首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A pericentric inversion of chromosome 12 has been followed in three large independently ascertained Danish families. Out of a total number of 52 persons examined, 25 were found to carry the inversion. The break-points in all three families were localized to p13 and q13, resulting in more than one-third of the total length of the chromosomes being inverted. However, no chromosomal aberrations arising because of meiotic crossing-over inside the inverted area have been found among the offspring of the carriers. The percentage of spontaneous abortions among carriers is found to be high, viz. 33%. The segregation rate is calculated to be 0.58, which is not significantly different from an expected segregation rate of 0.5. In family 3, an additional inversion of a chromosome 9 has been found in 4 individuals. Our results are discussed in relation to previous findings and with respect to the genetic counselling of families with pericentric inversions.  相似文献   

2.
A male child with multiple congenital anomalies initially was clinically diagnosed as having Smith-Lemli-Opitz syndrome (SLOS). Subsequent cytogenetic studies revealed an interstitial deletion of 17p11.2, which is associated with Smith-Magenis syndrome (SMS). Biochemical studies were not supportive of a diagnosis of SLOS, and the child did not display the typical SMS phenotype. The father's karyotype showed a paracentric inversion of 17p, with breakpoints in p11.2 and p13.3, and the same inversion was also found in two of the father's sisters. FISH analyses of the deleted and inverted 17p chromosomes indicated that the deletion was similar to that typically seen in SMS patients and was found to bracket the proximal inversion breakpoint. Available family members were genotyped at 33 polymorphic DNA loci in 17p. These studies determined that the deletion was of paternal origin and that the inversion was of grandpaternal origin. Haplotype analysis demonstrated that the 17p11.2 deletion arose following a recombination event involving the father's normal and inverted chromosome 17 homologues. A mechanism is proposed to explain the simultaneous deletion and apparent "reinversion" of the recombinant paternal chromosome. These findings have implications for prenatal counseling of carriers of paracentric inversions, who typically are considered to bear minimal reproductive risk.  相似文献   

3.
A familial pericentric inversion of the X chromosome [46,X,inv(X)(p11q28)] and [46,inv(X)(p11q28), Y] is reported. The carriers of the inv(X) presented no clinical symptoms. Either the inverted or the normal X chromosome may be late replicating.  相似文献   

4.
InScilla scilloides (Lindle) Druce, the heterozygotes for a pericentric inversion were found to be predominant in a small natural population consisting of cytogenetic type BB (2n=18). Pericentric inversion may include about half the length of the original subtelocentric chromosome, changing it to submetacentric. The 9II were always formed in these heterozygotes as well as in normal plants at MI in PMCs. A single chiasma was formed in the shorter one of two inverted segments divided by the kinetochore at MI, while one or two inversion chiasmata were observed in the longer segment. The AI separation was always regular. Since both arms of a normal chromosome and those of an inverted one were clearly distinguishable from one another at AI and AII, two kinds of crossover chromatids could be identified. Both sides of the single inversion chiasma always opened out reductionally. The frequency of bivalent without inversion chiasma agreed statistically with that of half-bivalent at AI or chromatid structure at AII, which resulted from non crossing-over within the inverted segment. Likewise, no statistical difference was found between the frequency of a single chiasma and that of a single crossing-over product in a longer inverted segment. These findings have clearly proved that the chiasma is a consequence of genetic crossing-over. The average proportion of good pollen grains in the inversion heterozygotes, 53.6%, amounted to about half that of normal plants, 97.7%.  相似文献   

5.
Chromosomal rearrangements are common in humans. Pericentric inversions are among the most frequent aberrations (1–2%). Most inversions are balanced and do not cause problems in carriers unless one of the breakpoints disrupts important functional genes, has near submicroscopic copy number variants or hosts “cryptic” complex chromosomal rearrangements. Pericentric inversions can lead to imbalance in offspring. Less than 3% of Down syndrome patients have duplication as a result of parental pericentric inversion of chromosome 21. We report a family with an apparently balanced pericentric inversion of chromosome 21. The proband, a 23-year-old female was referred for prenatal diagnosis at 16 weeks gestation because of increased nuchal translucency. She has a familial history of Down's syndrome and moderate intellectual disability, a personal history of four spontaneous abortions and learning difficulties. Peripheral blood and amniotic fluid samples were collected to perform proband's and fetus' cytogenetic analyses. Additionally, another six family members were evaluated and cytogenetic analysis was performed. Complementary FISH and MLPA studies were carried out. An apparent balanced chromosome 21 pericentric inversion was observed in four family members, two revealed a recombinant chromosome 21 with partial trisomy, and one a full trisomy 21 with an inverted chromosome 21. Array CGH analysis was performed in the mother and the brother's proband. MLPA and aCGH studies identified a deletion of about 1.7 Mb on the long arm of inverted chromosome 21q22.11. We believe the cause of the intellectual disability/learning difficulties observed in the members with the inversion is related to this deletion. The recombinant chromosome 21 has a partial trisomy including the DSCR with no deletion. The risk for carriers of having a child with multiple malformations/intellectual disability is about 30% depending on whether and how this rearrangement interferes with meiosis.  相似文献   

6.
A 28-year-old normal East Indian was found to have a pericentric inversion of the Y chromosome. After reviewing the literature, it was concluded that an inverted Y chromosome does not impede the production of normal sperm and does not predispose to non-disjunction of other chromosomes in the progeny. Thus, the earlier concept of nondisjunction was rejected, and it is suggested that aberrant cases with aneuploidy and an inverted Y are fortuitous. The pericentric inverted Y is inherited from generation to generation and has no clinical significance. The prevalence of males with pericentric Y inversion in the general population is approximately 1 per 1000. It is suggested that a pericentric inversion of the Y chromosome is a rare chromosomal heteromorphism and should be called type III.  相似文献   

7.
Summary A large kindred with a familial pericentric inversion of chromosome 3, (p12q24), was found after an investigation initiated by a young female with three spontaneous first-trimester abortions. Altogether 22 (33%) inversion carriers were discovered, 9 females and 13 males. 6 women and 9 men were included in the fertility and segregation analyses because they were all either sexually mature or past maturity. The abortion frequency was below the average European rate in both the inversion carrier group and the cytogenetically normal relative group; 6%: 3%, respectively. The mean numbers of pregnancies and live births (1.8–3.1) did not vary significantly in the two comparison groups. The segregation analysis among the inversion carriers showed a good correspondence to the theoretical 11 ratio (1613). Males and females contributed equally. No duplication/deletion syndromes have been found in the kindred; all family members are phenotypically normal. We report a balanced familial pericentric inversion with no adverse effects. This chromosome aberration could be an example of a harmless chromosome polymorphism.  相似文献   

8.
Meiotic segregation products of carriers with pericentric inversion are very important for assessing the risk of unbalanced forms and appropriate genetic counseling. We investigated the incidence of recombinant and nonrecombinant products of chromosome 1 with pericentric inversion, in the sperm nuclei of the carrier by using triple color fluorescence in situ hybridization (FISH). The centromere specific and telomere specific probes for chromosome 1 were used. In the segregation analysis, 1,636 sperm nuclei were analyzed; 82.5% of the sperms were including normal or inverted chromosome 1, and the dup(p)/del(q) and del(p)/dup(q) recombinant products in sperm nuclei of our carrier were 8.7 and 7.3%, respectively. The number of recombinant products may be dependent on the formation of an inversion loop, which the number of the formation of chiasmata results in the different number of normal/balanced and recombinant products. The use of FISH, using different probe combination, in sperm nuclei has proved to be an accurate approach to determine the meiotic segregation patterns and could help to better establish a reproductive prognosis and genetic counseling.  相似文献   

9.
A huge amount of data seem to confirm the adaptive value of inversions in Drosophila. The inhibition of recombination in heterokaryotypes mediated by inversions seems fundamental in maintaining their adaptive role. This study shows that recombination is highly suppressed in Drosophila subobscura because of chromosomal inversions, not only inside the inversions but also outside them. It seems that the region outside the inversion where recombination is inhibited is asymmetrical and independent of the inversion length. Despite the difficulty of crossovers taking place near inversion breakpoints, the only two recombination events detected inside inversions were located close to the breakpoint. Thus, selection could be largely responsible for the recombination reduction maintaining sets of adaptive alleles inside the inverted region. Heterokaryotype descendants were always in higher frequency than inbred or outbred homokaryotypes, regardless of the geographical origin of the chromosome, suggesting that chromosomes carrying the same arrangement, although with a different set of alleles for neutral markers, could be submitted to the same selection processes.  相似文献   

10.
We analysed polymorphism for pericentric inversion in chromosome 3 of Oligoryzomys nigripes (Rodentia: Sigmodontinae) in several populations in Brazil and examined the meiotic behaviour of this chromosome in heterozygotes. We observed an orderly pairing of all chromosomes at pachytene in heterozygotes for the inverted chromosome 3. No indication of meiotic arrest and germ-cell death was found. Electron microscopy of synaptonemal complexes and conventional meiotic analysis indicated strictly nonhomologous synapsis and crossing-over suppression in the inverted region in the heterozygotes, which prevent the formation of unbalanced gametes. Thus, the pericentric inversion in chromosome 3 does not apparently result in any selective disadvantages in heterozygous carriers. In the majority of the populations studied, the frequencies of acrocentric homozygotes, metacentric homozygotes, and heterozygotes were in Hardy-Weinberg equilibrium. However, in some populations, we detected an excess of heterozygotes and a deficiency of acrocentric homozygotes.  相似文献   

11.
Using a procedure in which human sperm were allowed to fertilize zona-free golden hamster (Mesocricetus auratus) eggs in vitro, the sperm chromosomes of a man heterozygous for inv(3) (p11q11) were analyzed. When the chromosomes were Q-banded, the inverted chromosome had the bright centromeric band on the short arm rather than on the long arm, as was seen in the normal No. 3. One hundred and eleven sperm chromosome spreads were examined, of which 64 contained the normal chromosome and 47 the inverted one. This was not significantly different from the expected 1:1 ratio. No sperm containing a chromosome imbalance caused by a crossover within the inversion were seen. Ten (8.1%) of the sperm contained chromosome abnormalities unrelated to the inversion. The ratio of X- to Y-bearing sperm was 55:45.  相似文献   

12.
Summary An inverted Y chromosome has been found at a very high frequency in a Muslim Indian community living in the Johannesburg-Witwatersrand area of the Transvaal Province of South Africa: 8 of 141 (5.7%) retrospectively identified Indian males had an inv(Y)(p11.2q11.23) and all were of the Muslim faith. The inversion was found in 22 of 72 (30.5%) prospectively studied normal Muslim Indian males. All the carriers of the inversion were Gujarati-speakers whose families migrated to the Transvaal from the Gujerat Province of India during the first half of this century. The origins of the ancestors of the individuals with inv(Y) were traced to a small village, Kholvad, near the city of Surat, and some neighbouring villages. The polymorphic frequency of the inv(Y) has probably been produced through random genetic drift in a reproductively isolated community, maintained by strict endogamous marriage customs based on religious and linguistic affiliations. There was no indication that the inverted Y was associated with any reproductive disadvantages.  相似文献   

13.
14.
Human sperm chromosomes were studied in a man heterozygous for a pericentric inversion of chromosome (1)(p31q12). Q-banded pronuclear chromosomes were analyzed after in vitro penetration of golden hamster oocytes. A total of 159 sperm were examined: 54% bearing the inverted chromosome 1 and 46% the normal chromosome 1. These frequencies are not significantly different from the theoretical 11 ratio. There were no recombinant sperm with duplications or deficiencies, suggesting that a pairing loop failed to form or that crossing-over was suppressed. The frequency of abnormalities unrelated to the inversion was 5% for numerical, 8.8% for structural, 2.5% for numerical and structural, values not significantly different from control donors studied in our lab. The frequencies of X- and Y-bearing sperm were 46% and 54%, respectively, not significantly different from the expected value of 50%. This is the fifth pericentric inversion studied by human sperm chromosome analysis; recombinant chromosomes have been observed in two of the five cases. Some of the factors associated with an increased risk of recombinant sperm appear to be inversion size greater than 30% of the chromosome and chromosome breakpoints in G-light bands.  相似文献   

15.
Summary An inversion of chromosome 1 was found in three normal members of a two generation family. G- and C-banding studies revealed inv(1)(p13q23). The problems encountered in counseling such normal carriers are discussed.  相似文献   

16.
It has been demonstrated in animal studies that, in animals heterozygous for pericentric chromosomal inversions, loop formation is greatly reduced during meiosis. This results in absence of recombination within the inverted segment, with recombination seen only outside the inversion. A recent study in yeast has shown that telomeres, rather than centromeres, lead in chromosome movement just prior to meiosis and may be involved in promoting recombination. We studied by cytogenetic analysis and DNA polymorphisms the nature of meiotic recombination in a three-generation family with a large pericentric X chromosome inversion, inv(X)(p21.1q26), in which Duchenne muscular dystrophy (DMD) was cosegregating with the inversion. On DNA analysis there was no evidence of meiotic recombination between the inverted and normal X chromosomes in the inverted segment. Recombination was seen at the telomeric regions, Xp22 and Xq27-28. No deletion or point mutation was found on analysis of the DMD gene. On the basis of the FISH results, we believe that the X inversion is the mutation responsible for DMD in this family. Our results indicate that (1) pericentric X chromosome inversions result in reduction of recombination between the normal and inverted X chromosomes; (2) meiotic X chromosome pairing in these individuals is likely initiated at the telomeres; and (3) in this family DMD is caused by the pericentric inversion.  相似文献   

17.
Summary Human sperm chromosomes were studied in a man heterozygous for a paracentric inversion of chromosome 7 (q11q22). The pronuclear chromosomes were analysed after in vitro penetration of golden hamster (Mesocricetus auratus) eggs. Ninety-four sperm chromosome spreads were examined, of which 34 contained the normal number 7 chromosome and 59 the inverted 6. This segregation was significantly different from the expected 1:1 ratio. The number of X- to Y-bearing sperm was 48 and 46 respectively. No sperm contained a recombinant chromosome caused by a crossover within the inversion. The frequency of chromosomal abnormalities in other chromosomes was 9.6%, which is not significantly different from the frequency observed in normal donors (8.9%) in our laboratory. These result suggest that the risk of chromosomally unbalanced sperm is not high for this paracentric inversion.  相似文献   

18.
We present 33 families in which a pericentric inversion of chromosome 10 is segregating. In addition, we summarise the data on 32 families in which an apparently identical inv(10) has been reported in the literature. Ascertainment was through prenatal diagnosis or with a normal phenotype in 21/33 families. In the other 12 families, probands were ascertained through a wide variety of referral reasons but in all but one case (a stillbirth), studies of the family showed that the reason for referral was unrelated to the chromosome abnormality. There has been, to our knowledge, no recorded instance of a recombinant chromosome 10 arising from this inversion and no excess of infertility or spontaneous abortion among carriers of either sex. We propose that inv(10)(p11.2q21.2) can be regarded as a variant analogous to the pericentric inversion of chromosome 2(p11q13). We conclude that prenatal chromosome analysis is not justified for inv(10) carriers. In addition, family investigation of carrier status is not warranted in view of the unnecessary concern this may cause parents and other family members. Received: 7 July 1997 / Accepted: 4 August 1997  相似文献   

19.
Crossover within a pericentric inversion produces reciprocal recombinant chromosomes that are duplicated/deficient for all chromatin distal to the breakpoints. In view of this fact, a new technique is presented for estimating the frequency of recombination within pericentric inversions. YAC probes were selected from within the q- and p-arm flanking regions of two human inversions, and two-color FISH analysis was performed on sperm from heterozygous inversion carriers. A total of 6,006 sperm were analyzed for chromosome 1 inversion (p31q12), and 3,168 were analyzed for chromosome 8 inversion (p23q22). Both inversions displayed suppression of crossing-over, although the amount of suppression differed between the two inversions. The recombination frequency of 13.1% recorded for chromosome 8 inversion was similar to the frequency of 11.4% previously estimated by the human/hamster-fusion method. For chromosome 1 inversion, the recombination frequency of 0. 4% reported here was below the limits of detection of the fusion technique. The simplicity of the FISH technique and the ease of scoring facilitate analysis of a sample-population size much larger than previously had been possible.  相似文献   

20.
Familial pericentric and paracentric inversions of chromosome 1   总被引:1,自引:1,他引:0  
Summary We investigated 33 individuals (21 carriers) from one family with a pericentric inversion involving a large part of chromosome 1 (1p36.11q32). In addition, we investigated 15 individuals (10 carriers) from another family with a paracentric inversion of a small part of chromosome 1(1p321p36.1). In each family, the index patient was ascertained because three miscarriages had occurred. Each carrier of these inversions was phenotypically normal. If the miscarriages of the index patients are excluded, the frequency of recognized miscarriages among the carriers of childbearing age was 9% (4 of 46) for the family with pericentric inversion and 17% (4 of 23) for the family with paracentric inversion. One of the pericentric inv(1) carriers had had a stillborn daughter. The carriers of the pericentric inversion who were of childbearing age had 41 children; carriers of the paracentric inversion who were of childbearing age had 19 children. No live-born children with birth defects were observed in either family. This evidence, together with the low frequency of miscarriages, suggests that crossover within the inversion loop occurs much less frequently than might be expected from the large size of this inversion. Our investigation suggests that the risk of recognized miscarriages, stillbirths, and live-born children with recombinant chromosomes who have birth defects may be much lower for inv(1) carriers than previously reported. The risk of having a malformed child because of a recombinant chromosome is probably less than 3% for carriers of the pericentric inversion and less than 6% for the carriers of the paracentric inversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号