首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interferon-γ stimulation of human macrophages causes the synthesis and release of neopterin and its reduced form 7,8-dihydroneopterin (7,8-NP). The purpose of this cellular response is undetermined but in vitro experiments suggests 7,8-NP is an antioxidant. We have found 7,8-NP can protect monocyte-like U937 cells from oxidative damage. 7,8-NP inhibited ferrous ion and hypochlorite mediated loss of cell viability. Fe++ mediated lipid peroxidation was effectively inhibited by 7,8-NP, however no correlation was found between peroxide concentration and cell viability. Hypochlorite was scavenged by 7,8-NP, preventing the loss of cell viability. 7,8-NP was less effective in inhibiting H2O2-mediated loss of cell viability with significant inhibition only occurring at high 7,8-NP concentrations. Analysis of cellular protein hydrolysates showed none of the oxidants caused the formation of any protein bound DOPA or dityrosine but did show 7,8-NP prevented the loss of cellular tyrosine by HOCl. Our data suggests macrophages may synthesize 7,8-NP for antioxidant protection during inflammatory events in vivo.  相似文献   

2.
Low density lipoprotein (LDL) oxidation within the artery wall likely represents a key event in the formation of atherosclerotic lesions. Oxidatively modified LDL particles exert chemotactic properties on macrophages, and the uncontrolled uptake of modified LDL by macrophages leads to the formation of lipid-loaded foam cells, a hallmark of early stage atherosclerosis. Human macrophages stimulated by interferon- &#110 generate reactive oxygen species (ROS), neopterin, and 7,8-dihydroneopterin. Higher concentrations of neopterin were found in atherosclerosis, and earlier studies have provided evidence that these neopterin derivatives are able to interfere with reactive species. We therefore investigated whether they also modulate LDL oxidation mediated by Cu(II) and/or peroxynitrite (ONOO &#109 ). By means of UV-absorption recording the formation of conjugated dienes in the course of lipid oxidation as well as by measuring the relative electrophoretic mobility of oxidized LDL, we found that neopterin is capable of enhancing ONOO &#109 - as well as Cu(II)-mediated LDL oxidation, whereas 7,8-dihydroneopterin mainly protects LDL from oxidation. However, in case of Cu(II)-mediated LDL oxidation, an initial prooxidative effect of 7,8-dihydroneopterin could be observed. We hypothesize that 7,8-dihydroneopterin may chemically reduce Cu(II) to Cu(I) thereby increasing its oxidative capacity. After total reduction of Cu(II), excess 7,8-dihydroneopterin may block the oxidative potential of Cu(I) and thus decrease the oxidation of LDL. These findings confirm the general behavior of pteridines in redox processes and suggest an in vivo contribution to the process of LDL oxidation.  相似文献   

3.
In vitro, interferon-gamma stimulates primate monocytes/macrophages to produce the pteridines neopterin and 7,8-dihydroneopterin. These pteridines are capable of modulating the oxidative potential of reactive species. Neopterin is pro-oxidative whereas 7, 8-dihydroneopterin is an effective antioxidant. In the presence of oxygen, 7,8-dihydroneopterin is rapidly oxidized and after loosing the side chain 7,8-dihydroxanthopterin is formed. It is considered that under physiological conditions, 7,8-dihydroneopterin cannot be a source for neopterin production. In this study it is demonstrated that hypochlorous acid is capable to oxidize 7,8-dihydroneopterin yielding neopterin. Neopterin is less affected by hypochlorous acid, and in a mixture of both pteridines similar to the in vivo situation, only 7,8-dihydroneopterin is oxidized, thereby increasing the ratio towards neopterin. The findings may beat relevance for the in vivo situation since hypochlorous acid shifts the neopterin/7, 8-dihydroneopterin ratio towards the side of neopterin, hence probably increasing the oxidative potential in a micro-environment.  相似文献   

4.
Low density lipoprotein (LDL) oxidation within the artery wall likely represents a key event in the formation of atherosclerotic lesions. Oxidatively modified LDL particles exert chemotactic properties on macrophages, and the uncontrolled uptake of modified LDL by macrophages leads to the formation of lipid-loaded foam cells, a hallmark of early stage atherosclerosis. Human macrophages stimulated by interferon- γgenerate reactive oxygen species (ROS), neopterin, and 7,8-dihydroneopterin. Higher concentrations of neopterin were found in atherosclerosis, and earlier studies have provided evidence that these neopterin derivatives are able to interfere with reactive species. We therefore investigated whether they also modulate LDL oxidation mediated by Cu(II) and/or peroxynitrite (ONOO -). By means of UV-absorption recording the formation of conjugated dienes in the course of lipid oxidation as well as by measuring the relative electrophoretic mobility of oxidized LDL, we found that neopterin is capable of enhancing ONOO -- as well as Cu(II)-mediated LDL oxidation, whereas 7,8-dihydroneopterin mainly protects LDL from oxidation. However, in case of Cu(II)-mediated LDL oxidation, an initial prooxidative effect of 7,8-dihydroneopterin could be observed. We hypothesize that 7,8-dihydroneopterin may chemically reduce Cu(II) to Cu(I) thereby increasing its oxidative capacity. After total reduction of Cu(II), excess 7,8-dihydroneopterin may block the oxidative potential of Cu(I) and thus decrease the oxidation of LDL. These findings confirm the general behavior of pteridines in redox processes and suggest an in vivo contribution to the process of LDL oxidation.  相似文献   

5.
Neopterin and its reduced form, 7,8 dihydroneopterin afe pteridines released from macrophages and monocytes when stimulated with interferon gamma in vivo. The function of this response is unknown though there is an enormous amount of information available on the use of these compounds as clinical markers of monocyte/macrophage activation. We have found that in vitro 7,8-dihydroneopterin dramatically increases, in a dose dependent manner, the lag time of low density lipoprotein oxidation mediated by Cu++ ions or the peroxyl radical generator 2,2'-azobis (2-amidino propane) dihydrochloride (AAPH). 7,8-Dihydroneopterin also inhibits AAPH mediated oxidation of linoleate. The kinetic of the inhibition suggests that 7,8-dihydroneopterin is a potent chain breaking antioxidant which functions by scavenging lipid peroxyl radicals. No anti-oxidant activity was observed in any of the oxidation systems studied with the related compounds neopterin and pterin.  相似文献   

6.
Neopterin and the reduced form, 7,8-dihydroneopterin (78NP), are pteridines released from macrophages when stimulated with γ-interferon in vivo. The role of 78NP in inflammatory response is unknown though neopterin has been used clinically as a marker of immune cell activation, due to its very fluorescent nature. Using red blood cells as a cellular model, we demonstrated that micromolar concentrations of 78NP can inhibit or reduce red blood cell haemolysis induced by 2,2'-azobis(amidinopropane)dihydrochloride (AAPH), hydrogen peroxide, or hypochlorite. One hundred μM 78NP prevented HOCl haemolysis using a high HOCl concentration of 5 μmole HOCl/107 RBC. Fifty μM 78NP reduced the haemolysis caused by 2 mM hydrogen peroxide by 39% while the same 78NP concentration completely inhibited haemolysis induced by 2.5 mM AAPH. Lipid peroxidation levels measured as HPLC-TBARS were not affected by addition of 78NP. There was no correlation between lipid oxidation and cell haemolysis suggesting that lipid peroxidation is not essential for haemolysis. Conjugated diene measurements taken after 6 and 12 hour exposure to hydrogen peroxide support the TBARS data. Gel electrophoresis of cell membrane proteins indicated 78NP might inhibit protein damage. Using dityrosine as an indicator of protein damage, we demonstrated 200 μM 78NP reduced dityrosine formation in H2O2/Fe++ treated red blood cell ghosts by 30%. HPLC analysis demonstrated a direct reaction between 78NP and all three oxidants. Two mM hydrogen peroxide oxidised 119 nM of 78NP per min while 1 mM AAPH only oxidised 50 nM 78NP/min suggesting that 78NP inhibition of haemolysis is not due to 78NP scavenging the primary initiating reactants. In contrast, the reaction between HOCl and 78NP was near instant. AAPH and hydrogen peroxide oxidised 78NP to 7,8-dihydroxanthopterin while hypochlorite oxidation produced neopterin. The cellular antioxidant properties of 78NP suggest it may have a role in protecting immune cells from free radical damage during inflammation.  相似文献   

7.
Human macrophages stimulated with interferon-γ generate neopterin and 7,8-dihydroneopterin which interfere with reactive species involved in LDL oxidation. While neopterin was found to have pro-oxidative effects on copper-mediated LDL oxidation, the influence of 7,8-dihydroneopterin is more complex. This study provides detailed information that 7,8-dihydroneopterin reveals both pro-oxidative and anti-oxidative effects on copper mediated LDL oxidation. 7,8-dihydroneopterin inhibited the oxidation of native LDL effectively monitored by (i) formation of conjugated dienes, (ii) relative electrophoretic mobility (EM) and (iii) specific oxidized epitopes. Using minimally oxidized LDL (mi-LDL) or moderately oxidized LDL (mo-LDL) 7,8-dihydroneopterin changed its antioxidative behavior to a strongly pro-oxidative. Incubation of 7,8-dihydroneopterin with native LDL, mi-LDL or mo-LDL in the absence of copper ions showed that formation of conjugated dienes was more increased in mo-LDL than in mi-LDL while no diene formation was observed with native LDL.

We suggest that 7,8-dihydroneopterin is a modulator for LDL oxidation in the presence of copper ions depending on the “oxidative status” of this lipoprotein.  相似文献   

8.
We investigated the influence of neopterin and 7,8-dihydroneopterin on the myeloperoxidase activity and secretory degranulation in neutrophils and interaction of pteridines with its major substrate (hydrogen peroxide) and intermediate product of halogenation cycle (hypochlorous acid). It was shown that, in neutrophils, the redox-pair, neopterin and 7,8-dihydroneopterin, control oxygen activation, which is regulated by myeloperoxidase. Pteridines influence the secretion of myeloperoxidase depending on concentration and decrease the level of hydrogen peroxide and hypochlorous acid, which are the substrate and intermediate product of the enzyme, respectively. It was found that, in micromolar concentrations, 7,8-dihydroneopterin is a noncompetitive inhibitor of myeloperoxidase. We suppose that myeloperoxidase facilitates 7,8-dihydroneopterin oxidation by hypochlorous acid and results in an increase in neopterin concentration. These changes modify the concentration of intracellular and extracellular reactive oxygen species.  相似文献   

9.
H2O2是一种重要的信号分子,参与植物体内多种生理代谢活动,但过量的H2O2破坏生物大分子,从而使细胞受到毒害。硫氧还蛋白过氧化物酶(thioredoxin peroxidase,Tpx)通过清除H2O2在保护植物免受氧化损伤方面起着重要作用。为进一步研究番茄Tpx基因(SlTpx)的功能,构建了番茄SlTpx原核表达载体,并诱导和纯化了SlTpx蛋白,发现该蛋白质大小约为21 kDa。为检测SlTpx的抗氧化功能,通过体外的混合功能氧化酶(MFO)实验、过氧化氢清除实验和SlTpx蛋白体外抗重金属和H2O2实验,证明SlTpx可以保护DNA不受有害活性氧切割,并且提高大肠杆菌抵抗重金属和H2O2胁迫的能力。为揭示SlTpx在植物中的功能和作用机制奠定基础。  相似文献   

10.
In cerebrospinal fluid of patients with cerebral infections, elevated concentrations of the pteridine compounds neopterin and 7,8-dihydroneopterin were detected. Here, the potential of pteridines to induce apoptosis of the rat pheochromocytoma cells (PC12) was investigated. In contrast to aromatic pteridines like neopterin, the reduced forms 7,8-dihydroneopterin, 5,6,7,8-tetrahydrobiopterin and 7,8-dihydrobiopterin led to a significant increase of apoptotic cells. After terminal differentiation, cells were less sensitive to incubation with pteridines. A noticeable augmentation of apoptosis was observed upon incubation with 7,8-dihydroneopterin and 7,8-dihydrofolic acid. Antioxidants partly protected PC12 cells from pteridine-induced apoptosis, suggesting the involvement of reactive oxygen intermediates. Exposure of cells to 7,8-dihydroneopterin led to activation of the mitogen-activated protein (MAP) kinase and to a lesser degree also of JUN/SAP kinase. Results implicate that high concentrations of reduced pteridines, might contribute to the pathogenesis involved in neurodegeneration.  相似文献   

11.
The formation of oxidised low density lipoprotein (LDL) within the atherosclerotic plaque appears to be a factor in the development of advanced atherosclerotic plaques. LDL oxidation is dependent on the balance of oxidants and antioxidants within the intima. In addition to producing various oxidants, human macrophages release 7,8-dihydroneopterin which in vivo is oxidised to the inflammation marker neopterin. Using macrophage-like THP-1 cells and human monocyte-derived macrophages, we demonstrate that 7,8-dihydroneopterin is a potent inhibitor of cell-mediated LDL oxidation. 7,8-Dihydroneopterin scavenges the chain propagating lipid peroxyl radical, inhibiting both lipid and protein hydroperoxide formation. A significant amount of the hydroperoxide formed during cell-mediated LDL oxidation was protein hydroperoxide. 7,8-Dihydroneopterin oxidation to 7,8-dihydroxanthopterin was only observed in the presence of both cells and LDL, showing that 7,8-dihydroneopterin had no effect on initiating oxidant generation by the cells. 7,8-Dihydroneopterin did not regenerate alpha-tocopherol but competed with it for the lipid peroxyl radical. Although stimulation of both cell types with gamma-interferon failed to produce sufficient 7,8-dihydroneopterin to inhibit LDL oxidation in tissue culture, analysis of advanced atherosclerotic plaque removed from patients showed that total neopterin levels could reach low micromolar concentrations. This suggests that 7,8-dihydroneopterin synthesis by macrophages could play a significant role in the development of atherosclerotic plaques.  相似文献   

12.
The effect of iron on H2O2 production by mouse peritoneal macrophages exposed to opsonised zymosan has been investigated. Macrophages elicited with thioglycollate broth produced less H2O2 than macrophages activated by Corynebacterium parvum, and levels were not affected by prior incubation of the cells with 0.1 mM iron nitrilotriacetate. However, preincubation with the iron chelator desferrioxamine (1 mM) reduced H2O2 production by both types of macrophages. Incubation of macrophages with agar, a component of thioglycollate broth, also reduced H2O2 production, particularly by C. parvum-activated macrophages. The results indicate that although iron appears to be necessary for H2O2 production by macrophages, the low level of production by thioglycollate-elicited macrophages is not due to an inadequate level of metabolically utilisable iron, but may be a result of prior ingestion of agar present in the broth.  相似文献   

13.
The toxicity of H2O2 in Escherichia coli wild type and superoxide dismutase mutants was investigated under different experimental conditions. Cells were either grown aerobically, and then treated in M9 salts or K medium, or grown anoxically, and then treated in K medium. Results have demonstrated that the wild type and superoxide dismutase mutants display a markedly different sensitivity to both modes of lethality produced by H2O2 (i.e. mode one killing, which is produced by concentrations of H2O2 lower than 5 mM, and mode two killing which results from the insult generated by concentrations of H2O2 higher than 10 mM). Although the data obtained do not clarify the molecular basis of H2O2 toxicity and/or do not explain the specific function of superoxide ions in H2O2-induced bacterial inactivation, they certainly demonstrate that the latter species plays a key role in both modes of H2O2 lethality. A mechanism of H2O2 toxicity in E. coli is proposed, involving the action of a hypothetical enzyme which should work as an O2-• generating system. This enzyme should be active at low concentrations of H2O2 (<5 mM) and high concentrations of the oxidant (>5 mM) should inactivate the same enzyme. Superoxide ions would then be produced and result in mode one lethality. The resistance at intermediate H2O2 concentrations may be dependent on the inactivation of such enzyme with no superoxide ions being produced at levels of H2O2 in the range 5–10 mM. Mode two killing could be produced by the hydroxyl radical in concert with superoxide ions, chemically produced via the reaction of high concentrations of H2O2 (>10 mM) with hydroxyl radicals. The rate of hydroxyl radical production may be increased by the higher availability of Fe2+ since superoxide ions may also reduce trivalent iron to the divalent form.  相似文献   

14.
为了解活性氧(reactive oxygen species,ROS)在香菇菌丝后熟转色形成中的作用及其自噬细胞学特征,以香菇工厂化菌株KS11为研究材料,分析其在菌丝后熟转色过程中4个时间点(30、45、60、75 d)的活性氧含量(ROS)、丙二醛(MDA)含量、NADPH氧化酶浓度、抗氧化酶活性以及外源活性氧和DPI对其影响的表型试验,利用透射电镜观察该过程菌丝细胞自噬特征变化,并运用实时荧光定量PCR对自噬基因Atg8的表达水平进行比较分析。结果表明:(1) H2O2作为主要的活性氧因子在菌丝后熟转色形成中呈现显著动态变化,后熟转色过程中不断升高,并在转色中第60天呈高峰值。(2) NADPH氧化酶浓度与H2O2含量变化呈紧密正相关。(3)外源施加一定浓度H2O2显著促进香菇菌丝后熟转色,且DPI作为NADPH氧化酶抑制剂显著抑制了香菇菌丝后熟转色的发生。(4)香菇菌丝后熟转色过程中,细胞自噬特征逐渐增强,并在转色中后期最显著。上述结果表明以H  相似文献   

15.
Introduction Excess of intracellular reactive oxygen species in relation to antioxidative systems results in an oxidative environment which may modulate gene expression or damage cellular molecules. These events are expected to greatly contribute to processes of carcinogenesis. Only few studies are available on the oxidative/reductive conditions in the colon, an important tumour target tissue. It was the objective of this work to further develop methods to assess intracellular oxidative stress within human colon cells as a tool to study such associations in nutritional toxicology.

Methods We have measured H2O2-induced oxidative stress in different colon cell lines, in freshly isolated human colon crypts, and, for comparative purposes, in NIH3T3 mouse embryo fibroblasts. Detection was performed by loading the cells with the fluorigenic peroxide-sensitive dye 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate (diacetoxymethyl ester), followed by in vitro treatment with H2O2 and fluorescence detection with confocal laser scanning microscopy (CLSM). Using the microgel electrophoresis (“Comet”) Assay, we also examined HT29 stem and clone 19A cells and freshly isolated primary colon cells for their relative sensitivity toward H2O2-induced DNA damage and for steady-state levels of endogenous oxidative DNA damage.

Results A dose-response relationship was found for the H2O2-induced dye decomposition in NIH3T3 cells (7.8-125 μM H2O2) whereas no effect occurred in the human colon tumour cell lines HT29 stem and HT29 clone 19A (62-1000 μM H2O2). Fluorescence was significantly increased at 62 μM H2O2 in the human colon adenocarcinoma cell line Caco-2. In isolated human colon crypts, the lower crypt cells (targets of colon cancer) were more sensitive towards H2O2 than the more differentiated upper crypt cells. In contrast to the CLSM results, oxidative DNA damage was detected in both cell lines using the Comet Assay. Endogenous oxidative DNA damage was highest in HT29 clone 19A, followed by the primary colon cells and HT29 stem cells.

Conclusions Oxidative stress in colon cells leads to damage of macromolecules which is sensitively detected in the Comet Assay. The lacking response of the CLSM-approach in colon tumour cells is probably due to intrinsic modes of protective activities of these cells. In general, however, the CLSM method is a sensitive technique to detect very low concentrations of H2O2-induced oxidative stress in NIH3T3 cells. Moreover, by using colon crypts it provides the unique possibility of assessing cell specific levels of oxidative stress in explanted human tissues. Our results demonstrate that the actual target cells of colon cancer induction are indeed susceptible to the oxidative activity of H2O2.  相似文献   

16.
Interferon-γ stimulation of human macrophages causes the synthesis and release of neopterin and its reduced form 7,8-dihydroneopterin (7,8-NP). The purpose of this cellular response is undetermined but in vitro experiments suggests 7,8-NP is an antioxidant. We have found 7,8-NP can protect monocyte-like U937 cells from oxidative damage. 7,8-NP inhibited ferrous ion and hypochlorite mediated loss of cell viability. Fe++ mediated lipid peroxidation was effectively inhibited by 7,8-NP, however no correlation was found between peroxide concentration and cell viability. Hypochlorite was scavenged by 7,8-NP, preventing the loss of cell viability. 7,8-NP was less effective in inhibiting H2O2-mediated loss of cell viability with significant inhibition only occurring at high 7,8-NP concentrations. Analysis of cellular protein hydrolysates showed none of the oxidants caused the formation of any protein bound DOPA or dityrosine but did show 7,8-NP prevented the loss of cellular tyrosine by HOCl. Our data suggests macrophages may synthesize 7,8-NP for antioxidant protection during inflammatory events in vivo.  相似文献   

17.
植物金属蛋白酶Ft SH基因家族在拟南芥(Arabidopsis thaliana)中有12个成员,目前各基因的功能还不清楚。该文利用细胞生物学和遗传学方法初步分析了拟南芥FtSH4在叶片衰老中的功能。ftsh4-4突变体叶片中H_2O_2含量及细胞死亡率增加,叶绿素含量降低;此外,突变体中过氧化物酶基因表达上调,过氧化物酶活性增加,出现早衰表型。外源抗氧化剂As A、内源和外源生长素能够通过降低ftsh4-4体内H_2O_2含量、过氧化物酶基因的表达及过氧化物酶活性,恢复ftsh4-4叶片的衰老表型。ftsh4-4突变体中生长素响应因子基因ARF2和ARF7上调表达,外源生长素和抗氧化剂能够降低ARF2和ARF7的表达,并且ARF2突变能够降低ftsh4-4的H_2O_2含量并恢复其早衰表型。以上结果表明,FtSH4基因通过生长素与活性氧在调控植物叶片衰老中起重要作用。  相似文献   

18.
Interferon-gamma-induced degradation of tryptophan by human cells in vitro   总被引:3,自引:0,他引:3  
Several human cells were investigated for their ability to degrade tryptophan and to synthesize neopterin upon induction by interferon-gamma (500 units/ml for 48 h). Concentrations of tryptophan, kynurenine, 3-hydroxykynurenine, anthranilic acid, 3-hydroxyanthranilic acid, 7,8-dihydroneopterin and neopterin were assessed in the culture supernatants by HPLC. Fibroblasts, A-22 arachnoidea, HK-2351 scalp, T-2346 meningeom and HeLa cervical carcinoma cells but not HL-60 promyelocytic leukaemia cells were found to degrade tryptophan upon induction by interferon-gamma. Tryptophan is converted to kynurenine by fibroblasts, A-22 arachnoidea and HK-2351 scalp cells and to kynurenine and anthranilic acid by HeLa cervical carcinoma and T-2346 meningeom cells. Kynurenine and anthranilic acid always make up more than 82% of the tryptophan degraded. None of these cells synthesizes 3-hydroxyanthranilic acid, 3-hydroxykynurenine, 7,8-dihydroneopterin or neopterin. Human macrophages form 3-hydroxyanthranilic acid and neopterin, but not 3-hydroxykynurenine, beside kynurenine and anthranilic acid upon activation by interferon-gamma. These data indicate that several human cells can be induced by interferon-gamma to degrade tryptophan. The interferon-gamma induced synthesis of 3-hydroxyanthranilic acid and neopterin, however, appears to be restricted to human macrophages. A hypothesis explaining these findings is presented.  相似文献   

19.
A concentration of H2O2 resulting in mode one killing of Escherichia coli is more toxic when exposure to the oxidant is performed in complete medium (K medium), as compared to a saline (M9 salts). Inorganic salts (MgSO4 and CaCl2), thiamine or glucose, when added separately, or combined, to M9 salts had no effect on the cytotoxic response to H2O2. In contrast, the lethality of the oxidant was highly dependent on the presence of the amino acids in the incubation medium. The addition of glucose further enhanced this response. Among the seventeen amino acids which are present in the complete amino acid mixture, only two, i.e. L-histidine and L-cystine, were found to increase the toxicity of H2O2. Again, glucose augmented this response.

The effect of these amino acids on the growth inhibitory action of hydrogen peroxide was also tested in Chinese Hamster Ovary cells. It was found that L-histidine was capable of increasing the toxicity of the oxidant whereas all the other amino acids did not affect the toxicity of the oxidant. Glucose only slightly augmented this effect of L-histidine.

DNA single strand breakage produced by H2O2, was increased by L-histidine and was not significantly modified by the other amino acids. DNA double strand breakage was also shown to occur in cells exposed to H2O2-L-histidine, and this effect was independent on the presence of glucose.

These results demonstrate that the cytotoxic response of bacterial and mammalian cells to challenge with H2O2 is highly dependent on the composition of the extracellular milieu. Particularly relevant seems to be the effect of L-histidine, which markedly sensitizes both types of cells to the insult elicited by the oxidant, and that of L-cystine, which increases the sensitivity of E. coli cells.  相似文献   

20.
We had earlier shown that higher concentration of hydrogen peroxide (H2O2) induced p53-dependent apoptosis in glioma cell line with wild type p53 but had minimal effect on cells with mutated p53. Here we show a potentiating effect of hydroxylamine (HA), an inhibitor of catalase, on a nontoxic dose of H2O2 in glioma cells. HA sensitized both p53 wild type and mutated glioma cells to 0.25 mM H2O2. Potentiating effect of HA was independent of p53. Higher levels of reactive oxygen species (ROS) generation were observed in cells treated with HA+H2O2 as compared to cells treated with each component alone in both the cell lines. Dimethyl sulfoxide (DMSO) protected cells. Cytosolic cytochrome c and activated caspase 3 were detected at 4 h. The results suggest that higher levels of intracellular ROS, generated by HA+H2O2 act as a molecular switch in activating a rapidly acting p53-independent mitochondrial apoptotic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号