首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. Schurzmann  V. Hild 《Planta》1980,150(1):32-36
The effect of externally applied indoleacetic acid (IAA) and abscisic acid (ABA) on the growth of roots of Zea mays L. was measured. Donor blocks of agar with IAA or ABA were placed laterally on the roots and root curvature was measured. When IAA was applied to vertical roots, a curvature directed toward the donor block was observed. This curvature corresponded to a growth inhibition at the side of the root where the donor was applied. When IAA was applied to horizontal roots from the upper side, normal geotropic downward bending was delayed or totally inhibited. The extent of retardation and the inhibition of curvature were found to depend on the concentration of IAA in the donor block. ABA neither induced curvature in vertical roots nor inhibited geotropic curvature in horizontal roots; thus the growth of roots was not inhibited by ABA. However, when, instead of donor blocks, root tips or coleoptile tips were placed onto vertical roots, a curvature of the roots was observed.Abbreviations ABA abscisic acid - IAA 3-indoleacetic acid  相似文献   

2.
关于中国沙棘克隆生长调节研究目前局限于外在机制,旨在探讨其克隆生长对灌水强度的响应规律及其激素调控的内在机制。结果表明:随着灌水强度的增大,分株生长、克隆繁殖、克隆扩散能力先升后降,IAA(吲哚-3-乙酸)、ZR(玉米素核苷)、GA_3(赤霉酸)含量及其与ABA(脱落酸)的比值先升后降而ABA含量先降后升。同时,分株生长、克隆繁殖、克隆扩散能力与IAA、ZR、GA_3含量以及IAA/ABA、ZR/ABA、GA_3/ABA呈极显著或显著正相关,与ABA含量呈极显著负相关。灌水强度过小或过大,IAA、ZR、GA_3含量以及IAA/ABA、ZR/ABA、GA_3/ABA低而ABA含量高,克隆生长潜力受到抑制,种群以分株小、数量少(分布稀疏)、扩散(水平根延伸和分枝)能力弱为特征,克隆生长格局倾向于"游击型"、种群早衰概率高;灌水强度适宜,IAA、ZR、GA_3含量以及IAA/ABA、ZR/ABA、GA_3/ABA高而ABA含量低,克隆生长潜力得以充分发挥,种群以分株大、数量多(分布密集)、扩散能力强为特征,克隆生长格局倾向于"聚集型"、种群稳定性高。随着灌水强度过小-适宜-过大的连续变化,中国沙棘通过改变激素状况调控克隆生长,从而形成与灌水强度相适应的克隆生长格局连续体"游击型-聚集型-游击型",种群稳定性呈"低-高-低"的连续变化过程。由此可见:灌水强度诱导内源激素发生改变,激素特征调控克隆生长格局,克隆生长格局决定种群稳定性。  相似文献   

3.
Abscisic acid (ABA), auxins, cytokinins, gibberellic acid, alone or in combination were tested for their effects on short-term sucrose uptake in sugar beet (Beta vulgaris cv USH-20) roots. The effect of ABA on active sucrose uptake varied from no effect to the more generally observed 1.4-to 3.0-fold stimulation. A racemic mixture of ABA and its trans isomer were more stimulatory than ABA alone. Pretreating and/or simultaneously treating the tissue with K+ or IAA prevented the ABA response while cytokinins and gibberellic acid did not. While the variable sensitivities of beet root to ABA may somehow be related to the auxin and alkali cation status of the tissue, tissue sensitivity to ABA was not correlated with ABA uptake, accumulation, or metabolic patterns. In contrast to ABA, indoleacetic acid (IAA) and other auxins strongly inhibited active sucrose uptake in beet roots. Cytokinins enhanced the auxin-induced inhibition of sucrose uptake but ABA and gibberellic acid did not modify or counteract the auxin effect. Trans-zeatin, benzyladenine, kinetin, and gibberellins had no effect on active sucrose uptake. None of the hormones or hormone mixtures tested had any significant effect on passive sucrose uptake. The effects of IAA and ABA on sucrose uptake were detectable within 1 h suggesting a rather close relationship between the physiological activities of IAA and ABA and the operation of the active transport system.  相似文献   

4.
The physiological and morphological factors necessary for efficient accumulation of sucrose in sugar beet (Beta vulgaris L.) are considered in relation to potential uses of plant growth regulators to modify the anatomy of storage roots so as to increase sucrose content and yield. The percentage of sucrose in root fresh and dry matter is closely related to root structure. Sugar beet, mangold and chard are three sub-species of Beta vulgaris that differ considerably in their anatomy, assimilate partitioning, sucrose concentration and root dry matter yield. The concentrations of indole-3-acetic acid (IAA), abscisic acid (ABA) and cytokinins were measured during the growth of the storage root in each of these cultivars. Correlations were found between the phytohormone levels and the formation of secondary cambia and their subsequent cell division and expansion activity.  相似文献   

5.
Applications of indole-3yl-acetic acid (IAA) and abscisic acid (ABA) were done on two-day-old intact maize (cv LG 11) roots. The effect of the treatment on the root growth depends on their initial elongation rate. The slow growing roots were all inhibited by exogenous IAA and ABA at any concentrations used whereas for the fast growing roots their elongation was promoted by these two hormones at low concentrations. Quantitative analyses of endogenous IAA and ABA were performed using the gas chromatography-mass spectrometry technique. Detection and quantification of endogenous IAA and ABA were done on the zone of the root implicated in elongation. These techniques were achieved by electron impact on the IAA-Me-heptafluorobutyryl derivative and by negative ion chemical ionization with NH3 on the ABA-Me ester derivative. A negative correlation between the growth and the endogenous content of these two hormones was obtained. ABA presented a larger range of endogenous level than IAA on the whole population of roots tested. When using applied IAA and ABA at different concentrations the same differentiating effect on the growth was observed. This allowed us to conclude that for identical concentrations, IAA has a more powerful effect on root elongation than ABA. Present results are discussed in relation to previous data related to the role of IAA and ABA in the growth and gravireaction of maize roots.  相似文献   

6.
Rock CD  Sun X 《Planta》2005,222(1):98-106
Studies of abscisic acid (ABA) and auxin have revealed that these pathways impinge on each other. The Daucus carota (L.) Dc3 promoter: uidA (-glucuronidase: GUS) chimaeric reporter (ProDc3:GUS) is induced by ABA, osmoticum, and the auxin indole-3-acetic acid (IAA) in vegetative tissues of transgenic Arabidopsis thaliana (L.) Heynh. Here, we describe the root tissue-specific expression of ProDc3:GUS in the ABA-insensitive-2 (abi2-1), auxin-insensitive-1 (aux1), auxin-resistant-4 (axr4), and rooty (rty1) mutants of Arabidopsis in response to ABA, IAA and synthetic auxins naphthalene acetic acid (NAA), and 2, 4-(dichlorophenoxy) acetic acid. Quantitative analysis of ProDc3:GUS expression showed that the abi2-1 mutant had reduced GUS activity in response to ABA, IAA, or 2, 4-d, but not to NAA. Similarly, chromogenic staining of ProDc3:GUS activity showed that the aux1 and axr4 mutants gave predictable hypomorphic ProDc3:GUS expression phenotypes in roots treated with IAA or 2, 4-d, but not the diffusible auxin NAA. Likewise the rty mutant, which accumulates auxin, showed elevated ProDc3:GUS expression in the absence or presence of hormones relative to wild type. Interestingly, the aux1 and axr4 mutants showed a hypomorphic effect on ABA-inducible ProDc3:GUS expression, demonstrating that ABA and IAA signaling pathways interact in roots. Possible mechanisms of crosstalk between ABA and auxin signaling are discussed.  相似文献   

7.
Water stress and indol-3yl-acetic acid content of maize roots   总被引:2,自引:0,他引:2  
J. M. Ribaut  P. E. Pilet 《Planta》1994,193(4):502-507
Water-stress conditions were applied to the apical 12 mm of intact or excised roots ofZea mays L. (cv. LG 11) using mannitol solutions (0 to 0.66 M) and changes in weight, water content, growth and IAA level of these roots were investigated. With increasing stress a decrease in growth, correlated with an increased IAA level, was observed. The largest increase in IAA (about 2.7-fold) was found in the apical 5 mm of the root and was obtained under a stress corresponding to an osmotic potential of −1.39 MPa in the solution. This stress led to an isotonic state in the cells after 1 h. When the duration of water stress (−1.09 MPa) was increased to 2 or 3 h, no further increase in the IAA content was observed in the root segments. This indicated that there was no correlation between a hypothetical passive penetration of mannitol in the cells and IAA content. Indol-3yl-acetic acid rose to the same level in excised as in intact roots. In both cases, IAA accumulation was apparently independent of the hydrolysis of the conjugated form. The caryopsis and shoot seem not to be necessary to induce the increase of the IAA level in the roots during water stress (−1.09 MPa). Therefore, there seems to be a high rate of IAA biosynthesis in excised maize roots under water-stress conditions. Exodiffusion of IAA was observed during an immersion in either buffer or stress (−1.09 MPa) solution. In both cases, this IAA efflux into the medium represented about 50% of the endogenous level. Considering the present results, IAA appears to play an important part in the regulation of maize root metabolism and growth under water deficiency.  相似文献   

8.
以1年生"玫瑰香"葡萄为试验材料,进行根域限制栽培处理,以传统地栽为对照,研究根域限制对葡萄根系构型、细胞结构、IAA含量及其代谢和根系生长发育相关基因表达丰度的影响,以探讨根域限制栽培影响葡萄根系构型变化的内在机制.结果表明:(1)根域限制处理后,葡萄根系构型发生显著变化,主要表现在根尖处出现大量集群根、不定根持续发...  相似文献   

9.
Protoplasts isolated from etiolated hypocotyls of 6-day-old seedlings of Brassica juncea cv RLM 198 were cultured in a modified V47 medium containing 7% mannitol, 2% sucrose, 1.0 mg/l 2,4-D, 0.1 mg/l NAA and 0.4 mg/l BAP, at a density of 5×104 protoplasts per ml of medium. Cultures were incubated in the dark at 25+1°C. After 7 d of culture, cell colonies were diluted with 8p medium containing 5% mannitol and a similar hormone combination as described earlier. After 14 d, cell colonies were embedded in 8p medium containing agarose and 3.5% mannitol. Immediately upon gelling, liquid 8p medium was added to each Petri dish as an overlayer, and cultures were incubated in the light. After a total of 3 to 4 weeks in culture, microcalli were obtained. A modified MS medium with 2% sucrose, 1.0 mg/l 2,4-D and 0.1 mg/l kinetin solidified with 0.5% agarose was used for growing microcalli into callus lines. On MS medium containing 2% sucrose, 0.1 mg/l IAA, 2.0 mg/l zeatin riboside and 2.0 mg/l BAP, solidified with 0.5% agarose, about 35% of the calli regenerated multiple shoots. The time required from culture of protoplasts to multiple shoot regeneration was about 10 weeks. Regenerated shoots were rooted and plants were re-established in a growth chamber at high frequency.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - IAA Indole-3-acetic acid - NAA -naphthaleneacetic acid - BAP 6-benzylaminopurine - IBA Indole-3-butyric acid  相似文献   

10.
The hairy root culture of Lippia dulcis Trev., Verbenaceae, was established by transformation with Agrobacterium rhizogenes A4. The transformed roots grew well in Murashige and Skoog medium containing 2% sucrose. The roots turned light green when they were cultured under 16 h/day light. The green hairy roots produced the sweet sesquiterpene hernandulcin (ca. 0.25 mg/g dry wt) together with 20 other mono- and sesquiterpenes, while no terpenes were detected in the nontransformed root cultures. The growth and hernandulcin production in the hairy root cultures were influenced by the addition of auxins to the medium. The addition of a low concentration of chitosan (0.2 – 10.0 mg / l) enhanced the production of hernandulcin 5-fold.Abbreviations Cht chitosan - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog(1962)  相似文献   

11.
The role of auxins in induction of roots byAgrobacterium rhizogenes was studied in carrot root disks. Transformed roots were produced on root disks by inoculation withA. rhizogenes, A4. Measurement of indole-3-acetic acid (IAA) by gas chromatography-mass spectrometry (GC-MS) indicated that there was a significant increase in the concentration of IAA in transformed callus and induced roots compared with initial IAA concentrations in carrot disks. Indole-3-butyric acid (IBA) was found to occur naturally in carrot roots. The presence of IBA, a potent root inducer, must be taken into account when assessing the role of auxin during transformation and induction of roots byA. rhizogenes.  相似文献   

12.
The effect of cycloheximide (CH) on the indol-3yl-acetic acid (IAA)-stimulated transport of 14C-labelled abscisic acid (ABA) and 14C-labelled sucrose was studied in 110 mm long pea epicotyl segments. IAA application resulted in elongation growth of the segments. This effect was decreased by CH treatment which also reduced [14C] ABA and [14C] sucrose accumulation in the growing apical part of the segments. A reduction in [14C] IAA uptake and in protein synthesis in this part of the segments was also observed. The simultaneous inhibition of protein synthesis and reduction of [14C] ABA and [14C] sucrose transport suggests that IAA can stimulate the transport of ABA and sucrose through a protein synthesis-based elongation growth.  相似文献   

13.
Hairy root clones ofRehmannia glutinosa were established via transformation withAgrobacterium rhizogenes ATCC15834. To optimize the culturing conditions for both root growth and catalpol production, effects of various combinations of seven basal media, pH, and carbon sources were examined under darkness. The fastest root growth was obtained in an SH medium containing 4% sucrose (pH 5.8); the highest catalpol content (0.54% of dry weight) was achieved in a WPM medium supplemented with 4% sucrose (pH 5.8). Effects of plant growth regulators and chitosan were also investigated. IAA at 2 mg L-1 significantly increased root lengths and the frequency of lateral roots. Chitosan (50 mg L-1) and CA3 (0.5 mg L-1) induced catalpol production, with contents calculated at 0.7% dry weight and 0.65% dry weight, respectively.  相似文献   

14.
Adventitious root formation in stem cuttings of mung bean was enhanced by ethrel, which had an additive effect when employed simultaneously with indolebutyric acid (IBA). Abscisic acid (ABA) did not influence the number of roots per cutting whereas gibberellic acid (GA3) and kinetin were without effect on rooting at lower concentrations but were inhibitory at higher concentrations. Nevertheless, all three of these chemicals showed synergistic interactions with IBA and/or indol-3-ylacetic acid (IAA) and thereby significantly promoted root formation. A localised application of morphactin to the epicotyl of cuttings totally inhibited root production irrespective of which of the foregoing growth regulators were suppliedvia the hypocotyl. Morphactin application also prevented root formation in cuttings treated with vitamin D2. The various growth regulators employed had differing effects on growth of roots but there was no simple relationship between their effects on root formation and subsequent root growth.  相似文献   

15.
为了解瘤菌根菌(Epulorhizasp.)与铁皮石斛(Dendrobiumofficinale)根系的共生关系及其对根系农艺性状的影响,用液体培养瘤菌根菌浇灌无菌盆栽铁皮石斛苗根部共培养,观察石斛根的表型和超微结构变化,并用分子检测鉴定菌丝是否定殖根中。结果表明,瘤菌根菌菌丝能侵入根的皮层细胞,诱导生成菌丝团形成共生关系。共生后的菌丝能提高IAA含量,诱导根系结构发生改变生成侧根,增大了根系体积,促进根系的生长并显著提高根系活力。瘤菌根菌与铁皮石斛根共培养后建立共生关系形成菌根且能定殖于根中,诱导根系结构的变化,侧根的形成对石斛生长具有重要作用。  相似文献   

16.
MYB转录因子家族是植物中最大的转录因子家族之一,参与植物生长、繁殖和代谢的各个时期,能通过多种方式参与植物抗逆生长。该文在水曲柳中克隆FmMYBL2基因,利用生物信息学分析其结构和表达特征,并构建FmMYBL2蛋白的系统进化树。对水曲柳幼苗进行低温胁迫、盐胁迫处理以及激素分子诱导处理(包括ABA、IAA、GA_3、JA、SA)。分别在0、1、3、6、12、24、48 h取样,利用实时荧光定量PCR对上述处理样品中FmMYBL2基因进行定量分析,并分析了FmMYBL2的时空表达特征。结果表明:(1)克隆得到的FmMYBL2基因全长为762 bp,编码253个氨基酸。(2) FmMYBL2蛋白是亲水性蛋白,氨基酸序列比对表明其与棉花同源关系较近。(3)荧光定量分析表明,FmMYBL2基因响应低温胁迫和盐胁迫,同时ABA、IAA、GA_3、JA、SA共同调控该基因表达。(4)在低温处理1 h、盐胁迫48 h时,虽然FmMYBL2基因表达量最高,激素诱导后表达量持续波动,但其能在短时间内迅速响应。(5) FmMYBL2基因在根、芽、花、种子中均有表达,雄花中的表达量最高。该研究结果为深入研究MYBL2基因功能和水曲柳抗逆生长的调控奠定基础。  相似文献   

17.
The effect of morphactin (methyl-2-chloro-9-hydroxyfluorene-9-carboxylate) on the content of several plant growth substances in bean roots was determined. Beans (Phaseolus vulgaris L. cv. Spartan) were soaked in aqueous solutions of morphactin, 1 x 10-4, 1 x 10-5, and 1 x 10-6M and grown in moist vermiculite. As controls were used beans grown in water-moistened vermiculite either intact or having the root tips removed (decapped). The roots, morphactin-treated, controls, and the decapped ones were analyzed for indol-3-yl acetic acid (IAA), indol-3-yl acrylic acid (IAcA), indol-3-yl pyruvic acid (IPyA), indol-3-yl lactic acid (1LA), abscisic acid (ABA), gibberellins GA1, GA3, GA4, and GA9 using gas-liquid chromatographic methods. Morphactin, while affecting the geotropical responses, changed also the growth substance content of roots. IAA, ABA, GA1, and GA9 contents decreased, IPyA, IAeA, GA3, and GA4 contents were not affected and ILA content increased slightly with increasing dosages of morphactin. Growth substance pattern of decapped roots resembled that of the roots treated with the highest dose, 1 x 10-4M, of morphactin.  相似文献   

18.
半夏缓慢生长法保存及体细胞变异的ISSR检测   总被引:1,自引:0,他引:1  
以添加了不同浓度的甘露醇、PP333和ABA的培养基对半夏试管苗进行缓慢生长法保存,并对保存材料再生后代的体细胞变异进行检测。结果显示,甘露醇、PP333和ABA均能有效抑制试管苗生长,且存活率高;最佳浓度分别为甘露醇2%~4%,PP3332.0mg·L-1,ABA 2.0~4.0mg·L-1。保存在添加了2%~4%甘露醇或2.0mg·L-1 PP333培养基上的植株未检测到变异,而保存在添加了2.0~4.0mg·L-1 ABA培养基上的植株检测到1条新增标记和1条缺失标记,位点变异率为1.7%,个体变异率为30%。研究表明,ABA不宜用于半夏试管苗的缓慢生长法保存,但有助于新突变体的产生,在种质创新上具有特殊意义。  相似文献   

19.
The Rhizobium sp. When isolated form the root nodules of a leguminous climbing shrub Derris scandens produced a high amount of indole acetic acid (IAA) (135.2 μg/ml) from the tryptophan-supple-mented basal medium. Growth and IAA production started simultaneously, and the maximum amount of IAA was produced as a secondary metabolite in the stationary phase of growth. The IAA production by the Rhizobium sp. was increased by 503% when the medium was supplemented with mannitol (2%), KNO3 (0.2%), nicotinic acid (0.1 μg/ml) and MnSO4 (1 μg/ml) in addition to tryptophan (4 mg/ml)/ The possible role of the rhizobial production of IAA on the rhizobia-legume symbiosis is also discussed.  相似文献   

20.
The transport of14C-IAA and14C-ABA applied exogenously to root cap toward the elongation zone was investigated in gravi- and light-stimulated primary roots ofZea mays L. cv. Golden Cross Bantam 70. No significant difference of either IAA or ABA in radioactivities was observed between upper and lower halves of elongation zones during the latent period (0–60 min after the stimulation) of gravitropic response. When quantitative analysis of endogenous IAA and ABA by an internal standard method was carried out 60 min after gravi- and/or light-stimulation, no asymmetric redistribution of either IAA or ABA was observed between upper and lower halves of elongation zones. Light irradiation increased by 20% the contents of ABA in elongation zones. These results suggest that although both IAA and ABA are basipetally transportable and can transmit their information to the elongation zone during a latent period we cannot explain the gravitropic curvature by their redistributions between the two (upper and lower) halves of primary roots ofZea. On the basis of results from the present work and previous papers, the distribution of IAA and ABA in gravistimulatedZea roots is discussed. A part of this study was reported at the Eighth Annual Meeting of the IUPS Commission on Gravitational Physiology at Tokyo 1986.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号