one》2012,7(1):e30658
Extreme climate events such as heat waves are expected to increase in frequency under global change. As one indirect effect, they can alter magnitude and direction of species interactions, for example those between hosts and parasites. We simulated a summer heat wave to investigate how a changing environment affects the interaction between the broad-nosed pipefish (Syngnathus typhle) as a host and its digenean trematode parasite (Cryptocotyle lingua). In a fully reciprocal laboratory infection experiment, pipefish from three different coastal locations were exposed to sympatric and allopatric trematode cercariae. In order to examine whether an extreme climatic event disrupts patterns of locally adapted host-parasite combinations we measured the parasite's transmission success as well as the host's adaptive and innate immune defence under control and heat wave conditions. Independent of temperature, sympatric cercariae were always more successful than allopatric ones, indicating that parasites are locally adapted to their hosts. Hosts suffered from heat stress as suggested by fewer cells of the adaptive immune system (lymphocytes) compared to the same groups that were kept at 18°C. However, the proportion of the innate immune cells (monocytes) was higher in the 18°C water. Contrary to our expectations, no interaction between host immune defence, parasite infectivity and temperature stress were found, nor did the pattern of local adaptation change due to increased water temperature. Thus, in this host-parasite interaction, the sympatric parasite keeps ahead of the coevolutionary dynamics across sites, even under increasing temperatures as expected under marine global warming.  相似文献   

15.
Avian brood parasites reduce the reproductive output of their hosts and thereby select for defence mechanisms such as ejection of parasitic eggs. Such defence mechanisms simultaneously select for counter-defences in brood parasites, causing a coevolutionary arms race. Although coevolutionary models assume that defences and counter-defences are genetically influenced, this has never been demonstrated for brood parasites. Here, we give strong evidence for genetic differences between ejector and nonejectors, which could allow the study of such host defence at the genetic level, as well as studies of maintenance of genetic variation in defences. Briefly, we found that magpies, that are the main host of the great spotted cuckoo in Europe, have alleles of one microsatellite locus (Ase64) that segregate between accepters and rejecters of experimental parasitic eggs. Furthermore, differences in ejection rate among host populations exploited by the brood parasite covaried significantly with the genetic distance for this locus.  相似文献   

16.
Several protozoan parasites evade the host's immune defence because most of their development takes place inside specific host cells. Only a few of these protozoa live within the host cell cytosol. Most parasites are sequestered within membrane-bound compartments, collectively called ‘vacuoles’. Recent advances in the cell biology of intracellular parasites have revealed fundamental differences in the strategies whereby such organisms gain entry into their respective host cells. These differences have important implications for host-parasite interaction and for nutrient acquisition by the parasite. Leishmania spp. take advantage of the phagocytic properties of their host cells and presumably contribute little to the uptake process. In contrast, apicomplexan parasites have developed highly specialised organelles, called micronemes and rhoptries, to actively invade a variety of nucleated cells and, in the case of Plasmodium falciparum, human erythrocytes. Following invasion, parasites use a multitude of strategies to protect themselves from the defence mechanisms of the parasitized cells. In addition, they induce novel pathways within the infected cell that allow a most efficient nutrient acquisition both from the host cell cytoplasm and from the extracellular environment. Parasite-induced changes of host cells are most apparent in erythrocytes infected with Plasmodium spp. Mammalian erythrocytes are deficient in de novo protein and lipid biosynthesis and, consequently, pathways which allow the transport of macromolecules and small solutes are established by metabolic activities of the parasite. Research into the cell biology of intracellular parasitism has identified fascinating phenomena some of which we are beginning to understand at a molecular level. They are fascinating because they allow insights into a very intimate interaction between two eukaryotic cells of entirely different phylogenetic origins.  相似文献   

17.
The Red Queen hypothesis is based on the assumption that parasites must genetically match their hosts to infect them successfully. If the parasites fail, they are assumed to be killed by the host's immune system. Here, we tested this using sympatric (mostly susceptible) and allopatric (mostly resistant) populations of a freshwater snail and its trematode parasite. We determined whether parasites which do not infect are either killed or passed through the host's digestive tract and remain infectious. Our results show that parasites do not get a second chance: they either infect or are killed by the host. The results suggest strong selection against parasites that are not adapted to local host genotypes.  相似文献   

18.
During egg formation, female birds deposit antibodies against parasites and pathogens they were exposed to before egg laying into the yolk. In captive bird species, it has been shown that these maternal immunoglobulins (maternal yolk IgGs) can protect newly hatched offspring against infection. However, direct evidence for such benefits in wild birds is hitherto lacking. We investigated (1) if nestling Great Tits Parus major originating from eggs with naturally high levels of maternal yolk IgG are less susceptible to a common, nest-based ectoparasite, (2) if maternal yolk IgGs influence nestling development and in particular, their own immune defence, and (3) if there is a negative correlation between levels of maternal yolk IgG in host eggs and the reproductive success of ectoparasitic fleas feeding on the nestlings. Counter to expectations, we found no indication that maternally transferred yolk IgGs have direct beneficial effects on nestling development, nestling immune response or nestling resistance or tolerance to fleas. Furthermore, we found no negative correlation between host yolk IgG levels and parasite fecundity. Thus, whereas previous work has unequivocally shown that prenatal maternal effects play a crucial role in shaping the parasite resistance of nestling birds, our study indicates that other egg components, such as hormones, carotenoids or other immuno-active substances, which bird females can adjust more quickly than yolk IgG, might mediate these effects.  相似文献   

19.
Avian brood parasites lay their eggs in the nests of their hosts, which rear the parasite's progeny. The costs of parasitism have selected for the evolution of defence strategies in many host species. Most research has focused on resistance strategies, where hosts minimize the number of successful parasitism events using defences such as mobbing of adult brood parasites or rejection of parasite eggs. However, many hosts do not exhibit resistance. Here we explore why some hosts accept parasite eggs in their nests and how this is related to the virulence of the parasite. We also explore the extent to which acceptance of parasites can be explained by the evolution of tolerance; a strategy in which the host accepts the parasite but adjusts its life history or other traits to minimize the costs of parasitism. We review examples of tolerance in hosts of brood parasites (such as modifications to clutch size and multi‐broodedness), and utilize the literature on host–pathogen interactions and plant herbivory to analyse the prevalence of each type of defence (tolerance or resistance) and their evolution. We conclude that (i) the interactions between brood parasites and their hosts provide a highly tractable system for studying the evolution of tolerance, (ii) studies of host defences against brood parasites should investigate both resistance and tolerance, and (iii) tolerance and resistance can lead to contrasting evolutionary scenarios.  相似文献   

20.
Sures B 《Parassitologia》2007,49(3):173-176
In recent years there has been an increasing number of papers showing how parasitism and pollution can interact with each other in aquatic organisms. Apart from parasitological aspects these interactions are also important in terms of ecotoxicological research. The current presentation aims at identifying three promising directions for future research in the interdisciplinary field of parasitology and ecotoxicology. 1. Parasites as sinks for pollutants within their hosts: Some parasites are able to reduce pollutant levels in the tissues of their host. The reduction of pollutants is an interesting implication since parasites are beneficial to their hosts from this perspective. In other cases free-living accumulation indicators may erroneously indicate low levels of pollution if they are infected with parasites. 2. Parasites as a diagnostic tool to test bioavailability of substances. In order to take up and accumulate pollutants the substances have to be metabolized by the host first. Accordingly, the detection of substances within endoparasites is a sign for the biological availability of pollutants. 3. Changes of biomarker responses of the host against pollutants. Parasites can alter physiological reactions of their hosts against pollutants in different ways. Therefore, in ecotoxicological studies, examining the question whether exposure to certain chemicals affects the physiological homeostasis of a test organism, it is important to use organisms that are known to be uninfected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号