首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gelsolin is a Ca(2+)-regulated actin-modulating protein found in a variety of cellular cytoplasm and also in blood plasma. Affinity separation of human plasma gelsolin was successfully accomplished by eluting the protein with a low concentration of nucleoside polyphosphate from immobilized Cibacron Blue F3GA (1, 2). This finding was followed by the demonstration that the protein had one class of ATP binding site with Kd = 2.8 x 10(-7) M, which saturated at an ATP/gelsolin ratio of 0.6 in the absence of Ca2+ (3). To obtain further information on the nucleotide binding properties of gelsolin, binding studies were done in the presence of EGTA with GTP, ADP, and GDP by equilibrium dialysis. Incubation of plasma gelsolin with GTP resulted in binding of 0.6 mol of GTP per mol of protein with a dissociation constant of 1.8 x 10(-6) M, indicating that ATP binds to gelsolin with higher affinity than GTP. Neither ADP nor GDP at up to 100 microM appreciably bound to gelsolin at a physiological salt concentration. Then, the effects of divalent metal ions on the ATP binding to plasma gelsolin were examined. Gelsolin bound to ATP with Kd = 2.4 x 10(-6) M in a solution containing 2 mM MgCl2, whereas micromolar free Ca2+ concentrations inhibited ATP binding. Furthermore, addition of Ca2+ rapidly reversed the preformed nucleotide binding to gelsolin, suggesting that Ca2+ binding to gelsolin leads to a conformational change which disrupts a nucleotide binding fold in the protein molecule.  相似文献   

2.
J K Vishwanatha  Z Wei 《Biochemistry》1992,31(6):1631-1635
The ubiquitous dinucleotide P1,P4-di(adenosine-5') tetraphosphate (Ap4A) has been proposed to be involved in DNA replication and cell proliferation, DNA repair, platelet aggregation, and vascular tonus. A protein binding specifically to Ap4A is associated with a multiprotein form of DNA polymerase alpha (pol alpha 2) in HeLa cells. The Ap4A binding protein from HeLa cells has been purified to homogeneity starting from pol alpha 2 complex. The Ap4A binding protein is hydrophobic and is resolved from the pol alpha 2 complex by hydrophobic interaction chromatography on butyl-Sepharose and subsequently purified to homogeneity by chromatography on Mono-Q and Superose-12 FPLC columns. The Ap4A binding activity elutes as a single symmetrical peak upon gel filtration with a molecular mass of 200 kDa. Upon polyacrylamide gel electrophoresis under nondenaturing conditions, the purified protein migrates as a single protein of 200 kDa. Upon electrophoresis under denaturing conditions, the binding activity is resolved into two polypeptides of 45 and 22 kDa, designated as A1 and A2, respectively. A1 and A2 can be cross-linked using the homobifunctional cross-linking agent disuccinimidyl suberate. The cross-linked protein migrates as a single protein of 210 kDa on polyacrylamide gels under denaturing conditions, suggesting that these two polypeptides are subunits of a single protein. The purified protein binds Ap4A efficiently, and by Scatchard analysis, we have determined a dissociation constant of 0.25 microM, indicating high affinity of Ap4A binding protein to its ligand. ATP is not required for the binding activity. The nonionic detergent Triton X-100 is necessary for stabilizing the purified protein. Amino acid composition analysis indicates that A1 and A2 are distinct.  相似文献   

3.
Diadenosine-5',5'-P1,P4-tetraphosphate pyrophosphohydrolase (diadenosinetetraphosphatase) from Escherichia coli strain EM20031 has been purified 5000-fold from 4 kg of wet cells. It produces 2.4 mg of homogeneous enzyme with a yield of 3.1%. The enzyme activity in the reaction of ADP production from Ap4A is 250 s-1 [37 degrees C, 50 mM tris(hydroxymethyl)aminomethane, pH 7.8, 50 microM Ap4A, 0.5 microM ethylenediaminetetraacetic acid (EDTA), and 50 microM CoCl2]. The enzyme is a single polypeptide chain of Mr 33K, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and high-performance gel permeation chromatography. Dinucleoside polyphosphates are substrates provided they contain more than two phosphates (Ap4A, Ap4G, Ap4C, Gp4G, Ap3A, Ap3G, Ap3C, Gp3G, Gp3C, Ap5A, Ap6A, and dAp4dA are substrates; Ap2A, NAD, and NADP are not). Among the products, a nucleoside diphosphate is always formed. ATP, GTP, CTP, UTP, dATP, dGTP, dCTP, and dTTP are not substrates; Ap4 is. Addition of Co2+ (50 microM) to the reaction buffer containing 0.5 microM EDTA strongly stimulates Ap4A hydrolysis (stimulation 2500-fold). With 50 microM MnCl2, the stimulation is 900-fold. Ca2+, Fe2+, and Mg2+ have no effect. The Km for Ap4A is 22 microM with Co2+ and 12 microM with Mn2+. The added metals have similar effects on the hydrolysis of Ap3A into ADP + AMP. However, in the latter case, the stimulation by Co2+ is small, and the maximum stimulation brought by Mn2+ is 9 times that brought by Co2+. Exposure of the enzyme to Zn2+ (5 microM), prior to the assay or within the reaction mixture containing Co2+, causes a marked inhibition of Ap4A hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Diadenosine oligophosphates (Ap(n)A) have been proposed as intracellular and extracellular signaling molecules in animal cells. The ratio of diadenosine 5',5'-P1,P3-triphosphate to diadenosine 5',5'-P1,P4-tetraphosphate (Ap3A/Ap4A) is sensitive to the cellular status and alters when cultured cells undergo differentiation or are treated with interferons. In cells undergoing apoptosis induced by DNA topoisomerase II inhibitor VP16, the concentration of Ap3A decreases significantly while that of Ap4A increases. Here, we have examined the effects of exogenously added Ap3A and Ap4A on apoptosis and morphological differentiation. Penetration of Ap(n)A into cells was achieved by cold shock. Ap4A at 10 microM induced programmed cell death in human HL60, U937 and Jurkat cells and mouse VMRO cells and this effect appeared to require Ap4A breakdown as hydrolysis-resistant analogues of Ap4A were inactive. On its own, Ap3A induced neither apoptosis nor cell differentiation but did display strong synergism with the protein kinase C activators 12-deoxyphorbol-13-O-phenylacetate and 12-deoxyphorbol-13-O-phenylacetate-20-acetate in inducing differentiation of HL60 cells. We propose that Ap4A and Ap3A are physiological antagonists in determination of the cellular status: Ap4A induces apoptosis whereas Ap3A is a co-inductor of differentiation. In both cases, the mechanism of signal transduction remains unknown.  相似文献   

5.
An ectoenzyme hydrolyzing diadenosine polyphosphates (ApnA) to AMP and Ap(n-1) has been studied in cultured chromaffin cells from bovine adrenal medulla. The KM value for extracellular Ap4A hydrolysis was 2.90 +/- 0.72 microM, the V(max) value obtained was 11.59 +/- 0.92 pmol/min x 10(6) cells (116 pmol/min.mg total protein). Ap3A, Ap5A, Ap6A, and Gp4G were competitive inhibitors of Ap4A hydrolysis with K(i) values of 3.65, 1.10, 1.20, and 2.65 microM, respectively. Phosphatidylinositol-specific phospholipase C removes the ApnA hydrolase activity from cultured chromaffin cells, suggesting an anchorage of this protein to the plasma membrane through the phosphatidylinositol. The turnover time for this enzyme calculated in the presence of cycloheximide was 38.94 +/- 1.53 hr for cultured chromaffin cells.  相似文献   

6.
A hydrolase splitting adenosine(5')triphospho(5')adenosine (Ap3A) to AMP and ADP has recently been detected in human plasma [Lüthje, J. and Ogilvie, A. (1984) Biochem. Biophys. Res. Commun. 118, 704-709]. The enzyme has been purified to apparent homogeneity, as stained in a native polyacrylamide gel. From gel filtration data a Stokes radius of 5.9 nm was calculated, suggesting a molecular mass of about 230 kDa. The presence of the non-ionic detergent Triton X-100 did not change the molecular mass. The hydrolase dissociated to three major protein components (66 kDa; 45 kDa; 16 kDa) during polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and mercaptoethanol. Binding of the native enzyme to concanavalin-A--Sepharose and specific inhibition of binding by methyl mannoside indicated that the hydrolase is a glycoprotein. Two of the subunits (66 kDa; 45 kDa) could be affinity-labeled with radioiodinated concanavalin A. Active hydrolase could be prepared in buffers without added metal ions. Treatment with EDTA, however, completely abolished the hydrolytic activity. The enzyme could be reactivated by incubation with Ca2+, Co2+ and, at best, with Zn2+, whereas Mg2+ was ineffective. The affinity of the enzyme for Ap3A was high (Km = 1 microM), with normal Michaelis-Menten kinetics. The homolog dinucleotide Ap4A was also substrate (Km = 0.6 microM) yielding AMP and ATP as products after the asymmetric split. Other dinucleotides, such as NAD, and also mononucleotides (ATP,UTP) were degraded to nucleoside monophosphates indicating a broad specificity of the enzyme. The synthetic compound thymidine 5'-monophosphate p-nitrophenyl ester was substrate with low affinity whereas its 3'-homolog was not hydrolyzed. Optimal activity of the hydrolase was found at pH 8.5.  相似文献   

7.
The synthesis of diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) can be catalyzed in vitro by a tetrameric tRNA synthetase complex from rat liver containing two lysyl-tRNA synthetase and two arginyl-tRNA synthetase subunits. This reaction required ATP, AMP, 50-100 microM zinc, and inorganic pyrophosphatase. We show here that AMP can be omitted from the reaction and that the zinc levels can be markedly reduced provided catalytic amounts of tRNA(Lys) are added to the reaction mixture. Ap4A synthesis with purified tRNA(Lys) isoacceptors showed that the minor species, tRNA(4Lys), was 3-fold more active than either of the two major tRNA(Lys) species, tRNA(2Lys) and tRNA(5Lys). No activity could be demonstrated with tRNA(Lys) from Escherichia coli or with tRNA(Lys) or tRNA(Phe) from yeast. Aminoacylation of tRNA(4Lys) was strictly required as determined by the fact that Ap4A synthesis was not observed until aminoacylation was nearly complete, inhibitors of aminoacylation blocked Ap4A synthesis, and there was a strict requirement for added lysine. None of the above observations could be demonstrated, however, when lysyl-tRNA(Lys) was directly supplied to the reaction mixture. Optimum Ap4A synthesis was obtained by the addition of 1 mol of tRNA(Lys)/mol of the synthetase complex. This reaction is unique because it does not require the prior formation of an aminoacyl-AMP intermediate and because it can actively synthesize Ap4A at physiological zinc concentrations. The preferential role for tRNA(4Lys) in Ap4A synthesis is consistent with its prior implication in cell division.  相似文献   

8.
An assay of adenosine(5')tetraphospho(5')adenosine (Ap4A), based on the luciferin/luciferase method for ATP measurement, was developed, which allows one to determine picomolar amounts of unlabeled Ap4A in cellular extracts. In eukaryotic cells this method yielded levels of Ap4A varying from 0.01 microM to 13 microM depending on the growth, cell cycle, transformation, and differentiation state of cells. After mitogenic stimulation of G1-arrested mouse 3T3 and baby hamster kidney fibroblasts the Ap4A pools gradually increased 1000-fold during progression through the G1 phase reaching maximum Ap4A concentrations of about 10 microM in the S phase. Quiescent 3T3 cells reach a high level of Ap4A (1 microM) in a 'committed' but prereplicative state if exposed to an external mitogenic stimulant (excess of serum) and simultaneously to a synchronizer which inhibits entry into the S phase (hydroxyurea). When the block for DNA replication was removed at varying times after removal of the stimulant decay of commitment to DNA synthesis was found correlated with a shrinkage of the Ap4A pool. Cells lacking a defined G1 phase (V79 lung fibroblasts, Physarum) possess a constitutively high base level of Ap4A (about 0.3 microM) even during mitosis. From this high level, Ap4A concentration increases only about tenfold during the S phase. Temperature-down-shift experiments, using chick embryo cells infected with transformation-defective temperature-sensitive viral mutants(td-ts), have shown that the expression of the transformed state at 35 degrees C is accompanied by a tenfold increase of the cellular Ap4A pool. Treatment of exponentially growing human cells with interferon leads, concomitantly with an inhibition of DNA syntheses, to a tenfold decrease in intracellular Ap4A levels within 20 h. The possibility of Ap4A being a 'second messenger' of cell cycle and proliferation control is discussed in the light of these results and those reported previously demonstrating that Ap4A is a ligand of mammalian DNA polymerase alpha, triggers DNA replication in quiescent mammalian cells and is active in priming DNA synthesis.  相似文献   

9.
Potential bisubstrate analogs, with adenosine and thymidine joined at their 5' positions by polyphosphoryl linkages of varying lengths (ApndT, where n = the number of phosphoryl groups), were examined as inhibitors of cytosolic thymidine kinase from blast cells of patients with acute myelocytic leukemia. Ki values were 1.2 microM for Ap3dT, 0.31 microM for Ap4dT, 0.12 microM for Ap5dT, and 0.19 microM for Ap6dT. The best inhibitor of the cytosolic enzyme, Ap5dT, was somewhat less effective as an inhibitor of the mitochondrial enzyme (Ki = 0.50 microM). In addition to their inhibitory modes of binding by the cytosolic enzyme, these compounds were bound at considerably lower concentrations (Kd = 0.029 microM for Ap4dT, 0.0025 microM for Ap5dT, and 0.0027 microM for Ap4dT), in such a way as to protect the cytosolic enzyme from thermal inactivation at 37 degrees C in the absence of substrates.  相似文献   

10.
1. Procedures are given for the syntheses of alpha,omega-dinucleoside 5'-polyphosphates as inhibitors of adenylate kinases. The following order for the ability of inhibiting pig muscle adenylate kinase was observed: Ap5A greater than 1:N6-etheno-Ap5A greater than Ap6A greater than Gp5A greater than Ap4A greater than Up5A. The synthesis of adenosine tetraphosphate, the starting material for Ap5A, is also described. 2. One molecule of pig muscle adenylate kinase binds one molecule of Ap5A. The difference spectrum of Ap5A-adenylate kinase with its maximum of 5050 M-1 - cm-1 at 271 nm, as well as the fluorescence properties of 1:N6-etheno-Ap5A can be used for kinetic and binding studies. 3. The specific binding of the negatively charged Ap5A was exploited in the preparation of human muscle adenylate kinase. The enzyme was purified to homogeneity with an overall yield of 65%, the absolute value being 70 mg per kg of muscle. 4. The effect of Ap5A on adenylate kinase in extracts of various cells and cell organelles was tested. A ratio of 1:50 (mol/mol) for Ap5A to other nucleotides was used for suppressing the adenylate kinase activity in extracts of mammalian and insect skeletal muscel, of human erythrocytes and of Staphylococcus aureus. A ratio of 1:5 was found to be necessary for the adenylate kinase from tobacco leaves and spinach chloroplasts, and a ratio of 2:1 was needed for suppressing the adenylate kinase from bovine liver mitochondria, human kidney homogenate and from Escherichia coli. Ap5A appears not to be metabolized in any of the above extracts. These results indicate that Ap5A can be used for evaluating the contribution of adenylate kinase to the production of ATP fro ADP in energy-transducing systems. 5. Contaminating adenylate kinase can be inhibited by a concentration of Ap5A which does not interfere in the study of many (phospho)kinases and ATPases. The applications of Ap5A in the assay for nucleoside diphosphokinase and in the study of mechanical and biochemical properties of contractile proteins are representative examples. The use of Ap5A makes it possible to study the effect of ADP per se in such systems. 6. Sepharose-bound Ap5A was used for removing traces of adenylate kinase from samples of myosin and creatine kinase. 7. In the presence of Ap5A the activity of creatine kinase was measured in hemolytic serum of venous blood, in plasma of capillary blood and in samples of whole blood after complete hemolysis had been induced. The clinical significance of these findings are shown for cases of myocardial infarction and muscular dystrophy.  相似文献   

11.
The unusual bis(5'-nucleosidyl)oligophosphates: Ap4A, Ap4G, Ap3A, and Ap3G, have been measured in cultures of Drosophila cells. Exponentially growing cells contain concentrations of 0.25, 0.31, 0.87, and 2.25 microM, respectively. These nucleotides have been followed after stressing the cells either by CdCl2 addition or by heat-shock treatment. Their concentrations are not affected by exposure to 500 microM CdCl2 during 6 h. Beyond this threshold of cadmium concentration, the nucleotides increase. With 5 mM CdCl2, an enhancement by 2 orders of magnitude of all the dinucleoside tri- and tetra-phosphates is observed. Upon heat-shock from 19 to 37 degrees C, Ap4A, Ap3A, and Ap3G increase up to 2.2, 3, and 3.3 times their initial levels, respectively. The increase is achieved within 1 h.  相似文献   

12.
The biologically active dinucleotides adenosine(5')tetraphospho(5')adenosine (Ap4A) and adenosine(5')-triphospho(5')adenosine (Ap3A), which are both releasable into the circulation from storage pools in thrombocytes, are catabolized by intact bovine aortic endothelial cells. 1. Compared with extracellular ATP and ADP, which are very rapidly hydrolysed, the degradation of Ap4A and Ap3A by endothelial ectohydrolases is relatively slow, resulting in a much longer half-life on the endothelial surface of the blood vessel. The products of hydrolysis are further degraded and finally taken up as adenosine. 2. Ap4A hydrolase has high affinity for its substrate (Km 10 microM). 3. ATP as well as AMP transiently accumulates in the extracellular fluid, suggesting an asymmetric split of Ap4A by the ectoenzyme. 4. Mg2+ or Mn2+ at millimolar concentration are needed for maximal activity; Zn2+ and Ca2+ are inhibitory. 5. The hydrolysis of Ap4A is retarded by other nucleotides, such as ATP and Ap3A, which are released from platelets simultaneously with Ap4A.  相似文献   

13.
In recent years it has become increasingly clear that alpha, omega-dinucleotides act as extracellular modulators of various biological processes. P1,P4-diadenosine 5'-tetraphosphate (Ap4A) is the best characterized alpha,omega-dinucleotides and acts as an extracellular signal molecule by inducing the release of nitric oxide (NO) from bovine aortic endothelial cells (BAEC) (R. H. Hilderman, and E. F. Christensen (1998) FEBS Lett. 407, 320-324). However, the characteristics of Ap4A binding to endothelial cells have not been determined. In this report we demonstrate that Ap4A binds to a heterogeneous population of receptors on BAEC. Competition ligand-binding studies using various adenosine dinucleotides, guanosine dinucleotides, adenosine/guanosine dinucleotides, and synthetic P2 purinoceptor agonists and antagonists demonstrate that Ap4A binds to a receptor on BAEC that has a high affinity for some of the adenosine dinucleotides. The apparent IC50 values for Ap4A, Ap2A, and Ap3A are between 12 and 15 microM, while the apparent IC50 values for Ap5A and Ap6A are greater than 500 microM. Evidence is also presented which suggests that this receptor can be classified as a putative P4 purinoceptor. Competition studies also demonstrate that Ap4A binds at a lower affinity to a second class of binding sites.  相似文献   

14.
Adenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) has been implicated as a modulator of cell stress. We have performed binding studies which indicate that membranes from all tissues tested bind tritium-labeled Ap4A. The characteristics of Ap4A binding were determined on brain membrane homogenates after development of an optimized in vitro filter-binding assay. Ap4A binding is specific for adenylated dinucleotides and for the length of the phosphate bridge. A Kd of 0.71 microM for Ap4A was determined.  相似文献   

15.
The fission yeast Schizosaccharomyces pombe contains a gene on chromosome I that encodes a hypothetical nudix hydrolase, YA9E. The gene, designated aps1, has been cloned and the protein has been purified from Escherichia coli with a yield of 10 mg of Aps1/L of culture. Aps1, composed of 210 amino acids with a calculated molecular mass of 23 724 Da, behaves as a monomer with a sedimentation coefficient of 1.92 S as determined by analytical ultracentrifugation. The effective hydrodynamic radius is about 29 A as determined by both analytical ultracentrifugation and gel-filtration chromatography. Aps1, whose expression was detected in S. pombe by Western blotting, is an enzyme that catalyzes the hydrolysis of dinucleoside oligophosphates, with Ap6A and Ap5A being the preferred substrates. The major reaction products are ADP and p4A from Ap6A and ADP and ATP from Ap5A. Values of Km for Ap6A and Ap5A are 19 microM and 22 microM, respectively, and the corresponding values of kcat are 2.0 s-1 and 1.7 s-1, respectively. The enzyme has limited activity on Ap4A and negligible activity on Ap3A, ADP-ribose, and NADH. Aps1 catalyzes the hydrolysis of mononucleotides with decreasing activity in order from p5A to AMP. Optimal activity with Ap6A as substrate is observed at pH 7.6 and in the presence of 0.1-1 mM MnCl2. Aps1 is the first nudix hydrolase isolated from S. pombe, and it is the first enzyme identified with this specific substrate specificity and reaction products.  相似文献   

16.
Ap4A levels in sperms, eggs and different developmental stages of sea urchin (Psammechinus miliaris) and (Xenopus laevis) were determined by a method based on ATP measurement with luciferin/luciferase after splitting diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) into ATP and AMP. Appreciable storage pools of Ap4A were found in unfertilized eggs of Psammechinus and Xenopus as well as in sea urchin sperms. The actual Ap4A concentration of 28 microM in sperm represents the highest Ap4A level so far observed in eukaryotic cells. Upon fertilization an instant onset of de novo synthesis of Ap4A was demonstrated. Ap4A levels during early embryogenesis of P. miliaris and X. laevis (2.5-4 microM) are higher than those in exponentially growing mammalian culture cells and mammalian fetuses. Microinjection of Ap4A into unfertilized eggs of Psammechinus miliaris caused a 3-7 fold increase of DNA synthesis in comparison with mock-injected eggs.  相似文献   

17.
An initial step in platelet shape change is disassembly of actin filaments, which are then reorganized into new actin structures, including filopodia and lamellipodia. This disassembly is thought to be mediated primarily by gelsolin, an abundant actin filament-severing protein in platelets. Shape change is inhibited by VASP, another abundant actin-binding protein. Paradoxically, in vitro VASP enhances formation of actin filaments and bundles them, activities that would be expected to increase shape change, not inhibit it. We hypothesized that VASP might inhibit shape change by stabilizing filaments and preventing their disassembly by gelsolin. Such activity would explain VASP's known physiological role. Here, we test this hypothesis in vitro using either purified recombinant or endogenous platelet VASP by fluorescence microscopy and biochemical assays. VASP inhibited gelsolin's ability to disassemble actin filaments in a dose-dependent fashion. Inhibition was detectable at the low VASP:actin ratio found inside the platelet (1:40 VASP:actin). Gelsolin bound to VASP-actin filaments at least as well as to actin alone. VASP inhibited gelsolin-induced nucleation at higher concentrations (1:5 VASP:actin ratios). VASP's affinity for actin (K(d) approximately 0.07 microM) and its ability to promote polymerization (1:20 VASP actin ratio) were greater with Ca(++)-actin than with Mg(++)-actin (K(d) approximately 1 microM and 1:1 VASP), regardless of the presence of gelsolin. By immunofluorescence, VASP and gelsolin co-localized in the filopodia and lamellipodia of platelets spreading on glass, suggesting that these in vitro interactions could take place within the cell as well. We conclude that VASP stabilizes actin filaments to the severing effects of gelsolin but does not inhibit gelsolin from binding to the filaments. These results suggest a new concept for actin dynamics inside cells: that bundling proteins protect the actin superstructure from disassembly by severing, thereby preserving the integrity of the cytoskeleton.  相似文献   

18.
We investigated the effect of agents which raise intracellular levels of cyclic AMP (cAMP) on the secretion of tissue-type plasminogen activator (t-PA) and type 1 plasminogen activator inhibitor (PAI-1) by cultured human umbilical-vein endothelial cells. Significant inhibition of baseline (unstimulated) t-PA and PAI-1 secretion was observed in response to several agents which, when added exogenously, cause increased intracellular cAMP: cholera toxin, 1-methyl-3-isobutylxanthine (MIX), dibutyryl-cAMP, and prostaglandin E1. These agents also significantly reduced or abolished the previously reported stimulatory effects of thrombin and histamine on t-PA secretion, and, with the exception of MIX, significantly reduced the previously reported stimulatory effect of thrombin on PAI-1 secretion. MIX at a concentration (10 microM) below that required to inhibit t-PA and PAI-1 secretion when tested alone, significantly increased the inhibitory effects of cholera toxin, dibutyryl-cAMP, and prostaglandin E1 on both t-PA and PAI-1 secretion. The data suggest that elevated intracellular levels of cAMP inhibit both spontaneous endothelial secretion of t-PA and PAI-1, and secretion induced by agents (thrombin and histamine) which stimulate endothelial phosphoinositide metabolism, consistent with bidirectional regulation of endothelial fibrinolytic protein secretion by the adenylate cyclase and phosphoinositide signal transduction pathways. The inhibitory effects of cAMP do not appear to be specific for t-PA and PAI-1, since cholera toxin and MIX also inhibited endothelial secretion of the adhesive protein, fibronectin. Significant inhibition of baseline endothelial t-PA and PAI-1 secretion was also caused by the stable prostacyclin analogue iloprost (ZK 36 374) and by arachidonic acid, which is converted by endothelial cells to prostacyclin, suggesting that prostacyclin produced endogenously by endothelial cells may inhibit secretion of fibrinolytic proteins by increasing intracellular cAMP.  相似文献   

19.
V Pandey  M J Modak 《Biochemistry》1987,26(7):2033-2038
The catalysis of DNA synthesis by calf thymus terminal deoxynucleotidyltransferase (TdT) is strongly inhibited in the presence of Ap5A, while replicative DNA polymerases from mammalian, bacterial, and oncornaviral sources are totally insensitive to Ap5A addition. The Ap5A-mediated inhibition of TdT seems to occur via its interaction at both the substrate binding and primer binding domains as judged by classical competitive inhibition plots with respect to both substrate deoxynucleoside triphosphate (dNTP) and DNA primer and inhibition of ultraviolet light mediated cross-linking of substrate dNTP and oligomeric DNA primer to their respective binding sites. Further kinetic analyses of Ap5A inhibition revealed that the dissociation constant of the Ap5A-enzyme complex, with either substrate binding or primer binding domain participating in the complex formation, is approximately 6 times higher (Ki = 1.5 microM) compared to the dissociation constant (Ki = 0.25 microM) of the Ap5A-TdT complex when both domains are available for binding. In order to study the binding stoichiometry of Ap5A to TdT, an oxidized derivative of Ap5A, which exhibited identical inhibitory properties as its parent compound, was employed. The oxidation product of Ap5A, presumably a tetraaldehyde derivative, binds irreversibly to TdT when the inhibitor-enzyme complex is subjected to borohydride reduction. The presence of aldehyde groups in the oxidized Ap5A appeared essential for inhibitory activity since its reduction to alcohol via borohydride reduction or its linkage to free amino acids prior to use as an inhibitor rendered it completely ineffective.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Adenosine(5')tetraphospho(5')adenosine-binding protein of calf thymus   总被引:5,自引:0,他引:5  
An adenosine(5')tetraphospho(5')adenosine (Ap4A) binding protein has been purified from calf thymus. The protein is comprised of a single polypeptide of Mr 54000 and is capable of high-affinity (Kd = 13 microM) binding of Ap4A with great substrate specificity. The Ap4A binding protein has been isolated in two forms: a 'free', or non-polymerase-bound, form which predominates, and a similar form which copurifies with DNA polymerase alpha, but which can be resolved from it. The free form of Ap4A binding protein contains associated adenosine(5')tetraphospho(5')adenosine phosphohydrolase (Ap4Aase) activity, while the form resolved from DNA polymerase alpha contains no such activity. The Ap4Aase activity, which catalyzes the phosphohydrolysis of Ap4A to ATP and AMP, is strongly inhibited by low levels (50-100 microM) of Zn2+ without any effect on the Ap4A binding protein activity. This difference in associated Ap4Aase activity between free and polymerase-bound forms of the protein, plus the copurification mentioned above, indicate a specific association between Ap4A binding protein and DNA polymerase alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号